Please Answer The Following Three Questions, (Turn Over the Page.)

Question 1. [5 points] Find the volume of the solid of revolution generated when the area bounded by the given curves is revolved around the $x-$axis.

\[y = 2x, \quad y = 2, \quad x = 0. \]

1. **Cylindrical Shell Method:** Radius of shell is y, thickness is dy and height is x-coordinate on $y = 2x$. Therefore, $dV = 2\pi y \frac{2}{2} dy$

\[V = \int_0^2 2\pi y^2 dy = \left[\frac{y^3}{3} \right]_0^2 = \frac{8\pi}{3}. \]

2. **Annulus (Washer) Method:** Inner radius is y-coordinate on $y = 2x$, outer radius is y-coordinate on $y = 2$, and thickness is dx.

\[V = \int_0^1 \pi (4 - (2x)^2)dx = \pi \left[4x - \frac{4}{3}x^3 \right]_0^1 = \frac{8\pi}{3}. \]

Question 2. [5 points] Sketch the curves and find the areas of the region they bound.

\[y = x^2 + 1, \quad y = 3 - x^2, \quad x = -3, \quad x = 2. \]

\[A = \int_{-3}^{-1} [(x^2 + 1) - (3 - x^2)] dx + \int_{1}^{2} [(x^2 + 1) - (3 - x^2)] dx + \int_{1}^{2} [(3 - x^2) - (1 + x^2)] dx = \frac{56}{3}. \]

Question 3. [2 points Bonus!] Prove the mean value theorem for integrals by using the mean value theorem for derivatives. That is, if $f(x)$ is a continuous function on the closed interval $[a, b]$, then there exists some c in the open interval (a, b) such that

\[\int_a^b f(t)dt = f(c)(b - a). \]

Let $F(x) = \int_a^x f(t)dt$. $F(x)$ is continuous on $[a, b]$ and differentiable on (a, b), therefore by Mean Value Theorem for derivatives, there exists some c in (a, b) such that
\[F'(c) = \frac{F(b) - F(a)}{(b - a)}, \quad \text{where by FTC } F'(x) = f(x). \]

Thus,

\[f(c) = \frac{\int_a^b f(t)dt - \int_a^a f(t)dt}{(b - a)} \Rightarrow \int_a^b f(t)dt = f(c)(b - a). \]