Exponential Functions

September 4, 2013
Population Growth

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>2.020</td>
<td>2.093</td>
<td>2.168</td>
<td>2.246</td>
<td>2.327</td>
<td>2.411</td>
<td>2.498</td>
</tr>
</tbody>
</table>

Table: The population (in millions) of Nevada 2000–2006.

Review questions:

- Is this population function increasing?
Population Growth

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>2.020</td>
<td>2.093</td>
<td>2.168</td>
<td>2.246</td>
<td>2.327</td>
<td>2.411</td>
<td>2.498</td>
</tr>
</tbody>
</table>

Table: The population (in millions) of Nevada 2000–2006.

Review questions:

- Is this population function increasing?
- Is this population a linear function?
Population Growth

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>2.020</td>
<td>2.093</td>
<td>2.168</td>
<td>2.246</td>
<td>2.327</td>
<td>2.411</td>
<td>2.498</td>
</tr>
</tbody>
</table>

Table: The population (in millions) of Nevada 2000–2006.

Review questions:

- Is this population function increasing?
- Is this population a linear function?
- Is this population a concave up or concave down function? Why?
Population Growth

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>2.020</td>
<td>2.093</td>
<td>2.168</td>
<td>2.246</td>
<td>2.327</td>
<td>2.411</td>
<td>2.498</td>
</tr>
</tbody>
</table>

Table: The population (in millions) of Nevada 2000–2006.

Review questions:

- Is this population function increasing?
- Is this population a linear function?
- Is this population a concave up or concave down function? Why?
- Find the relative change for each year between 2000 and 2003.
Population Growth

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>2.020</td>
<td>2.093</td>
<td>2.168</td>
<td>2.246</td>
<td>2.327</td>
<td>2.411</td>
<td>2.498</td>
</tr>
</tbody>
</table>

Table: The population (in millions) of Nevada 2000–2006.

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>2.020</td>
<td>2.093</td>
<td>2.168</td>
<td>2.246</td>
<td>2.327</td>
<td>2.411</td>
<td>2.498</td>
</tr>
</tbody>
</table>

Table: The population (in millions) of Nevada 2000–2006.

- **Rule:** Whenever we have constant percent increase, we have an exponential growth.
Table: The population (in millions) of Nevada 2000–2006.

- **Rule:** Whenever we have constant percent increase, we have an exponential growth.

- Let t be the number of years since 2000, then the population is given by

$$ P = 2.020(1.036)^t. $$
Population Growth

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>2.020</td>
<td>2.093</td>
<td>2.168</td>
<td>2.246</td>
<td>2.327</td>
<td>2.411</td>
<td>2.498</td>
</tr>
</tbody>
</table>

Table: The population (in millions) of Nevada 2000–2006.

- Rule: Whenever we have constant percent increase, we have an exponential growth.
- Let \(t \) be the number of years since 2000, then the population is given by
 \[
P = 2.020(1.036)^t.
 \]
- The population is an exponential function (with respect to \(t \)).

Rule: Whenever we have constant percent increase, we have an exponential growth.

Let \(t \) be the number of years since 2000, then the population is given by

\[
P = 2.020(1.036)^t.
\]

The population is an exponential function (with respect to \(t \)).

1.036 represents the factor by which the population grows each year. It is called the growth factor.
Assuming that the formula holds for 50 years (since 2000).
Problem 1. When a patient is given medication, the drug enters the bloodstream. The rate at which the drug is metabolized and eliminated depends on the particular drug. For the antibiotic ampicillin, approximately 40% of the drug eliminated every hour. A typical dose of ampicillin is 250 mg. Suppose $Q = f(t)$, where Q is the quantity of ampicillin, in mg, in the bloodstream at time t hours since the drug was given. Find several initial values of $f(t)$.

- $f(0) = 250$
Problem 1. When a patient is given medication, the drug enters the bloodstream. The rate at which the drug is metabolized and eliminated depends on the particular drug. For the antibiotic ampicillin, approximately 40% of the drug eliminated every hour. A typical dose of ampicillin is 250 mg. Suppose $Q = f(t)$, where Q is the quantity of ampicillin, in mg, in the bloodstream at time t hours since the drug was given. Find several initial values of $f(t)$.

- $f(0) = 250$
- $f(1) = 250(0.6) = 150$
Problem 1. When a patient is given medication, the drug enters the bloodstream. The rate at which the drug is metabolized and eliminated depends on the particular drug. For the antibiotic ampicillin, approximately 40% of the drug eliminated every hour. A typical dose of ampicillin is 250 mg. Suppose $Q = f(t)$, where Q is the quantity of ampicillin, in mg, in the bloodstream at time t hours since the drug was given. Find several initial values of $f(t)$.

- $f(0) = 250$
- $f(1) = 250(0.6) = 150$
- $f(2) = 250(0.6)(0.6) = 250(0.6)^2 = 90$
Problem 1. When a patient is given medication, the drug enters the bloodstream. The rate at which the drug is metabolized and eliminated depends on the particular drug. For the antibiotic ampicillin, approximately 40% of the drug eliminated every hour. A typical dose of ampicillin is 250 mg. Suppose $Q = f(t)$, where Q is the quantity of ampicillin, in mg, in the bloodstream at time t hours since the drug was given. Find several initial values of $f(t)$.

- $f(0) = 250$
- $f(1) = 250(0.6) = 150$
- $f(2) = 250(0.6)(0.6) = 250(0.6)^2 = 90$
- $f(3) = 250(0.6)^2(0.6) = 250(0.6)^3 = 54$
Problem 1. When a patient is given medication, the drug enters the bloodstream. The rate at which the drug is metabolized and eliminated depends on the particular drug. For the antibiotic ampicillin, approximately 40% of the drug eliminated every hour. A typical dose of ampicillin is 250 mg. Suppose \(Q = f(t) \), where \(Q \) is the quantity of ampicillin, in mg, in the bloodstream at time \(t \) hours since the drug was given. Find several initial values of \(f(t) \).

- \(f(0) = 250 \)
- \(f(1) = 250(0.6) = 150 \)
- \(f(2) = 250(0.6)(0.6) = 250(0.6)^2 = 90 \)
- \(f(3) = 250(0.6)^2(0.6) = 250(0.6)^3 = 54 \)
- \(f(4) = 32.4 \)
Problem 1. When a patient is given medication, the drug enters the bloodstream. The rate at which the drug is metabolized and eliminated depends on the particular drug. For the antibiotic ampicillin, approximately 40\% of the drug eliminated every hour. A typical dose of ampicillin is 250 mg. Suppose $Q = f(t)$, where Q is the quantity of ampicillin, in mg, in the bloodstream at time t hours since the drug was given. Find several initial values of $f(t)$.

- $f(0) = 250$
- $f(1) = 250(0.6) = 150$
- $f(2) = 250(0.6)(0.6) = 250(0.6)^2 = 90$
- $f(3) = 250(0.6)^2(0.6) = 250(0.6)^3 = 54$
- $f(4) = 32.4$
- $f(5) = 19.4$
Elimination of Drug from the Body

Is this linear? Increasing? Decreasing? Concave up? Concave down?

Exponential Functions
Elimination of Drug from the Body

- Is this linear? Increasing? Decreasing? Concave up? Concave down?
- Find the formula of $Q = f(t)$.

Exponential Functions
Elimination of Drug from the Body

- $Q = f(t) = 250(0.6)^t$

This function is called an exponential decay function.
Elimination of Drug from the Body

- \(Q = f(t) = 250(0.6)^t \)
- This function is called an exponential decay function.
Elimination of Drug from the Body

- \(Q = f(t) = 250(0.6)^t \)
- This function is called an **exponential decay function**.
The General Exponential Function

Definition

We say that \(P \) is an exponential function of \(t \) with base \(a \) if

\[
P = P_0 a^t.
\]

- \(P_0 \) is the initial quantity.
The General Exponential Function

Definition

We say that P is an exponential function of t with base a if

$$P = P_0 a^t.$$

- P_0 is the initial quantity.
- a is the factor by which P changes when t increase by 1.
Definition

We say that \(P \) is an exponential function of \(t \) with base \(a \) if

\[
P = P_0 a^t.
\]

- \(P_0 \) is the initial quantity.
- \(a \) is the factor by which \(P \) changes when \(t \) increase by 1.
- If \(a > 1 \), we have an exponential growth.
The General Exponential Function

Definition

We say that P is an exponential function of t with base a if

$$P = P_0 a^t.$$

- P_0 is the initial quantity.
- a is the factor by which P changes when t increase by 1.
- If $a > 1$, we have an exponential growth.
- If $0 < a < 1$, we have an exponential decay.
The General Exponential Function

Definition

We say that P is an exponential function of t with base a if

$$P = P_0 a^t.$$

- P_0 is the **initial quantity**.
- a is the factor by which P changes when t increase by 1.
- If $a > 1$, we have an **exponential growth**.
- If $0 < a < 1$, we have an **exponential decay**.
- $a = 1 + r$, where r is the decimal representation of the percent rate of change.
Comparison between Linear and Exponential Functions

Definition

- A linear function has a constant rate of change.
Comparison between Linear and Exponential Functions

Definition

- A linear function has a constant rate of change.
- An exponential function has a constant percent rate of change (relative rate of change).
Problem 2. A quantity can change rapidly. Suppose the initial value is 100. Find the formula for the quantity Q at the time t minutes later if Q is:

- Increasing by 3 per minute.
Problem 2. A quantity can change rapidly. Suppose the initial value is 100. Find the formula for the quantity \(Q \) at the time \(t \) minutes later if \(Q \) is:

- Increasing by 3 per minute.
- Decreasing by 7 per minute.
Problem 2. A quantity can change rapidly. Suppose the initial value is 100. Find the formula for the quantity Q at the time t minutes later if Q is:

- Increasing by 3 per minute.
- Decreasing by 7 per minute.
- Increasing by 4% per minute.
Example

Problem 2. A quantity can change rapidly. Suppose the initial value is 100. Find the formula for the quantity \(Q \) at the time \(t \) minutes later if \(Q \) is:

- Increasing by 3 per minute.
- Decreasing by 7 per minute.
- Increasing by 4% per minute.
- Decreasing by 6% per minute.
Problem 3. Sales at the stores of company A increase from $2503 millions in 1990 to $3699 millions in 1996. Assuming the sales have been increasing exponentially, find the equation of the sale function P with respect to $t :=$ the number of years since 1990.

$P = P_0 a^t$
Problem 3. Sales at the stores of company A increase from $2503 millions in 1990 to $3699 millions in 1996. Assuming the sales have been increasing exponentially, find the equation of the sale function P with respect to $t :=$ the number of years since 1990.

\[P = P_0 a^t \]

\[P_0 = 2503 \]
Problem 3. Sales at the stores of company A increase from 2503 millions in 1990 to 3699 millions in 1996. Assuming the sales have been increasing exponentially, find the equation of the sale function P with respect to $t :=$ the number of years since 1990.

$$P = P_0 a^t$$

$$P_0 = 2503$$

$$a^6 = 1.478$$
Problem 3. Sales at the stores of company A increase from $2503 millions in 1990 to $3699 millions in 1996. Assuming the sales have been increasing exponentially, find the equation of the sale function P with respect to $t :=$ the number of years since 1990.

$P = P_0 a^t$

$P_0 = 2503$

$a^6 = 1.478$

$a = 1.07$
Definition

The values of t and P in a table could form an exponential function $P = P_0 a^t$ if ratios of P values are constant for equally spaced t values.
Example

Exponential Functions

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>$h(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.3</td>
</tr>
<tr>
<td>1</td>
<td>6.5</td>
</tr>
<tr>
<td>2</td>
<td>7.7</td>
</tr>
<tr>
<td>3</td>
<td>8.9</td>
</tr>
<tr>
<td>4</td>
<td>10.1</td>
</tr>
</tbody>
</table>
Families of exponential functions
Families of exponential functions