Enumeration of Tilings and Related Problems

Tri Lai

Institute for Mathematics and Its Applications
University of Minnesota
Minneapolis, MN 55455

IMA Postdoc Show and Tell (September 15, 2015)
A lattice divides the plane into fundamental regions.

- A tiling of a region is a covering of the region by tiles so that there are no gaps or overlaps.
A lattice divides the plane into **fundamental regions**.

A **tile** is a union of any two fundamental regions sharing an edge.
A lattice divides the plane into fundamental regions.

A tile is a union of any two fundamental regions sharing an edge.

A tiling of a region is a covering of the region by tiles so that there are no gaps or overlaps.
Theorem (MacMahon)

The number of (lozenge) tilings of a semi-regular hexagon $H_{a,b,c}$ of sides a, b, c, a, b, c on the triangular lattice is

$$\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{t=1}^{c} \frac{i + j + t - 1}{t} \cdot \frac{i + j + t - 2}{i + j + t - 1}.$$

Figure: The hexagon $H_{4,5,6}$ and one of its tilings.
Classical Results

Theorem (Kasteleyn, Temperley and Fisher)

The number of tilings of a $2m \times 2n$ chessboard equals

$$2^{2mn} \prod_{j=1}^{m} \prod_{k=1}^{n} \left(\cos^2 \left(\frac{j\pi}{2m+1} \right) + \cos^2 \left(\frac{k\pi}{2n+1} \right) \right).$$
Theorem (Elkies, Kuperberg, Larsen and Propp 1991)

The Aztec diamond region of order n has $2^{n(n+1)/2}$ (domino) tilings.

Figure: The Aztec diamond of order 5 and one of its tilings.
A quasi-hexagon
A hexagonal dungeon
A tiled double Aztec rectangle
Dragon Regions

Tri Lai

Enumeration of Tilings and Related Problems
Generalized Aztec Diamond

Tri Lai

Enumeration of Tilings and Related Problems
Quartered Aztec Rectangle and Quartered Hexagon

Transforming a quartered Aztec rectangle into a quartered hexagon
Two generalized fortresses
Prove that a sequence of toric mutations on dP_3 quiver gives the \textit{weighted sum} (generating function) of perfect matchings a 6-sided graph.

Our family of graphs generalizes many known ones: including Aztec dragons, Aztec castles, dragon graphs.
Conjecture (Kenyon-Wilson)

Any semicontiguous minor can be expressed as a generating function of domino tilings of some region on the square lattice.
Enumeration of Generalized Plane Partitions

\[
\begin{array}{cccc}
6 & 4 & 2 & 1 \\
3 & 2 & 1 & 0 \\
2 & 1 & 0 & 0 \\
\end{array}
\]
Enumeration of Generalized Plane Partitions

\[\sum \text{volume of the stack} = ? \]

Tri Lai
Enumeration of Tilings and Related Problems
I can use techniques in enumeration of tilings to prove the following theorem.

Theorem (Kamioka)

\[
\sum_{\pi} q^{t^{\text{tr}(\pi)}} \prod_{k=1}^{\pi_{1,1}} \left(\frac{(q^{n-k+1}; q)_{D_k(\pi)}}{(tq^{n-k+1}; q)_{D_k(\pi)}}\right) = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{1 - tq^{i+j+k-1}}{1 - tq^{i+j+k-2}},
\]

where the sum is taken over all plane partitions \(\pi\) fitting in an \(a \times b \times c\) box, and where \(D_k(\pi)\) is the size of the Durfee square of the \(k\)-cross-section of \(\pi\).
Thank you!