Theorem

If \(F'(t) \) is continuous for \(a \leq t \leq b \), then

\[
\int_a^b F'(t)\,dt = F(b) - F(a)
\]

In other words: The definite integral of the derivative of a function gives the total change in the function.
Marginal Cost and Change in Total Cost

Assume $C'(q)$ is the marginal cost and $C(0)$ is the fixed cost.

- Cost to increase production from a units to b units
 $$= C(b) - C(a) = \int_a^b C'(q) dq$$
Assume $C'(q)$ is the marginal cost and $C(0)$ is the fixed cost.

- Cost to increase production from a units to b units:
 \[C(b) - C(a) = \int_a^b C'(q) \, dq \]

- Total variable cost to produce b units:
 \[\int_0^b C'(q) \, dq. \]
Marginal Cost and Change in Total Cost

Assume \(C'(q) \) is the marginal cost and \(C(0) \) is the fixed cost.

- Cost to increase production from \(a \) units to \(b \) units
 \[= C(b) - C(a) = \int_a^b C'(q) \, dq \]

- Total variable cost to produce \(b \) units
 \[= \int_0^b C'(q) \, dq. \]

- Total cost of producing \(b \) units
 \[= C(0) + \int_0^b C'(q) \, dq. \]
The marginal cost function of producing \(q \) mountain bikes is

\[
C'(q) = \frac{600}{0.3q + 5}.
\]

If the fixed cost in producing the bicycles is $2000, find the total cost to produce 30 bicycles.
The marginal cost function of producing q mountain bikes is

$$C'(q) = \frac{600}{0.3q + 5}.$$

- If the fixed cost in producing the bicycles is $2000, find the total cost to produce 30 bicycles.
- If the bikes are sold for $200 each, what is the profit (or loss) on the first 30 bicycles.
The marginal cost function of producing q mountain bikes is

$$C'(q) = \frac{600}{0.3q + 5}.$$

- If the fixed cost in producing the bicycles is $2000, find the total cost to produce 30 bicycles.
- If the bikes are sold for $200 each, what is the profit (or loss) on the first 30 bicycles?
- Find the marginal profit on the 31th bicycle.
The marginal cost function of producing q mountain bikes is

$$C'(q) = \frac{600}{0.3q + 5}.$$

- $2000 + 2059.23 = 4059.23$
- If the bikes are sold for $200 each, what is the profit (or loss) on the first 30 bicycles
- Find the marginal profit on the 31^{th} bicycle.
The marginal cost function of producing \(q \) mountain bikes is

\[
C'(q) = \frac{600}{0.3q + 5}.
\]

- \(2000 + 2059.23 = 4059.23 \)
- \(20030 - 4059.23 = 1940.77 \)
- Find the marginal profit on the 31\(^{th}\) bicycle.
Example

The marginal cost function of producing q mountain bikes is

$$C'(q) = \frac{600}{0.3q + 5}.$$

- $2000 + 2059.23 = 4059.23$
- $20030 - 4059.23 = 1940.77$
- $\pi'(31) = R'(31) - C'(31)$
The marginal cost function of producing q mountain bikes is

$$C'(q) = \frac{600}{0.3q + 5}.$$

- $2000 + 2059.23 = 4059.23$
- $2000 - 4059.23 = 1940.77$
- $\pi'(31) = 200 - \frac{600}{0.3 \cdot 31 + 5} \approx 158.04$