Second derivative

September 26, 2013
The derivative of derivative is called \textit{second derivative}, and written by f''.

What does the second derivative tell us?

- The derivative of derivative is called second derivative, and written by \(f'' \).
- If \(y = f(x) \), then the second derivative can also be written by \(\frac{d^2y}{dx^2} \).
What does the second derivative tell us?

- The derivative of derivative is called *second derivative*, and written by f''.
- If $y = f(x)$, then the second derivative can also be written by $\frac{d^2y}{dx^2}$.
- which means $\frac{d}{dx} \left(\frac{dy}{dx} \right)$, i.e. the derivative of $\frac{dy}{dx}$.
What does the second tell us?

Theorem

- If $f' > 0$ on an interval, then f is increasing over that interval.

Theorem

- If $f'' > 0$ on an interval, then f' is increasing over that interval.
What does the second tell us?

Theorem

- If $f' > 0$ on an interval, then f is increasing over that interval.
- If $f' < 0$ on an interval, then f is decreasing over that interval.

Theorem

- If $f'' > 0$ on an interval, then f' is increasing over that interval.
- If $f'' < 0$ on an interval, then f' is decreasing over that interval.
What does the second tell us?

Theorem

- If $f'' > 0$ on an interval, then f' is increasing over that interval, so the graph of f is concave up there.
What does the second tell us?

Theorem

- If $f'' > 0$ on an interval, then f' is increasing over that interval, so the graph of f is concave up there.
- If $f'' < 0$ on an interval, then f' is decreasing over that interval, so the graph of f is concave down there.
We think that the derivative as a rate of change, then the second derivative as the rate of change of rate of change.
We think that the derivative as a rate of change, then the second derivative as the *rate of change of rate of change*. If the second derivative is positive, the rate of change is increasing; if the second derivative is negative, the rate of change is decreasing.
A population, P, growing in a confined environment often follow a *logistic* growth curve.

$$f(x) = \frac{1}{1 + e^{-x}}.$$
A population, \(P \), growing in a confined environment often follow a \textit{logistic} growth curve.

\[f(x) = \frac{1}{1 + e^{-x}}. \]
A population, P, growing in a confined environment often follow a *logistic* growth curve.

$$f(x) = \frac{1}{1 + e^{-x}}.$$

Describe how the rate at which the population is increasing changes over time.
A population, P, growing in a confined environment often follow a \textit{logistic} growth curve.

$$f(x) = \frac{1}{1 + e^{-x}}.$$

Describe how the rate at which the population is increasing changes over time.

What is the sign of the second derivative $\frac{d^2 P}{dx^2}$?
A population, P, growing in a confined environment often follow a logistic growth curve.

$$f(x) = \frac{1}{1 + e^{-x}}.$$

Describe how the rate at which the population is increasing changes over time.

What is the sign of the second derivative $\frac{d^2 P}{dx^2}$?

What is the practical interpretation of t^* and L?
Initially, the population is increasing, and at an increasing rate.
Initially, the population is increasing, and at an increasing rate.
At t^* the population is increasing fastest.
Initially, the population is increasing, and at an increasing rate.
At \(t^* \) the population is increasing fastest.
\(L \) is the limiting value of the population.
Example

Table show the number of abortions per year.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1000s of abortions, A</td>
<td>587</td>
<td>1034</td>
<td>1554</td>
<td>1589</td>
<td>1609</td>
<td>1359</td>
<td>1313</td>
<td>1206</td>
</tr>
</tbody>
</table>

(a) Calculate the average rate of change for the time interval shown between 1972 and 2005.

(b) What can you say about the sign of \(\frac{d^2 A}{dt^2} \) during the period 1972-1995?
Example

Table shows the number of abortions per year.

(a) Calculate the average rate of change for the time interval shown between 1972 and 2005.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1000s of abortions, A</td>
<td>587</td>
<td>1034</td>
<td>1554</td>
<td>1589</td>
<td>1609</td>
<td>1359</td>
<td>1313</td>
<td>1206</td>
</tr>
</tbody>
</table>

- **Second derivative**
Example

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1000s of abortions, A</td>
<td>587</td>
<td>1034</td>
<td>1554</td>
<td>1589</td>
<td>1609</td>
<td>1359</td>
<td>1313</td>
<td>1206</td>
</tr>
</tbody>
</table>

Table show the number of abortions per year.
(a) Calculate the average rate of change for the time interval shown between 1972 an 2005.
(b) What can you say about the sign of d^2A/dt^2 during the period 1972-1995?