We use the notation f' for the derivative of the function f.
An alternative notation for derivative

- We use the notation f' for the derivative of the function f.
- Calculus is generally considered to have been founded in the 17th century by Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716).
An alternative notation for derivative

- We use the notation f' for the derivative of the function f.
- Calculus is generally considered to have been founded in the 17th century by Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716).
- Leibniz introduced an alternative notation for derivative.
An alternative notation for derivative

- We use the notation f' for the derivative of the function f.
- Calculus is generally considered to have been founded in the 17th century by Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716).
- Leibniz introduced an alternative notation for derivative.
- For $y = f(x)$

$$f'(x) = \frac{dy}{dx}$$
An alternative notation for derivative

\[\frac{dy}{dx} \] is “the derivative with respect to \(x \) of \(y \)”
An alternative notation for derivative

\[\frac{dy}{dx} \] is “the derivative with respect to \(x \) of \(y \)”

\(d \) is stands for “small difference in...”
An alternative notation for derivative

\[
\frac{dy}{dx} \text{ is “the derivative with respect to } x \text{ of } y\]

d is stands for “small difference in...”

\[
\frac{dy}{dx} \text{ remind us that the derivative is a limit of ratio of the form}
\]

\[
\frac{\text{Difference in } y\text{-values}}{\text{Difference in } x\text{-values}}.
\]
An alternative notation for derivative

\[\frac{dy}{dx} \text{ is “the derivative with respect to } x \text{ of } y" \]

\[d \text{ is stands for “small difference in...”} \]

\[\frac{dy}{dx} \text{ remind us that the derivative is a limit of ratio of the form} \]

\[\frac{\text{Difference in } y\text{-values}}{\text{Difference in } x\text{-values}}. \]

\[\frac{d}{dx} \text{ stands for “the derivative with respect to } x \text{ of ...”}. \text{ Thus } \frac{dy}{dx} \text{ could be viewed as} \]

\[\frac{d}{dx}(y) \]
dy
dx remind us that this is *intuitively* a very small change in \(y \)
divided by a very small change in \(x \).
Advantage and disadvantage

\[
\frac{dy}{dx}
\]
remind us that this is *intuitively* a very small change in \(y\) divided by a very small change in \(x\).

\[
v = \frac{ds}{dt}
\]

Interpretations of the derivative
Advantage and disadvantage

\[\frac{dy}{dx} \] remind us that this is *intuitively* a very small change in \(y \) divided by a very small change in \(x \).

\[v = \frac{ds}{dt} \]

\[\frac{dy}{dx} = f'(x) \] as the slope of the graph \(y = f(x) \), is vertical rise, \(dy \), over horizontal run, \(dx \).
Advantage and disadvantage

- \(\frac{dy}{dx} \) remind us that this is *intuitively* a very small change in \(y \) divided by a very small change in \(x \).
- \(v = \frac{ds}{dt} \)
- \(\frac{dy}{dx} = f'(x) \) as the slope of the graph \(y = f(x) \), is vertical rise, \(dy \), over horizontal run, \(dx \).
- How to represent \(f'(2) \) by our new notation?
$\frac{dy}{dx}$ remind us that this is *intuitively* a very small change in y
divided by a very small change in x.

$v = \frac{ds}{dt}$

$\frac{dy}{dx} = f'(x)$ as the slope of the graph $y = f(x)$, is vertical rise,
dy, over horizontal run, dx.

How to represent $f'(2)$ by our new notation?

$$\left. \frac{dy}{dx} \right|_{x=2}$$
The units of the derivative of a function are the units of the dependent variable divided by the units of the independent variable.
The units of the derivative of a function are the units of the dependent variable divided by the units of the independent variable.

The units of \(dA/dB \) are the unit of \(A \) divided by the units of \(B \).
The units of the derivative of a function are the units of the dependent variable divided by the units of the independent variable.

The units of dA/dB are the unit of A divided by the units of B.

If the derivative of a function is not changing rapidly near a point, then the derivative is approximately equal to the change in the function when the independent variable increases by 1 unit.
The cost C (in dollars) of building a house A square feet in area is given by the function $C = f(A)$. What are the unit and the practical interpretation of the function $f'(A)$?

We can think dC as the extra cost of building an extra dA square feet. If we are planning to build a house with area A square feet, $f'(A)$ is approximately the cost per square foot of the extra area involved in building a slightly larger house, and it is called marginal cost.
The cost C (in dollars) of building a house A square feet in area is given by the function $C = f(A)$. What are the unit and the practical interpretation of the function $f'(A)$?

$f'(A) = \frac{dC}{dA}$ dollars per square foot
The cost C (in dollars) of building a house A square feet in area is given by the function $C = f(A)$. What are the unit and the practical interpretation of the function $f'(A)$?

- $f'(A) = \frac{dC}{dA}$ dollars per square foot
- We can think dC as the extra cost of building an extra dA square feet.
Example

- The cost C (in dollars) of building a house A square feet in area is given by the function $C = f(A)$. What are the unit and the practical interpretation of the function $f'(A)$?

 - $f'(A) = \frac{dC}{dA}$ dollars per square foot

 - We can think dC as the extra cost of building an extra dA square feet.

 - If we are planning to build house with area A square feet, $f'(A)$ is approximately the cost per square foot of the extra area involved in building a slightly larger house, and it is called *marginal cost*.

Example

The cost of extracting T tons of ore from a cropper mine is $C = f(T)$ dollars. What does it mean to say that $f'(2000) = 100$?

We can think of dC/dT dollars per square ton as the extra cost of extracting an extra dT tons of ore. So $dC/dT\bigg|_{T=2000} = 100$ says that when 2000 tons of ore have already been extracted from the mine, the cost of extracting the next ton, the 2000^{1}st ton, is about 100$.

Interpretations of the derivative
Example

The cost of extracting T tons of ore from a cropper mine is $C = f(T)$ dollars. What does it mean to say that $f'(2000) = 100$?

$f'(T) = \frac{dC}{dT}$ dollars per square ton
The cost of extracting T tons of ore from a cropper mine is $C = f(T)$ dollars. What does it mean to say that $f'(2000) = 100$?

$f'(T) = \frac{dC}{dT}$ dollars per square ton

We can think dC as the extra cost of extracting an extra dT tons of ore.
The cost of extracting T tons of ore from a cropper mine is $C = f(T)$ dollars. What does it mean to say that $f'(2000) = 100$?

- $f'(T) = \frac{dC}{dT}$ dollars per square ton
- We can think dC as the extra cost of extracting an extra dT tons of ore.
- So
 $$\left. \frac{dC}{dT} \right|_{T=2000} = 100$$

says that when 2000 tons of ore have already been extracted from the mine, the cost of extracting the next ton, the 20001st ton, is about 100$.

Interpretations of the derivative
Example

If \(q = f(p) \) gives the number of thousands of tons of zinc produced when the price is \(p \) dollars per ton, then what are the units and the meaning of

\[
\frac{dq}{dp} \bigg|_{p=900} = 0.2?
\]
Example

If \(q = f(p) \) gives the number of thousands of tons of zinc produced when the price is \(p \) dollars per ton, then what are the units and the meaning of

\[
\left. \frac{dq}{dp} \right|_{p=900} = 0.2?
\]

- \textit{thousand of tons per dollar}
Example

- If $q = f(p)$ gives the number of thousands of tons of zinc produced when the price is p dollars per ton, then what are the units and the meaning of $\left. \frac{dq}{dp} \right|_{p=900} = 0.2$?

- *thousand of tons per dollar*

- When the price is $900, the quantity produced increase by 0.2 thousand tons for one-dollar increase in price.
The time L (in hours), that a drug stays in a person’s system is a function of the quantity administered, q, in mg, so $L = f(q)$.

- Interpret the statement $f(20) = 5$.
- Interpret the statement $f'(20) = 0$.

Interpretations of the derivative
The time L (in hours), that a drug stays in a person’s system is a function of the quantity administered, q, in mg, so $L = f(q)$.

(a) Interpret the statement $f(20) = 5$.
The time L (in hours), that a drug stays in a person’s system is a function of the quantity administered, q, in mg, so $L = f(q)$.

(a) Interpret the statement $f(20) = 5$.

(b) Interpret the statement $f'(20) = 0.2$.
Example

If the velocity of a car at time t seconds is measured in meters/sec, what is the units of the acceleration?
Fertilizers can improve agriculture. A research of corn in Kenya found that the average value, \(y = f(x) \), in Kenyan shillings of the yearly corn production from an average plot of land is a function of quantity, \(x \), of fertilizer used in kg.
Fertilizers can improve agriculture. A research of corn in Kenya found that the average value, \(y = f(x) \), in Kenyan shillings of the yearly corn production from an average plot of land is a function of quantity, \(x \), of fertilizer used in kg.

(a) Interpret the statement \(f(20) = 11,500 \) and \(f'(20) = 350 \).

(b) Use part (a) to estimate \(f(21) \) and \(f(30) \).

(c) Which estimation in part (b) is more reliable?
Using the derivative to estimate values of a function

- Fertilizers can improve agriculture. A research of corn in Kenya found that the average value, \(y = f(x) \), in Kenyan shillings of the yearly corn production from an average plot of land is a function of quantity, \(x \), of fertilizer used in kg.

 (a) Interpret the statement \(f(20) = 11,500 \) and \(f'(20) = 350 \).

 (b) Use part (a) to estimate \(f(21) \) and \(f(30) \).

Interpretations of the derivative
Fertilizers can improve agriculture. A research of corn in Kenya found that the average value, \(y = f(x) \), in *Kenyan shillings* of the yearly corn production from an average plot of land is a function of quantity, \(x \), of fertilizer used in kg.

(a) Interpret the statement \(f(20) = 11,500 \) and \(f'(20) = 350 \).

(b) Use part (a) to estimate \(f(21) \) and \(f(30) \).

(c) Which estimation in part (b) is more reliable?
If \(y = f(x) \) and \(\Delta x \) is near 0, then \(\Delta y \approx f'(x)\Delta x \). Then for \(x \) near \(a \) and \(\Delta x = x - a \),

\[
f(x) \approx f(a) + f'(a)\Delta x.
\]

This is called the \textit{Tangent Line Approximation}.

The **(instantaneous) relative rate of change** of $y = f(t)$ at $t = a$ is defined to be

$$\frac{dy}{dt} = \frac{f'(a)}{f(a)}.$$
Annual world soybean production, \(W = f(t) \), in million tons, is a function of \(t \) years since the start of 2000.
Example

Annual world soybean production, \(W = f(t) \), in million tons, is a function of \(t \) years since the start of 2000.

(a) Interpret the statement \(f(8) = 253 \) and \(f'(8) = 17 \).
Example

Annual world soybean production, $W = f(t)$, in million tons, is a function of t years since the start of 2000.

(a) Interpret the statement $f(8) = 253$ and $f'(8) = 17$.

(b) Calculate the relative rate of change of W at $t = 8$, interpret it in terms of soybean production.
Example

Annual world soybean production, $W = f(t)$, in million tons, is a function of t years since the start of 2000.

(a) Interpret the statement $f(8) = 253$ and $f'(8) = 17$.

(b) Calculate the relative rate of change of W at $t = 8$, interpret it in terms of soybean production.
Solar photovoltaic (PV) cells are the world’s fastest growing energy source. Annual production of PV cells, S, in megawatts, is approximately $S = 277 \exp 0.368t$, where t is in years since 2000. Estimate the relative rate of change of PV cell production in 2020 using

(a) $\Delta t = 1$,
(b) $\Delta t = 0.1$,
(c) $\Delta t = 0.01$,