Profit, Cost, and Revenue

October 28, 2013
A fundamental issue for a producer is how to maximizing profit.
A fundamental issue for a producer is how to maximizing profit.

\[\pi(q) = R(q) - C(q) \]
Maximizing profit

- A fundamental issue for a producer is how to maximizing profit.
- \(\pi(q) = R(q) - C(q) \)
- \(MC = C' \): Marginal cost; \(MR = R' \): Marginal revenue
Example

Estimating maximum profit if the revenue and cost are given by the curves R and C, respectively, in the figure.
Example

- Profit = Revenue − Cost
Example

- Profit = Revenue − Cost
- Profit is represented by the vertical distance from curve C to curve R, marked by vertical arrow.

Profit, Cost, and Revenue
Example

- Profit = Revenue – Cost
- Profit is represented by the vertical distance from curve C to curve R, marked by vertical arrow.
- Arrow is going down \(\rightarrow\) No profit
Example

- Profit = Revenue - Cost
- Profit is represented by the vertical distance from curve C to curve R, marked by vertical arrow.
- Arrow is going down \Rightarrow No profit
- Arrow is going up \Rightarrow Making profit

Profit, Cost, and Revenue
Example

- Profit = Revenue − Cost
- Profit is represented by the vertical distance from curve C to curve R, marked by vertical arrow.
- Arrow is going down \implies No profit
- Arrow is going up \implies Making profit
- Profit is maximized if the arrow is going up and has the largest distance.
We now analyze the marginal costs and marginal revenues near the optimal point.

\[\pi'(q) = R'(q) - C'(q) = 0 \]

\[MR = R' = C' = MC. \]
We now analyze the marginal costs and marginal revenues near the optimal point.

Global maxima and minima occur at critical points or at the endpoints of the interval.
We now analyze the marginal costs and marginal revenues near the optimal point.

Global maxima and minima occur at critical points or at the endpoints of the interval

\[\pi'(q) = R'(q) - C'(q) = 0 \]
We now analyze the marginal costs and marginal revenues near the optimal point.

Global maxima and minima occur at critical points or at the endpoints of the interval

\[\pi'(q) = R'(q) - C'(q) = 0 \]

\[MR = R' = C' = MC. \]
The maximum or minimum profit can occur where marginal profit = 0. That is where marginal revenue = marginal cost.
Example

The (total) revenue and (total) cost curves for a product are given in the Figure.
(a) Sketch (roughly) the marginal cost and revenue.
(b) Graph the profit function $\pi(q)$.

![Graph showing revenue (R) and cost (C) curves with profit function $\pi(q)$]
Example

Profit, Cost, and Revenue
Example

Find the quantity which maximizes the profit if the total revenue and total cost (in dollars) are given by

$R(q) = 5q - 0.003q^2$

$C(q) = 300 + 1.1q$

where q is quantity and $0 \leq q \leq 1000$ units. What production level gives the maximize profit?
At a price of $80 for a half-day trip, a white-water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers.

- Find the demand equation.
Maximize Revenue

At a price of $80 for a half-day trip, a white-water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers.

- Find the demand equation.
- Express revenue as a function of price
At a price of $80 for a half-day trip, a white-water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers.

- Find the demand equation.
- Express revenue as a function of price
- What price should the company charge per trip to maximize revenue?
At a price of $80 for a half-day trip, a white-water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers.