Group Theory and Differential Equations

Lecture Notes at the University of Minnesota
1959 - 1960

by

Lawrence Markus
TABLE OF CONTENTS

Group Theory and Differential Equations

I. Lie Theory of Transformation Groups

1. Historical background ... 1.
2. Examples of different types of differential equations and transformation groups 2.
3. Examples of abstract groups 5.
4. One parameter transformation groups on \mathbb{R}^2 8.
5. Invariants of one parameter transformation groups on \mathbb{R}^2 15.
7. Topological groups .. 27.
8. Lie groups ... 37.
9. Lie algebras .. 44.
10. Infinitesimal transformation groups 53.
12. The complete transformation group of a second order differential system 68.

Problems .. 77.
Bibliography .. 79.

II. The Monodromy Group and Fuchsian Differential Equations

1. Introduction. An example of the monodromy group 80.
2. Survey of properties of analytic functions of several variables 82.
3. Existence, uniqueness, continuation, and singularities of solutions 89.
4. Complex manifolds .. 93.
5. First order nonlinear differential equations 98.
III. The Galois or Rationality Group of a Linear Homogeneous Differential Equation

1. Integration of differential equations in finite terms containing elementary functions. .. 148.

2. Differential field extensions and Liouville elementary functions ... 150.

7. Galois group and Galois correspondence. ... 189.

10. Algebraic matrix groups. ... 200.

11. Solvable algebraic matrix groups. .. 203.

12. The Galois group of a Picard-Vessiot extension is an algebraic matrix group. .. 208.

15. Solution of differential equations in elementary functions. 221.
Problems. 225.
Bibliography. 227.