Additional misprints in Essentials of Stochastic Processes

These misprints were mostly found by Professor Steve Tanner.

Page 18 Problem 2.18 from the Review of Probability should have $T = T_1 + \ldots + T_n$.

Page 121 – problem 5.2 The range $1 < x < N$ should be $0 < x < N$ to preclude the possibility that "1" is an absorbing state.

Page 122 In the statement of Problem 5.14 of Chapter 2. The formula for the variance in part (b) has a sign error.

Page 124 – Two typos in problem 5.20 In part (a) the given process is not a martingale. The minus sign should be changed to a plus sign. In part (b) there is a condition that is said to hold for all $x \in C$, but C is undefined. It presumably should be the set B or the set S.

Page 136 In part (iii) of the definition of the nonhomogeneous Poisson process either the upper limit of integration should be $(t + s)$ or the random variable being defined should be $N(t) - N(s)$.

Page 143 In Section 3.5 in Chapter 3, proof of Theorem (5.1), the derivation near the top of page 143 has a 4 in the denominator which should be a 4λ.

Page 155 – problem 7.32 The probability function for N is given as $P(N = n) = (1 - p)^{n-1}$. It presumably should be $P(N = n) = p(1 - p)^{n-1}$.

Page 207 In Problem 8.42 from Chapter 4, service “times” should be service rates.

Page 273 The answer to Problem 2.21 from the Review of Probability, page 18 is incorrect. It should say $x(3 - x) - 3/2$ if $1 \leq x \leq 2$.

Page 274 The answer to Problem 9.11 from Chapter 1 is incorrect. It should have $\pi(2) = 2/5$, $\pi(3) = 1/5$.

Page 275 The answer to Problem 5.3 from Chapter 2 is incorrect. It should be $\mu + \sigma^2/2 = 0$.

Page 276 – problem number 7.29 in chapter 3 The answer is wrong. The standard deviation should be $4\sqrt{136}K$.
page 277 – problem number 8.9(a) in chapter 4 The answer is wrong. It should be $\pi_{12} = 1/16, \pi_1 = \pi_2 = 3/16, \pi_0 = 9/16$.

page 278 – problem number 6.21 in chapter 6 The answer has a μ instead of a u in the denominator of a fraction.