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Chapter 1

Sturm-Liouville Operators

In the following we assume that H is a separable Hilbert space with inner
product (-,-).

1.1 Definitions from operator theory

Definition 1 We say that A is a linear operator on H if there is a sub-
space Dy C H such that for every u € Dy there is a unique vector Au € H.

Furthermore,
Alou + pv) = aAu + SAv

for all scalars a, B and all u,v € Dy. We say that D4 is the domain of A.
The set
RA:{AU,:U,EDA}

15 called the range of A. The set
Ni={ueDy: Au=0}

1s called the null space of A.

Lemma 1 R4 and N4 are subspaces of H.

Note that the domain of A may be a strict subspace of H so that Av
won’t make sense for all v € H, just for v € Dy.

Definition 2 Let A and B be linear operators on H.



e We say A equals B (A = B) provided Dy = Dy and Au = Bu for all
u € Dy.

e We say A is an extension of B (A D B) if Dy O Dy and Au = Bu
for all u € Dp.

We can construct sums, scalar multiples, and products of linear operators,
but we have to be careful about their precise domains of definition:

Definition 3 Let A and B be linear operators on on H. The following are
also linear operators.

o A+ B:

(A+ B)u = Au + Bu, Darg=DsNDpg
o aA:

(@A)u = a(Au), Duar =Dy
o AB:
(AB)u = A(Bu), Dap ={u € Dp: Bu € Dy}

o O:

Ou =290, for all w € H, the zero operator
o [:

Tu = u, for all u € H, the identity operator.

If AB = BA, the operators are said to commute.

We say that A is one-to-one (1-1) provided whenever Au = Av with
u,v € Dy we have u = v, i.e., provided Ny = {#}. If Ais 1-1 it is invertible,
that is there exists an operator A~! on H such that Dy-1 = R4, Ra-1 = Da
and defined as follows:

A7 = v +— Av =u.
If A is 1-1 then
AA Y =, forallu € Ry =Dy,

A7 Av =0, for all v € Dy = R4-1.

Thus
AA7L = I ,, ATA = Ip,.



Definition 4 We say that A is a symmetric operator on H if

1. Dy = H, i.e., every u € H is the limit of some Cauchy sequence of
vectors in Dy, so Dy is dense in H.

2. (au,v) = (u, Av) for all u,v € Da.

Definition 5 The complex number X\ is an eigenvalue of the linear operator
A if there is a nonzero u € Dy such that Au = \u. Here u is called an
eigenvector. The set

Sp = {A: A is an eigenvalue of A}
is the point spectrum of A.

Lemma 2 A linear operator A has an inverse if and only if 0 is not an
eigenvalue of A.

PROOF: A~! exists «— A is 1-1 +— N = {#} +— 0 is not an eigenvalue
of A. Q.E.D.

Definition 6 An operator B on ‘H is bounded if there exists a finite num-
ber M > 0 such that ||Bul|| < M||u|| for all u € Dg. (Recall that ||ul|*> =
(u,u).) We say the B is bounded below if there exists a real number o
such that (Au.u) > a||ul|® for all u € Dp.

1.2 Regular Sturm-Liouville operators on an
interval

The ingredients of the regular Sturm-Liouville eigenvalue problem on a
finite interval [¢,m]|, ¢ < m of the real line are the following. The equation
to be solved is of the form

(p(z)u') + (Mk(z) — g(z))u =0, z € [¢,m] (1.1)
subject to the conditions

1. p,p',q, k real valued and continuous in [¢,m]. (In some cases we drop
the continuity requirement.)



2.p>0,k>01in [¢{,m]. (If only p > 0, £ > 0 we have the singular S-L
problem).

3. A a complex number.

4. The matrix of real numbers

11, 012, 013, 014
Q21, O, g3, (4
is of rank 2.

5. The boundary conditions are

apu(l) + apu'(f) + arzu(m) + apu'(m) = Biu =0, (1.2)
agiu(l) +  anu'(€) + agu(m) + agu’(m) = Byu = 0.

The S-L problem is to find all values of A\ such that equation (1.1) has a
nonzero solution u satisfying the boundary conditions (1.2).

NOTE: The motivation for this problem is the equations that arise from
applying the method of separation of variables to the partial differential
equations of mathematical physics.

Now we will formulate the S-L problem in terms of operator theory. let
H = L%([¢,m], k), the space of complex-valued Lebesgue square-integrable
functions on the bounded interval [¢, m], with weight function k. Here the
complex inner product is

(u,v) = /Z " u(@)o@k(z) dr,  u,v € LA([¢,m], k).

The generalized Sturm-Liouville operator A is defined by

1 n/
Au = ) [—(p(z)u") + q(x)u], u€ Dy (1.3)

where
Dy = {u € C*[¢,m] : Biu = Bou = 0} (1.4)

and C?[¢,m] is the space of complex functions with 2 continuous derivatives
on the closed interval [¢, m)].

NOTE:



e D, is dense in H.
e [f the boundary conditions take the separated form
Biu = ayiu(l) + apu' (), Bou = agu(m) + au'(m), (1.5)
then A is an ordinary Sturm-Liouville operator.

Definition 7 An operator B in L? is real if u € Dg — u € Dy and
Bu = Bu.

We see that the S-L operator A is real.

Now we write equation (1.1) in the form

u' + p_, Ak —q
p

u' + u=Du=0, (<z<m. (1.6)
By the standard theory of second order ordinary differential equations we
know the following:

e Given 2 complex numbers a,b and any xy € [¢,m] there is a unique
solution u(z, A) of (1.6) with u(zg, ) = a, u'(xg, \) = b.

e The solutions u of Du = 0 form a 2-dimensional complex vector space.
There exist 2 linearly independent solutions u (z, ), us(x, A) that form
a basis for the solution space, and u,us are entire functions of the
complex variable .

e The determinant

) e =W
uy(z) us(z)

is called the Wronskian of the 2 solutions uq,us. It has the prop-
erty that p(z)W (z) is constant on [¢,m]. Here the solutions u;, us are
linearly independent if and only if this constant is nonzero.

Theorem 1 Let A be an S-L operator and {ui,u—2} a basis for the solution
space of Du = 0. Then



1. X is an eigenvalue of A in H if and only if A(X\) =0, where

Biuy  Bouy

A(/\) - ‘ BQU,1 BQUQ

PROOF: X\ is and eigenvalue of A with eigenfunction u if and only
if there exist compler constants cq,ce, not both zero, such that u =
c1uy + coug and

Blu = clBlul + CQBlUQ = 0,

BQU, = 01B2u1 + 62B2u2 = 0,
and these equations can hold if and only if A(A) =0. Q.E.D.

2. The eigenvalues of A are either a) all complex numbers, or b) a count-
able number of eigenvalues with no finite accumulation point.

PROQOF: This follows from a standard result in complex variable theory.
Indeed, A(X) is an entire function of X. If it had an uncountable number

of zeros or a finite accumulation point, then this analytic function would
be identically zero. Q.E.D.

Theorem 2 Let A be an S-L operator, i a compler number, and set A=
A—ul. Then

1. A7Y exists if and only if u is not an eigenvalue of A.
2. If A=V = (A — pI)™" eaists then
Djr=Ri={f(z): f€C¢,m])}

(where C°([¢,m]) is the space of continuous functions on the interval)
and there ezists a function g(x,y, u), the Green’s function, such that

(A—pl)7 ' f(z) = /em g(@,y, ) f(y)k(y) dy

PROOF: We start by trying to solve the equation (A — pl)u(z) = f(x)
for some continuous function f, subject to the boundary conditions Rju =
Rou = 0. Thus the differential equation to be solved is

! k — k
u + Py B = Ty (1.7)

D p D



Now let u; (z, pt), us(z, 1) be a basis for the solution space of the homogeneous
equation (A — pl)u = 0, (without the boundary conditions). Then using the
standard method of variation of parameters we can derive the solution h(zx)
of (1.7) given by

o (x, p)us(y, 1) — us(z, wua(y, 1) (k(y)f(y)
) = | Wy, 1) ( p(y) ) “

- /é " b,y W) () dy,

where
0 ify>ux
B(2, Y, 1) = s (o) s (y,00) —un ()1 ()
W (y,u)p(y)

if x>y.
Note that h(¢) = h'(¢) = 0.
REMARKS:

1. h(zx,y, u) satisfies the homogeneous equation (1.6) in the variable z, if

x #y.

2. Let 9 9
oh  + — o IR
o Yoy u) = lim o (y + 4y, ),
oh, _ . oh
%(y 7y::u‘) - t_l%)g;()%(y _taynu’)
Then

oh, oh, _ 1

— - — =—— l<y<

e (v, v, 1) e (v~ vy, 1) o)’ y < m,

i.e., there is a discontinuity in %(z, Y, 1) at T = y.
3. h(z,y, p) is continuous in z and y.

Now set u(z) = crui(x, p) + coug(x, u) + h(z, p) for constants ¢y, ¢p. Then
we have our desired solution u if and only if ¢;, ¢ can be chosen so that

Blu = 0131U1 + 0231U2 -+ Blh = 0,

Bg’u = ClBQU1 + CQBQUQ + BQh = 0,



and this is possible if and only if A(y) # 0. Thus, either 4 is not an eigenvalue
and there is a unique solution u to (A — ul)u = f, u € Dy, or u is an
eigenvalue and the inverse operator doesn’t exist.

Now, for ;1 not an eigenvalue we set

g(z,y, 1) = h(z,y, 1) + br(y)ua(z, p) + ba(y)ua(z, )

and determine by, by such that, in the variable x, Big = Bsg = 0. This leads
to the equations

—Blh = b1B1u1 + b2B1u2, —BQh = b132u1 + bgBQUg
that, since A(u) # 0 have the unique solution

—Blh, 31U2

A(M)Zh = ‘ —Byh  Bous

Byu; —Byh
Al =| g P,

Byuy —Bsh
Therefore
1| wmz, ) us(z,p) h(z,y, )
9(x,y, 1) = —— | Biwn Biuy Bih

Byuy Bsus Bsh
Note that

1. g satisfies the homogeneous equation (1.6) in variable z, if x # y.

2. Sty — Ry m) =5y (<y<m

3. ¢ is continuous in x and y.

4. g is the unique function with these properties.

Thus
u@) = [" gy, m) W) dy (18)
= " by kS dy+ o) [ bakS dy+ e, p) [ ba)kS dy

if and only if (A — pul)u = f for u € Dy. Q.E.D.
These results simplify considerably for the ordinary Sturm-Liouville prob-
lem. In that case the boundary conditions separate, so that

Biu = aju(f) + apu'(€), Baou = Biu(m) + Bou'(m).
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To take advantage of this fact we choose our basis functions uy, us such that
uy(z, u) satisfies Du; = 0 and the left-hand boundary condition Bju; = 0,
and usy(x, p) satisfies Dus = 0 and the right-hand boundary condition Byuy =
0. (Exercise: Show that this works if x is not an eigenvalue.) Then

0 ify>ux
h’(xa Y, ,U) =\ wilm,p)us(y,pu)—us(z,m)u (y,u)
W (y,u)p(y)

if z >y,
and
(Baua)us(y, 1)
Wy, 1)p(y)
Now A(u) = —(Byug)(Byuy) and the Green’s function takes the simple form

Bih=0, Byh=

U’l(xa /1') UQ(ma :U') h(.’L’, Y, .U’)

1
g(xayau) = 0 B1U,2 0
A(p) (Bau)us (y,u)
By 0 W (y,u)p(y)
_ ua(m,p)ua(y,p)
- { e 17 (19
U2(T, 1)Uy,
T T Wwpl) T =

1.3 Symmetric and self-adjoint operators on
Hilbert space

Let A be a linear operator on the separable Hilbert space H, with domain
Da.

Definition 8 A is a symmetric operator if Dy = H and
(Au,v) = (u, Av) for all u,v € Da.

Recall that real symmetric matrices and complex hermitian matrices have
very nice spectral properties and, if H is finite dimensional, the matrix of
A with respect to an ON basis would be either real symmetric or complex
hermitian. Each such matrix has an associated ON eigenbasis. However, if
‘H is infinite dimensional then things become much more complicated. The
best analogy to these diagonalizable matrices is the self-adjoint operator,
an extension of a symmetric operator. For appropriate choices of boundary
conditions and domains, S-L operators provide examples of these abstract
objects. We begin this exploration, by presenting a few nice properties of
symmetric operators.

11



Theorem 3 let A be a symmetric operator on H. Then the following hold:

1. (Au,u) = (Au,u) for all u € Da, i.e., (Au,u) is real.
2. If X\ is an eigenvalue of A, then X is real.

3. If u, A are distinct eigenvalues of A with corresponding eigenvectors
u, v, respectively, then (u,v) = 0.

PROOF: 1) (Au,u) = (u, Au) = (Au,u). 2) If A is an eigenvalue of A with
eigenvector u, then Au = Au and

Mu,u) = (Au,u) = (u, Au) = My, v)

so A = X. 3) If u,v are eigenvectors corresponding to distinct eigenvalues
A, i then
A(u,v) = (Au,v) = (v, Av) = p(u, v)

so (A — u)(u,v) = 0 which implies (u,v) = 0. Q.E.D.
Theorem 4 Suppose H is a complex Hilbert space and A is a linear operator

with Dy = H. Then A is symmetric if and only if (Au,u) is real for all
u € Da. (Note that this result holds only for complex Hilbert spaces.)

PROOF: =: Follows from the preceding theorem.
<=: It is straightforward to verify the following identities for all u,v € Dy4:

4(Au,v) =

(A(u+v),u+v) = (A(u—v),u—v)+i(A(u+v),u+iv) —i(A(u—iv),u—1v),
4(u, Av) =
(u+v, A(u+v)) —(u—v, A(u—v))+i(u+iv, A(u+w)) —i(u—iv, A(u—iv)).

Since (Aw,w) is real for all w € D4 we have (Aw,w) = (Aw, w) = (w, Aw),
so, by the identities, (Au,v) = (u, Av). Q.E.D.

We have already defined the adjoint of a bounded operator. The definition
of the adjoint of a general linear operator is more delicate. Suppose A is an
operator with D4 = H.

12



Definition 9 Denote by D« the set of all v € ‘H such that the linear func-
tional f,(u) = (Au,v) is bounded on Dy. For v € Dy- let f, be the unique
bounded extension of f, to H. By the Riesz representation theorem there
exists a unique vector v* € H such that fy(u) = (u,v*), for all u € H. This
mapping v — v* of Da« to H defines A*. We write A*v = v*. Then

(Au,v) = (u, A*v), for all u € Dy, v € Dy-.

Lemma 3 Dy« is a subspace of H and A* is a linear operator on D 4.

PROOF: Let u,v € Dy« and «,  complex scalars. Then for every w € Dy
we have

(Aw, cu + Bv) = a(Aw,u) + B(Aw,v)
=a(w, A*u) + B(w, A*v) = (w,aA*u + SA*V),

so by the Cauchy-Schwarz inequality
[(Aw, au + Bv)| < ||w]| - ||au + Bv||, for all w € Da.

Thus au + Bv € D+ and A*(au + Bv) = aA*u + fA*v. Q.E.D.
In general the domain of A* need not be dense in H. However, if A is
symmetric then D4~ is dense. Indeed it is easy to show the following.

Theorem 5 Let A be a linear operator with Dy = H. Then A is symmetric
if and only if A C A*.

Definition 10 Let A be a linear operator with Dy = H. A is said to be
self-adjoint if A = A*.

Clearly, every self-adjoint operator is symmetric. However, we will see
that not every symmetric operator is self-adjoint. In general all we can say
is that a symmetric operator A is contained in its adjoint, i.e., that A* is an
extension of A. The following, however, is easy to prove.

Lemma 4 If A is a bounded symmetric operator with Dy = H then A is
self-adjoint.

To understand in more detail the relation between A and A* we need the
concept of closure of an operator. As usual, we assume that A has dense
domain.

13



Definition 11 The operator A is closed if whenever {u,} is a Cauchy se-
quence in Dy converging to u, (u, — u) such that {Au,} is also a Cauchy
sequence with Au, — v, then u € Dy and Au = v.

Definition 12 An operator A in H is called the closure of A if

Dy = {v € H : there is {u,} € D such that u, — v, Au, — w and Av = w}

Definition 13 An operator A is closable if it has a closure A.

NOTE: A is closable if and only if whenever {u,} and {v,} are sequences in
D4 with Au,, - w and Av,, — z then w = z. Setting u,, — v, = y,, we see
finally that A is closable if and only if whenever there is a sequence {y,} in
D4 with y, — 0 and Ay, — = we always have z = 6.

Lemma 5 A bounded operator is closable.

PROOF: Let A be a bounded operator with bound M. Suppose {u,} is a
sequence in Dy with u, — 0 and Au, — v. But, ||Au,|| < M||u,|| — 0 so
|lv|| =0 and v = 0. Thus A is closable. Q.E.D.

The following is straightforward to verify.

Lemma 6 If A is bounded and Dy = H, then A is bounded and D+ = H.

The next result is deeper and uses the axiom of choice; its proof can be
found in .

Theorem 6 A closed operator A with closed domain Dy is bounded on its
domain.

Theorem 7 Let A be an operator with Dy = H. Then A* is closed.

PROOF: Let {u,} be a sequence in D4« such that u, — u and A * u, — v.
Then for all w € D4 we have

(w, A%uyp) = (Aw, uy)

so in the limit as n — oo we have (w,v) = (Aw, u). This shows that u € D4
and A*u =v. Q.E.D.

14



Corollary 1 If A is symmetric then it is closable.

PROOF: If A is symmetric then A C A*. Since A* is closed, A must be
closable. Q.E.D.

Lemma 7 If A C B then B* C A*.

PROOF: Let w € Dp«. Then for all u € D4 we have
(Au,w) = (Bu,w) = (u, B*w).
The right-hand side is a bounded linear functional of u, so w € Dy+ and

A*w = B*w. Q.E.D.

1.3.1 The graph of an operator

We digress to discuss the concept of the graph of an operator, a very useful
tool in the study of extensions of symmetric operators.

Suppose Hi,Hs are Hilbert spaces with inner products (-, )1, (-, )2, re-
spectively.

Definition 14 The direct sum H; @ Ho of two Hilbert spaces is the set of
all ordered pairs [vy,vs], v; € Hj, with inner product

([u1, ug], [v1, v2]) = (w1, 1)1 + (ug, v2)s,

and norm
o1, va]|[? = [Jv1]7 + [|val[3.

It is straightforward to verify that H; @ H, is itself a Hilbert space.
Definition 15 Let T be a linear operator on the Hilbert space H, with dense
domain. The graph I'(T) of T is the set of all ordered pairs [u, Tu] € HSH
with v € Dr

Note the following important properties of the graph:

1. I'(T) is a subspace of H & H.

15



2. T is a closed operator in H if and only if I'(T') is a closed subspace of
HOH.

PROOF: This follows immediately from the identity

[, Tl = [, Tug]|[” = (s — s * + || T — T | .

The primary utility of the graph of 7" is in property 2. The awkward
definition of a closed operator is replaced by the simple concept of a closed
subspace.

Lemma 8 The inverse of a closed operator is closed.

PROOF: Let T be an invertible operator on A4 and define the bounded in-
vertible operator S on H & H by S[u.v] = [v,u]. Then I'(T™') = ST(T),
since

[(T) = {[u,v] : u € Dy and v = Tu}

D(T™") = {[v,u] : v € Dp-1 and u = T'v}.

Thus the subspace ['(T~') is closed if and only if the subspace I'(T’) is closed.
Q.E.D.

The concept of a closable operator is also transparent when viewed from
the graph perspective. We can always close the graph of the operator T to

get the closed space I'(T"). The question is now if this closure is itself the

graph of some operator T, i.e., if I'(T) = I'(T). The reader can verify that
the closure is a graph if and only if 7" is closable and 7" is the closure of 7T'.

Theorem 8 1™ is a closed operator.

ALTERNATE PROOF: Let B: H@®H — H & H such that Blu,v] = [v, —u].
Note that B preserves inner product. Then ['(T*) = [BT(T)]*, because
[z,z] € T'(T*) if and only if z = T*z and (Tu,x) — (u,2) = 0 for all u € Dr.
This last expression can be written as

([Tu,—ul, [z, 2]) = (Blu, Tul, [z, z]) = 0.
Since [BT(T)]* is a closed space, T* must be a closed operator. Q.E.D.

Theorem 9 The operator T is closable if and only if Dy- = H.

16



PROOF: <= Suppose Dy- is dense in H, and suppose there is a sequence
{un} in Dy such that u, — 6 and Tu, — v. Then for any w € Dy« we have
(Ttup, w) = (Un, T*w) and, in the limit as n — oo, (v,w) = 0. Thus v L Dy,
so v =6 and T is closable.

= Suppose there is a nonzero w € Dg.. Then [w,d] L T'(T*). Since
[(T*) = [BT(T)]* we have T'(T*)* BF( ), so [6, w] € I'(T). Thus T is

not closable. Q.E.D.

Theorem 10 Let A be a symmetric operator on H. Then A = A**.

PROOF: Note that A** = (A*)* is a closed operator and A is closable. We
have T'(A*) = [BT(A)]* and T'(A*) = [BIl'(A4x)]* = Br(4*)% (since B
preserves inner product), so I'(A) = BT'(A*)1 =T'(4*). Q.E.D.

The following deep result (whose proof uses the axiom of choice) is not
necessary for the development in these notes, but is important. A proof can
be found in

Theorem 11 (Closed Graph) A closed operator T with Dy = H is bounded.

Thus non-bounded operators can only have a proper subspace of H as a
domain.

1.3.2 Symmetric Sturm-Liouville operators

Now we investigate the necesary and sufficient conditions that the general
S-L operator A be symmetric. Recall that H = L2([¢,m], k), with complex
inner product

(u,v) = /Z " (@) o@k(2) de,  u,v € L2([6,m), k),

and
]‘ n/
Au = @) [—(p(z)u)" + q(z)u], u€ Dy (1.10)
where
Dy = {u € C*[¢{,m] : Biu = Byu = 0}, (1.11)
and

anu(l) + apu'(f) + azu(m) + apgu’(m) = Biu =0, (1.12)
anu(l) + agu'(f) + aggu(m) + aggu’(m) = Bou = 0.

17



The matrix of real numbers
11, 12, 013, 014
Qo1, C22, 23, (V4
is of rank 2.
If u,v € D4 we can integrate by parts twice to obtain

(Au,v) = - /Zm(pu')'ﬁ dr + /Zm qut dz (1.13)

—m

= [" a0 do + p() [u(@)0 (@) - @)@,
= (u,Av) + B(u,v)

where the boundary term is defined by

—m

B(u,v) = p(x) [u(x)v’(x) — u'(x)v(x)]e : (1.14)
Thus A is symmetric if and only if B(u,v) = 0 for all u,v € D 4.
Theorem 12 The S-L operator A is symmetric in H if and only if
p(1) (13004 — @140i93) = p(m) (109 — aai1). (1.15)

Before proving the theorem we consider one of its consequences and some
examples.

Corollary 2 If A is an ordinary S-L operator, then it is symmetric.

PROOF: If A is ordinary S-L then a3 = ay = an; = agy = 0. It follows
from the theorem that A is symmetric. Q.E.D.

Example 1 Let

A=—v", H=1Lo,7],1), Biu=u(0)=0, Byu=u(r)=0.

Then A is symmetric and the eigenvalue equation is —u” = Au, u(0) =
u(m) = 0. The eigenvalues are A, = n?, n=1,2,3,--- and the correspond-
ing normalized eigenfunctions are u,(z0 = \/gsin ne, n=123,---. We

already know from the theory of Fourier sine series that the {u,} form an
ON basis for H
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Example 2 The same formal operator and Hilbert space as in the previous
example, but boundary conditions u(0) = u'(0) = u(r) = v/(7) = 0. (Note
that these are not of the form Biu = Bou = 0.) Here

Da={feC0,7]: f(0)=f(0)=f(m) = f'(x) =0}.

In this case A is symmetric but has no eigenvalues or eigenvectors.

PROOF OF THE THEOREM: The proof is more transparent if we express
the conditions for A to be symmetric in terms of 2 x 2 determinants. Thus the
requirement that B(u,v) = 0 for all u,v in the domain of A can be written
as

u
U/I

p(x) ] = 0. (1.16)

Further, a consequence of the requirements Biu = Byu = Biv = Byv = 0,
always true for u, v in the domain of A, is the determanental identity

azu(m) + apgu'(m)  agzv(m + aav’(m)
agzu(m) + agau'(m)  aggv(m) + agv!(m)

apu(l) + apu'(f)  anv(l) + anpv'(f) _
ag1u(l) + agu'(€) a9 v(l) + aev'(£)

(Note that each matrix element on the right is the negative of the corre-
sponding matrix element on the left.) We recast this identity in the form

o1 09 u(¥) @ | o3 g u(m) wv(m)
Qo1 (g2 u'(f) v'(¢) ‘_ Qo3 (g u'(m) o'(m) ‘ (1.17)
Now the requirement (1.16) can be written as
w®) @ |_ [ u(m) v(m]
o0 10 S =y 1) 2| (119

for p(£)p(m) # 0. The only way that both these equations can hold is if

13 Qg 11 012

Qg1 Q22

p(f) = p(m) (1.19)

Qg3 (egg

Thus, condition (1.18) implies condition (1.19).
Now assume that condition (1.19) holds. Then

Q13 Q14 Q11 Q12

0 =
76 Qo1 (g2

£0

Q3 Qg4
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so we can solve (1.19) for the first determinant and substitute into (1.17) to
obtain condition (1.18). On the other hand the case

Q13 Q4 Q11 (12

Q21 (22

Qo3 (voq

Since the matrix of real numbers

G11, CG12, Q13, 14

Go1, G2, O3, 24
is of rank 2, we can then take linear combinations of boundary conditions
By, By to obtain a new basis of separated boundary conditions

Biu = aju(l) + Bru'(£), Byu = agu(m) + Bou'(m).
This implies that for u,v € D, we must have

u(f) v(0) ‘:
u'(€) v'(f)

Thus condition (1.18) holds. Q.E.D.

We now extend the definition of Sturm-Liouville operators to partial dif-
ferential operators on n variables that act on function spaces on normal
domains in real n-dimensional Euclidean space R,,. We denote points in R,
by z = (x1,---,2,). A normal domain D C R, is an open, simply con-
nected, bounded set with boundary D (so that D = D U dD), and a real
vector field

v(e) = (@), (@),  [v=1,
the bf outer normal vector such that for every function u(z) = u(r —
1,-,z,) € C*(D) we have

(x) d :/ (2) dS,  i=1,---,m.

/Du (z) dz - u(z)v(x) i n

Here dx = dxq - - - dx,, and dS is the surface element on 0D, i.e.,
dxy -+ -dz; - - dz, = +v;(x) dS,

where the plus or minus sign is chosen depending on whether the outer nor-
mal is pointed in the positive x;-direction or the negative x;-direction. In
particular, if u = vw then we have the integration by parts formula

/Dv(x)wwi(x) dx —{-/Dvwi(x)w(x) dx = /aDv(x)w(:v)l/i(x) ds.  (1.20)
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Our Hilbert space is

H= {u(ac), real valued : /I; \u(z)[*k(z) dz < oo},

(u,v) = /Du(:r)v(x)k(:c) dx, u,v € H.

Formally, the Sturm-Liouville operator is

Au= [— i (Pij (@)U, )a; + Q(l‘)U] (1.21)

(z) i,j=1

This formal operator enables us to define three operators, A;, Ay, A3 with
domains

Dy, = {u €C*(D):u=0forz e aD} , (1.22)

Dy, = {u € C*(D) : Ru = i Pij(T)ug; (2) vy (1) =0, 2 € 8D}1.23)
ij=1

Dy, = {u € C*(D): Ru+o(z)u= 0,2 € D o(z) € CO(8D)} , (1.24)
respectively. We require

1. pij(z),k(z),q(z) real and p;; = pji

2. pij(z) € C*(D), k,q€ C°(D)

3. k>0forzeD

4. Yt pig(w)&; > co i, & for all z € D and arbitrary real &. Here
o is a strictly positive constant.

Theorem 13 S-L operators Ay, Ay, A3 are symmetric.

PROOQF: Clearly, D4, = D4, = Da, = H. Using the integration by parts
formula (1.20) we find

(Aa,0) = (1, 40) = [ 37 (=gt )0 + (g el

i,j=1
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= /a Z Pij(—Ug; v + V5 u)v;dS = (uRv — vRu)dS = 0,
D .

ij=1 oD

for each of the three boundary conditions. Q.E.D.
Recall that A is bounded below if there is a real constant @ such that
(Au,u) > al|ul|? for all u in the domain of A.

Theorem 14 The operators Ay, Ay and Az (for o(x) > 0) are bounded be-
low.

PROOQOF': Integrating by parts once we find

(Au,u) = /D [— i (Pijtie;)z; + q(m)u] u dx

1,j=1

=/ > pijus; ug; + qu’
Dl

dx —/ Zpijuwjuiu ds
oD G

> co/Di:il(uxi)zdx +/un2dx - /6D uRu dS.

For A; and A, the boundary term vanishes and it is clear that (Au,u) >

infyep L2 [|u|[2. In the case of A3 we have Ru + o(z)u = 0 on the boundary,

C(.’E)
SO

Set 0y = inf cop o(x), vo = inf{oo, co}. Then

(Aua u) 2 Yo

< 2 2 2
/Dg(uxz) dr + . dS] +/un dx

> inf MHUHQ
z€eD k(ﬂ?)
Q.E.D.
Note that the ordinary S-L operator A on an interval in R; (with sepa-

rated boundary values) is a special case of A,.

Corollary 3 The ordinary S-L operator on an interval is symmetric and
bounded below.
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1.3.3 The Schrodinger model

Many of the ordinary and partial differential operators studied in these notes
appear in the Schrodinger model for quantum mechanical systems. In this
section we describe, briefly, how these equations arise. In classical mechanics
the state of a system with n degrees of freedom is described by a 2n-tuple
of Hamiltonian variables: ¢qi,---,qn,p1,---,pn. The g¢; are position vari-
ables and the p; are momentum variables. The states are vectors in the
real 2n-dimensional state space R,,. The evolution of a state in time is
determined by the Hamiltonian H(qi, -, qn,P1, -, Pn)- Indeed the time
evolution ¢(y), p(t) of a system in state ¢°,p® at time ¢ = ¢, is obtained by
solving Hamilton’s equations

‘(t)_a_H ; __6_H
9k — apka Pr = aqka

with initial conditions gx(to) = g3, pk(to) = pY. Observable quantities for the
system are functions a(q, p, t).

In quantum mechanics the state space is a separable complex Hilbert
space H, subject to the following axioms:

k=1,--.n (1.25)

1. To every observable quantity a there corresponds a unique self-adjoint
operator A in H.

2. The state of a physical system at time ¢ is represented by a normalized
vector u in H.

3. If ais associated with A, then the bf expectation E,a of the observable a
in the state u is given by (Au,u), (a real number, since A is symmetric.)

4. If Oy, P, are the operators associated with the classical observables
gk, P, (in Cartesian coordinates) then these operators satisfy the com-
mutation relations

(Qk, Pr) = QuPr—PiQr = ihép e, [Qr, Q] = [Pr, P} =0 1<k £<n

(1.26)
on some dense subspace of H, where i = h/27 and h > 0 is Planck’s
constant, and 1 = /—1.

5. The time evolution u(¢) of a quantum system in state u® at time ¢ = ¢,
is obtained by solving thetime dependent Schrodinger equation

L, 0 0
zhau(t) = Hu(t), u(ty) =u'.
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(This formal expression can be made rigorous.) Here H is the Hamil-
tonian operator, or energy operator, the quantum operator corre-
sponding to the classical Hamiltonian energy observable.

There are other statistical axioms that we shall not discuss here.

In the case where H is independent of time, we can partially solve the
time dependent Schrédinger equation. Indeed, suppose u(t) is an eigenvector
of H with eigenvalue A\. Then ihu(t) = Au(t). This equation has the solution
u(t) = exp (—iMt/h)u’ where u° is a unit vector in H that is independent of
t and is a solution of the time independent Schrodinger equation

Hu® = M. (1.27)

The most commonly used prescription for passing from the classical de-
scription to the quantum description of a physical system is the Schrodinger
model. Corresponding to a classical system with n degrees of freedom we
have the Hilbert space # = L?(R,) of complex Lebesgue square integrable
functions in n-dimensional Euclidean space, with weight function k(z) = 1.
The state of the system is given by function u(qi,---,¢q,) € L?(R,) where
the g; are Cartesian coordinates in R,,. The operators Qy, P, are defined
formally by Qr = qx, Pr = —th0,,, i.e.,

Qrulg, 5 qn) = qul(qr, -+, qn),  Prulaqr, -+, qn) = —1h0gulgr, -+, ¢n),
(1.28)
for Kk =1,---,n. These operators formally satisfy the commutation relations
(1.26).

Definition 16 Two symmetric operators A abd B have the Heisenberg
commutation property if

1. RaCDp, Rp S Dy

2. ABu—BAu = —ihu, for allu € D,NDp such that Au € Dy, Bu € Dy.

Recall that if a is an observable associates with the self-adjoint operator
A, then the expectation E,a = « of a in the state u, (||u|| = 1) is given by

E.(a) = (Au,u).
Definition 17 The dispersion of a in the state u is Dya = E,(a — a)?.
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If the observable (a — «)? is associated with the operator (A — al)?, then
Dya = (u, (A —al)’u) = ||[(A — al)u|]?, if R4 C Da.
Note also that
1. Dya =0 <= Au = au.
2. Dya = ||(A — al)ul* = ||Au||* — 2a(Au, u) + o* = ||Au||*> — o

Theorem 15 (Heisenberg uncertainty relation) Let A, B be symmetric op-
erators satisfying the Heisenberg commutation property, and associated with
observables a,b, respectively. Let u € Dy N Dp, ||ul| = 1, and set a =
(Au,u) = Eya, 8 = (Bu,u) = Eyb. Then Dya - Db > %.

PROOF: Set A’ = A—al, B'= B—3I. Note that A’, B" are symmetric and
satisfy the Heisenberg commutation property A’B' — B'A'u = —ihu. Also

Zh = (U, —/Lhu) = (u, A,B,U — BIAIU) = (Alu, BIU) — (B,u, A,u)
= (A'w,B'u) — (A'u, B'u)
= 2i3(A'u, B'u)

so (where S is the imaginary part of c¢)
B2 = S(A'u, B'u) < |(A'u, Bw)| < ||A'ul| - || Blul]|.

We conclude that

h2
7S ||A'u|[” - [|B'u|[> = Dya - Dyb.

Q.E.D.

This theorem says that if A, B satisfy the Heisenberg commutation prop-
erty then we cannot measure the values of the observables a and b with
arbitrary precision in any state u.

We conclude this section by examining some implications of the Schrédinger
model for energy operators. Suppose we have a classical system describing
the motion of a single particle of mass m in a potential field V (x1, 22, z3). In
classical physics the total energy of this system is given by

5(37% + @3+ 43) + V (21, T, T3)
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so the Hamiltonian is
1 )
H(x1,22,23,p1,D2,D3) = %(pf ‘HD% +p§) + V(z1, 22, 23), Pk = M.
The quantum Hamiltonian is thus
1
H =5 (Pl + Py + P5) + V(Q1, @2, Qs).

In the Schrodinger model H = L2(Rj3), the state functions are u(zy, T2, z3)
and the Hamiltonian operator is
h2
H = —%Ag-f-‘/(x—l,xz,fﬂg), Ag :8:31 +8£2+8§3 (129)

To make precise sense of these formal manipulations we need to solve the
following problems

1. Find a dense subspace Dy of H such that H is defined and self-adjoint
on Dy.

2. Find the spectral resolution of H, e.g., find the eigenvalues and eigen-
vectors of H on Dg.

Note that the eigenvalue equation for (1.29) is the time independent Schrédinger
equation Hu = Au or
2

h
—%Agu + V(xq, 29, 23)u = Au. (1.30)
REMARK: In the special case that
V(1 22, 23) = Vi(x1) + Va(2) + Va(23)

we can use the separation of variables method and try to solve (1.27) formally
through the ansatz u(zq, 2, 3) = u1(z1)us(xe)us(z3). We then obtain three
ordinary differential equations of the form

—up + fr(zr)ug = Mpug, k=1,2,3, —oo <z <00

Instead of boundary conditions we have the requirement that the solutions
be square integrable:

/_ lug (1) |*dzy, < 0.

This is an example of the Weyl-Stone eigenvalue problem, or singular Sturm-
Liouville problem.
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1.4 Symmetric quantum mechanical opera-
tors

For quantum mechanical operators obtained from the Schrédinger model it
is typical that they act on Hilbert spaces H = L2(R,, k) with inner product

(u,v) = /n u(z)v(z)k(r) dz, T = (1, Tn)-

For these spaces the domain of integration is unbounded and this leads
to complications that were not an issue in our earlier treatment of regular
Sturm-Liouville operators. For example:

1. We have the intuitive notion that square integrable functions u(z) on
an infinite domain go to zero for z large: |u(z)] — 0 as |z| — oo.
This isn’t necessarily true. Consider for example n = 1,k = 1 and the
function

(£+1)2

{€+1 if ¢ <|z| <l+ 745, £=0,1,---
u(z) =

0 otherwise.
This function is square integrable, but unbounded as |z| grows.

2. If A is a S-L operator and u € C?*(R,) then Au is defined, but it
doesn’t necessarily follow that Au € H. That is Au may not be square
integrable.

We will encounter these delicate issues as we consider the operators of quan-
tum mechanics in detail.
We first consider the momentum operator P in R;. here,

du
=L*(R Pu = —ih—
H Z(Ry), U i .

’Dp:{ue’r‘-[:ueCl(Rl) andAuE?-[}.
Theorem 16 P in H is symmetric but not self-adjoint.
PROOQOF: First we show that P is symmetric. Since all infinitely differentiable

functions with compact support are in the domain of P, it is clear that
Dp =H. Now let u,v € Dp. Then

o0 b
(Pu,v) = —ih/ v (z)v(z) de = —ih lim lim [ /(z)v(z)dz

a——00 b—+400 Jq
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a

= ihlim hm/ v'(z)dx — ih lim hm u(z)v(z) |°
= (u, Pv) + ith lim u(a)m —ih lim u(b)v(b),
a——00 b——+o00

where each of the limits exists separately in the last equality. Settingu = v €
Dp in these expressions we see that the following limits exist: limy_, o [u(b)|> =
B2, limg s_o |u(a)|? = o?. Thus

dim u(b) =B, lim_[u(a) = o
If 8 > 0 then clearly [;°|u(z)|?dz diverges. This is impossible, so § = 0.
Similarly o = 0. Therefore, if u € Dp then limy , oo u(b) = lim, , o u(a) =
0. Hence (Pu,v) = (u, Pv).

Now we show that P is not self-adjoint. Let

0, r<l1
w(x)=¢ 1—-2? —-1<z<1
0, > 1.

Clearly, w is square integrable but, because of the discontinuities in the first
derivative at z = +1, w does not belong to the domain of P. Now for u € Dp
we have

(Pu,w) —zh/ )(1 — 2?)dz = —2zh/ x)z dz.

Therefore,

(Pu, w) |<2n/ ()|dz < 2v2h / lu(x) 2dz < 2v/2||ul-
1

Thus (Pu,w) is a bounded linear function of u, so w € Dp« and P C P*,
where the inclusion is proper, so P is not self-adjoint. Q.E.D.

REMARK: We will show later that P is self-adjoint.

Now we treat a general class of S-L operators im R, that arise in quantum
mechanics. These are formally similar to operators treated earlier, but here
the boundary conditions on finite domains are replaced by square integrabil-
ity requirements on the infinite domain R,. Our Hilbert space is

H = LX(R,, k) = {u(x) : /R lu(z)Pk(z) do < oo} ,
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(u,v) =/ u(z)v(2)k(z) dz, u,v € H.

n

Formally, the Sturm-Liouville operator is
1 " .
Au = k(z) (_4'21 D;[(pje(z) Deu] + Q(ﬂ?)u) , Dj =10 + bj(z). (1.31)
=
We require
1. pje, bj, k, g real and pg; = pje
2. pjf),bjECI(Rn)a ka qc€ CO(RR)
3. k>0forzxe R,

4. Y0 o pje(2)€i€ > p(x) X5, ||&;] for all # € R, and arbitrary complex
&;. Here p is real valued and p(z) > 0 on R,.

This formal operator enables us to define two operators, Ay, A; with domains

Dy, = {u €M :ueC” (Rn)} , (1.32)

Dy, = {u €H:ueC*R,) and Au € ’H}, (1.33)

]
respectively. Here C? (R,,) is the space of twice continuously differentiable
functions with compact support in R,,.

Theorem 17 S-L operators Ay, and Ay (with some additional technical as-
sumptions, see Hellwig, page 85) are symmetric in H.

PROOF: (sketch) It is clear that D4, = Da, = H. Now, for u.v € Dy,

(Au, v) :/ Au(z)v(x)k(z)dx = lim o Autkdz.
n T—00 .’L‘ST

Now we integrate by parts on the ball |z| < r, where

oP =ad+etad, () = 2 on faf =
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Auvkdx = / > D;(pjeDeu)v + quoldz

|z|<r z|<r

- . Zg _
= /$|<T[Z pjeDeuDjv + quuldx + i /w:'r(z ﬁpjeDeU)UdS

— [ uAvkdz+i / Z[%pjg(@Dgu + uDg)dS.
T|=r I X

|z|<r
Let
U(r) = /|$|<T(UA_U — Aup)dz = —z'/ [-]dS.

|z|=r
Then
(Au,v) = (u, Av) — lim U(r).

If u,v € Dy, then |psi(r) = 0 for r sufficiently large. hence Ay is symmetric.
If, however, u,v € D4, then additional technical assumptions are needed to
show that lim, ,,, ¥(r) = 0, see Hellwig, page 85. With these assumptions
Ay is symmetric. Q.E. D.

Theorem 18 Suppose qu) > —K for all x, where K s a positive constant.
The Ay is bounded below I))y —K. If in addition there is a constant ¢; > 0

such that
1 :Cj

— ; - <
k(ﬂ?) ije(l') |.7)|2 = 01|$| ’

then Ay 1s bounded below by —K and [g S pjeDeuDjudz exists for all u €
Da,-

PROOF:
U = : Do 2 .
/|E|ST(AU)deI = /$|ST[ZPJZD£UDJU + q|u| ]dw + Z/

|z|=r

x -
> ﬁpﬂDﬂ]dS’.
If u € Dy, we have

(Au,u) = lim (Au)uk dz = / > pjeDeuDju + glul’])dz
Ry

T—00 |:L.|S,’.
> / 92k dz > —K [|u] 2.
R, k

If w € Dy, then by the previous theorem A; is symmetric, and technical
lemmas give

(Au,u) = [ (Y p;eDiDju + alul’ldz > —K|[ul .

Q.E.D.
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Example 3 If k = 1 and Au = —Azu + q(z)u and q(x) > —K|z* for
sufficiently large |z|, then A; is symmetric.

A further essential extension of the theory concerns Schrodinger operators
with singular potential. Here,

H=L*(R,), Au=—-Au+q(x)u, z= (21, --,2,), q real,

Da{u € H:ueC? (R,) and Au € H}.
The complication is that ¢ may be singular, e.g., the Coulomb potential

e’ e?

Q($1,$2,$3) = - 5 5 5 .
\/.’I/'1+.T2+l'3 r

Theorem 19 If u,v € Dy then (Au,v) = (u, Av).

PROOF': Integrating by parts twice, we have

(Au,v) = / [—ApuT + qut|dx

n

n

- / (5" T + qutlds =) = / [—ul,T + quildz
"J

~ .
= (u, Av).

Q.E.D.

If D4 = H then the above simple argument shows that A is symmetric.
However, for singular ¢ it may not be true that the domain of A is dense in H.
To determine this we need to look at the behavior of ¢ in the neighborhood
of a singularity and, also, the behavior of ¢ as |z| — oc.

As an extremely important example consider the rotationally symmetric
potential q(z1, 22, 23) = ¢ where A is a nonzero constant. (If a is negative,
this is the Coulomb potential.) I claim that in this case

’Z)A:{uE/H:U,ECc2 (Rn)},

i.e., that if u belongs to this space then, necessarily, Au € H. Thus, it is
clear that the domain of A is dense in .
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To prove this we note that

/ |Au|2dx:/ |A3u|2d:c—/ (Agu)qﬂdx—/ quAsTu d:L‘—i—/ ¢*|ul*dz
R3 R3 R3 R3 RS

<+ cl/ lqu|dz +/ ¢*|u|*dx,
R3 R3
where ¢y, ¢; are finite positive constants. Now we need to show that the two

o
integrals on the right-hand side are finite, for any u €C? (R,,). Note that any
such v is bounded and vanishes outside some ball with center at the origin
and radius ry. Thus there is a positive constant M < oo such that

/ lqu|dz < M/
R3 Sa

where S; is the unit sphere, centered at the origin. Similarly
To
/ \qu|*dz < N/ [/ \q|2r2d7“] dw < 00,
R3 So 0
so Au € H.

This operator is also bounded below. The proof is simplest if a > 0. Then

o [ 3
(Au,u) = / / [Z |ug, | + g\uP] r2dr dw > 0.
Sy JO =1 T

Now suppose a = —a < 0 (the case for the Coulomb problem). Note that
for any positive constant b we can fins a positive constant ¢ such that

/m |q|r2d7“] dw < 00
0

a b
—<-+4c
r T

for all » > 0. Therefore

2
/ g|u|2dfv < b/ %dx-l—c/ lu|?d.
Rs T Ry T Ry
Lemma 9 [, “dr <4, 21 lug, | 2d.

PROOF: Without loss of generality, we can assume that v is real. Set v =

u+/r. Then, using the chain rule, we have 33_, uﬁj =1y, vij — Loy %.
Therefore,
3 1 o(v?) 1 1 v?
/ > Jug, [Pdx > —— ( )—de—i-— —dz
Rs i3 2Jry Or r 4 Jrs T
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52[/ (ru? dr]dw+4/ —dx

Note that the integral in the brackets is zero. Q.E.D.
Now we see that A is bounded below, because

u? | afuf?
A > —+—\d
(Au,u) > R3l47“2+ " T
1 2
> (= — b)/ il ——dx — c/ \u|*dx > —c/ \u|*d,
4 Ry 12 R3 Rs

if we choose b < 7.
1.4.1 Some important operators and their adjoints

Recall that a symmetric operator A is closable, but not necessarily closed.
The adjoint operator A* is always closed and A C A*.

Definition 18 A symmetric operator is essentially self-adjoint if A = A*.

Thus, since A* = A", to obtain a self-adjoint operator from one that is
essentially self-adjoint, we need only take the closure.
As an important example, we consider the formal operator A = — (92 Lt

92,4+ 92,) = —As, acting on the Hilbert space H = L?(R3). Now we define
two different operators Ag, A; with formal action defined by A and domains

02
Dy, = {u eC (R3)}, Dy, = {u € C*(R3) : u € H and AuE'H},

respectively. Note that Dy, C Dy4,. Furthermore it is easy to check that
(Aou,v) = (u,Ayv) for all u € Dy, and v € Dy,. It follows that Ay is
symmetric and

Ay C A C A4

and, since taking adjoints reverses the inclusions,

Ay = A§F C A7 C 4.
Note: If Ay is essentially self-adjoint, then Ay = Af and we can combine the
above inclusions to obtain A; C A7 = A; is symmetric. A fact that isn’t

obvious since the validity of integration by parts isn’t clear.
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We will show that Ay is essentially self-adjoint, in steps. The (unitary)
Fourier transform

a(y) = Fuly) = —— lim [/ /W e~y (z)dz,

(271.)% r—00

where z = (21, %, %3), ¥y = (1,2, y3) is a unitary mapping of H onto H =
L?(R3) (in the y coordinates), i.e., the map is 1-1, onto and preserves inner
product. Now if u € Dy, then

Au) = - (zi)% [ e raut@)dn = lyPagy).

Now let K be the operator with maximal domain that multiplies by ly|? in
H:
Dk = {f) eH: |y|*i(y) € ’H} :

Clearly, K = K*. Let A be the operator on H defined by A = F 'K F.
(Note that F~' = F* since F is unitary. So (Au,v) = (F'KFu,v) =
(KFu,Fv) = (K1u,v)", where (-, -] is the inner product on H. ) We see that
A is an extension of Ay. Further, A = A* since K = K*. Thus Ay has a self-
adjoint extension. We will show later that, in fact, A = Ay. The graph inner
product provides us with a convenient way of posing the problem. Consider
the graphs of Ay and Aj:

T'(Ao) = {[u, Aou] : u € Dy}, T(A}) = {[u, Aju] : u € Dy } .

Now T'(A4y) = T'(Ap) C T'(A}). If T'(Ap) C T'(A}) then there exists a nonzero
v € Dy such that [v, Ajv] L I'(Ap). This means that

(u,v) + (Aou, Ajv) =0

for allu € Da,. But this shows that Ajv € D4y and (Agu, Ajv) = (u, AjAzv),
so (A})?v = —w.

Lemma 10 Ay C A} and Ay # A} if and only if there is a nonzero v € Da;
such that (A§)*v = —v.

Note: Since (u, (A5)*v) = (Afu,v) for all u € D,z this is equivalent to
the statement that (Afu + u,v) = 0 for all u € D,2. Thus, v must satisfy
the relation

(Aju + u,v) =0, for all u € D 4.
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If we transfer this expression to the Fourier transform Hilbert space H we
have the requirement

Thus if the functions (Jy|*+ 1)i(y) are dense in H as u runs over D az it will
follow that v = 6, hence that v = . Rather than developing the technical
details from Fourier theory, at this point, to show that these functions are in
fact dense, we will return to this problem later when we use operator theory
to demonstrate that the range of A% + I is dense in H.

For our next example, we first recall some facts about absolutely con-
tinuous functions. A complete treatment is given in our Lebesgue theory
notes.

Definition 19 A function f is absolutely continuous on [a,b] if there
exist a function g € L'[a,b] such that f(t) = c+ [} ¢9z)dz, c = f(a), for all
t € [a,bl.

Theorem 20 If f is absolutely continuous then f'(t) exists for almost every

t € [a,b] and f(t) = f(a)+ [} f'(z)dx.

Theorem 21 [ is absolutely continuous on [a,b] if and only if for every
€ > 0 there exists a 6 > 0 such that Y 5_; | f(zx + 0k) — f(zx)| < € for every
finite family of non-overlapping subintervals (xg,xy + O) in [a,b] of total
length > 0 < 6.

Theorem 22 if fi, fo are absolutely continuous on [a,b|, then fifo is abso-
lutely continuous on [a,b] and %(f1f2) = fifo+ fifs.

For our next example we consider the momentum operator A = i+ on

dx
[a, b] with domain
Dy = {f € L?[a,b] = H : f abs. cont. and f' € L?[a, b]}
Let’s compute A*. We look for all pairs g, h € H such that (Af, g) = (g,h)

for all f € Dy. Setting z(xz) = [ h(t)dt, so z is absolutely continuous, we
have the integration by parts formula

z’/abj—igdx:/abfﬁdx: —/ab%%dwrf(b)%.
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Thus

/ U ig 1 2)de = £(0)200)

Now let f run over C%O [a,b], dense in H, (so f(b) = 0) and then % also

runs over CE’O [a,b]. Thus g = —iz almost everywhere. Since z is absolutely
continuous, then by redefining g on a set of measure zero if necessary, we can
assume ¢ is absolutely continuous, so ¢’ = —iz’ = —ih almost everywhere.
Thus, h = ij—g. From this it follows that A* = i-%

dz’
Da- ={f €H: f abs. cont., f' € H, f(a) = f(b) = 0}.

Similarly, from the integration by parts formula

[ Lgie =i [ Lo+ i3 - f@)9@)

for f, g absolutely continuous, we see that the operator A; = i% with domain
D, ={f € L2[a,b] =H : f abs. cont. and f' € L[a,b], and f(a) = f(b)},

is self-adjoint.
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Chapter 2

Completely Continuous
Operators

As we have seen differential operators are normally unbounded, and their
domains do not include the entire Hilbert space. However, the inverses of
differential operators, when they exist, are typically integral operators that
are bounded and, even better, completely continuous. For this reason it is
frequently advantageous to transfer problems about a differential operator
to problems about its inverse. With this motivation, we begin a study of
completely continuous operators on a Hilbert space H.

Definition 20 The operator A with D4 = H is completely continuous
if for every bounded sequence uq,us,--- € Da (i.e., there exists a constant
b > 0 such that ||u;|| < b for i =1,2,---) the collection {Auy, Aus, - --} has
a convergent subsequence.

Theorem 23 A completely continuous = A bounded.

PROOF: Assume A not bounded. Then there exists a sequence uq, ug, -« - €

D4 such that ||u,|| = 1 and ||Auy,|| > n for n =1,2,---. Clearly uy,uo, - - - is
bounded and Aui, Au,, - - - contains no convergent subsequence. Impossible!
Q.E.D.

REMARKS:

1. A bounded operator on a finite dimensional inner product space is
completely continuous. This is just the Bolzano- Weierstrass theorem,
proved in the Lebesgue notes.
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2. In an infinite dimensional Hilbert space a bounded operator may not
be completely continuous. Example: the identity operator I.

Theorem 24 If A is completely continuous with Dy = H then A with do-
main H is also completely continuous (i.e., we can always assume that the
domain of a completely continuous operator is H.

PROOF: Let uy, uy, - - - be a bounded sequence in H, (||u,|| < b, n =1,2,---).
Then for every n there exists a vector v, € Dy such that ||ju, — v|| < =.
Now ||v,|| < [|un||+ ||vn —un|| < b+ 1 by the triangle inequality, so vy, vg, - - -
is a bounded sequence. Thus there is a convergent subsequence {Av,, : j =
1,2,---}. But

At — Tt || = [[ A, — Ao || + | Aty — Avg, ||+ [| v, — A, || (21)

by the triangle inequality. Since ||A|| = ||A]| the first term on the right hand
side of (2.1) is bounded by ||A||/n;, and the third term by ||A||/ng. Given
any ¢ > (0 we can choose j, k so large that the middle term is less that e.
Thus |[Aup, — Aup, || = 0 as j, k — co. Tt follows that the sequence {Au,,}
is Cauchy, hence convergent. Q.E.D.
Recall the following properties of the operator norm, proved in the Lebesgue

theory notes. If A is a bounded operator on H the operator norm is defined
by

Au
|All = sup Al _ sup || Aul|. (2.2)
u€ED 4,u#b HU'H u€Dy,||ul|=1

Lemma 11 If A, B are bounded operators on H and « is a complexr number
then

1. e[l = |af - [|A]]

2. [|[A+ Bl < [|All + |BI|

3. [|ABI| < [|Al| - ||B]]

4 (1AM < lAl, n=1,2,-

An application to quantum mechanics.
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Theorem 25 Let A, B be bounded operators on H such that [A, B] = —ihlI.
Then the relation

ABu — BAu = —ihu for all u e H

cannot hold.

PROOF: Assume that the theorem is false and that there exist bounded
operators A, B such that AB— BA = —h[I and ||A]|-||B]|| > 0. By induction
we can show that

—1AnB" ' = AB"™ — B"A = [A, B", n=1,2---. (2.3)

Thus
an|[B™ Y| < 2|A]|---|[B™] < 2/|A][ - ||B]] - [|B*]].

Suppose ||B" || # 0 for all n. Then hn < 2||A]| - || B|| for all n Impossible!
Thus ||B"|| = 0, so B™ = 0 for sufficiently large n. Then (2.3) implies that
B! =0, and it follows that B' = B = 0, so ||B|| = 0, which is impossible.
QE.D.

Theorem 26 Suppose A is symmetric and bounded. Then |(Au,u)| < af|u||?

for allu € Dy for a = ||A|| and ||A|| is the smallest number « that will work.
Thus

(Au, u)
[|ul[?

= sup |(Au,u)l.

ueD 4, |ul|=1

|A[l = sup
u€D 4, u#6

PROOF: We have
|(Au, u)| < [JAul] - [|ul| < [[A]] - [|u]®.

Now let 4
L= sup (Au, Z)
weDauz| ||ul]
Clearly, L < ||A||. Now we must show L > ||A||. Consider the identity

(A(u+v),u+v) — (A(u — v),u — v) = 2(Au,v) + 2(Av, u)

for all u,v € H. Note that the inner products on the left-hand side are real,
by the symmetry of A. Thus

(A(u +v),u+v) < LHu—i—vHQ, (A(u —v),u —v) > —LHu—v||2
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which implies that
2(Au, v) + 2(Av,u) < L(||u+v|]* + [|Ju — v|]?),

expanding to
(Au,v) + (Av,u) < L(J[u|* + []v][*).

Now choose a u such that Au # 6 and substitute v = (||u||/||Au||)Au into
this last inequality to obtain ||Au|| < Llju|| for Au # 6. This result is
obviously true also if Au = 6. Therefore ||A|| < L. Q.E.D.

Thus if A is bounded and symmetric, we have |[A|[ = supy, -1 |(Au, u)],
where we assume without loss of generality that Dy = H.

REMARK: If H is n dimensional, where n is finite, and A{, Ag, - -+, A, are the
eigenvalues of A then we know that ||A|| = max{|Ai|,- -, | |} = |Ni] and
there exists a nonzero vector ug such that ||A|| = [(Aug, uo)| and Aug = \;uo.
We will see that symmetric completely continuous operators preserve many
of the eigenvalue features of self-adjoint matrices.

Theorem 27 let A be bounded and symmetric on H. There exists a sequence

{ur}, lukl| = 1, such that limy_,o(Aur — Mug) = 0 in the norm, where
A=A, or —[|A]l.

PROOF: Since [|A[| = supy, =1 |(Au, u)|, there exists a sequence {vg} such
that ||ve|| = 1 and limy_, [(Ave, ve)| = ||A||. Then {vg} contains a subse-
quence {ui} such that either (Aug,u;) — [|A|| as k — oo or (Aug,ug) —
—||A]|. Therefore (Auy,ur) — A1| as k — oco. Now

||Auk—)\1uk||2 = HAU;CH2—2/\1(A’U,]€, uk)+)\f||ukH2 S A%—Q)\l(AU,k, Uk)—{—A% —0
as k — oo. Q.E.D.

Theorem 28 Let A be symmetric and completely continuous (and to avoid
a trivial case assume ||A|| > 0). Then either Ay = ||A|| or Ay = —||A|| is an
eigenvalue of A. Furthermore, if X is another eigenvalue of A then |A1| > ||

PROOF: Let A1, {ug, k =1,2,---}, ||ug|| = 1 be as in the last theorem. Since
A is completely continuous there is a subsequence {w;} of {u} such that
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Aw; converges to some vector, say \yw, as j — 00. Now ||Aw; — A\jw;|| = 0
as j — oo by the preceding theorem. Therefore

] - fJw = wjll = lAvw = Aywy || < [|Aaw = Awy[| + [|Aw; = Ay,

by the triangle inequality, and each of the terms on the right-hand side goes
to zero as j — oo. Thus lim; ,,ow; = w and ||w|| = limj, ||w;]| = 1.
Finally

[[Aw = Mwl| < [|Aw — Aws{| + [[Aw; — Ayw;[ + [[Ayw; — Awl|
by the triangle inequality, and each of the terms on the right-hand side goes
to zero as j — oo. Therefore Aw = \jw. Q.E.D.

REMARK: This last result is not true for an arbitrary bounded symmetric
operator A. First A may have no point eigenvalues at all. Even if A has a
basis of eigenvectors the theorem fails to hold.

Example 4 Let H be an infinite dimensional Hilbert space with an ON basis
{un}of eigenvectors of A such that

n

Au, = ——uy, n=12---.
Then any unit vector u in H can be written uniquely in the form u =
S Qi with ¥, |an|? = 1. We see that Au = ¥, Q75 Un. Now [|Al| =

SUD| |y |=1 |(Au, u)| and

n
Au,u)| = 2 - 2 1.
|(Au, u)| anlanl — anlanl

Therefore ||A|| = 1 but there is no unit vector & € H such that |(Ad, )| = 1.

Theorem 29 (Spectral Theorem for symmetric completely continuous oper-
ators.) Let A be a nonzero symmetric completely continuous operator on the
separable Hilbert space H. Then

1. Every nonzero eigenvalue of A has finite multiplicity.

2. A has countably (or finitely) many eigenvalues A1, Aa, - - . They can be
ordered so that
JA]] = M| > [Ae] > |Ag] > -

with each nonzero eigenvalue counted a number of times equal to its
multiplicity.
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3. lim;_,o A\j = 0 if there are an infinite number of eigenvalues.

4. We can choose an eigenvalue ¢; corresponding to each eigenvalue \;
such that (¢ja ¢k) = Ojk-

5. |\l = [(Agj, ¢5)| = maxyey, ju|j=1 | (Au, u)| where
%1:% %J:{UEH UL¢1;¢2,"'5¢]'—1}-
Here, H=H,y D Hy DH3D ---.

6. If u € Ry, i.e., u= Av for some v € H, then

U = Z(U/; ¢n)¢n = Z(GU, ¢n)¢n = Z )‘n(va ¢n)¢n

k n

The {¢n} form an ON basis for R,.

PROOQF:

1. Let A # 0 be an eigenvalue of A and Sy = {v € H : Av = \v}. Suppose
dim Sy = oo and let {v;} be an ON basis for S). Now {v;} is bounded
in norm and A is completely continuous, so the set {Av;} = {\v;}
contains a convergent subsequence. Impossible! Therefore dim S) is
finite.

2. By a previous theorem there exists an eigenvalue \; and a unit eigen-
vector ¢; such that || = ||A]| and A¢; = Ai¢y. let Ho ={v € H :
v L ¢1}. Then AHy C Hy. Indeed, let v € Hy. Then

(61, Av) = (Ad1,v) = Ai(¢1,v) =0,

so Av € Hy. If AHy = {0} then we are done. Otherwise keep going
and use previous theorem to show that there exists an eigenvalue )\,
and a unit eigenvector ¢, so that

|A2| =  max |(Au,u)l|.

[lu||=1,u€H2

Clearly (¢1, ¢2) = 0. We proceed in this way step by step. At the nth
step, either H,, = {#} in which case we stop, or we find a unit vector

¢nEHn:{UEH:UJ—QSI:QSQ:"'a(ﬁnfl}: A¢n:/\n
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where

An| =~ max_[(Au,u)],

[lu||=1,u€Hn

etc. Clearly (¢n,¢;) =0for j=1,---,n —1. Since H; D Hy D H3 D
--- we have ‘)\1‘ > |)\2| > |/\3| >

3. Since {¢,, n = 1,2,---} is bounded and A is completely continuous,
there exists a convergent sequence {A¢n, = An,¢p, } . Thus

|| AGn, = Abn |I” = [[An by = Ay b || = Ao + A0, = 0 as j, k — oo,
s0 Ap, — 0 as k — oo which implies that A, — 0 as n — oo.

4. Let u € R4, u = Av and note that (u, @) = (Av, ¢x) = Ax(v, ¢y). For

any integer n , set
n

Wp =0V — Z(Ua (bk)(bk-

k=1
Then w, L ¢1,---, ¢, which implies w,, € H,+1. Therefore |(Aw,, w,)| <
[Ans1] - |lwa|[* and [JAw,|| < [Ans1] - [|wn||. Now

n
[lwnl[* = [[ol* = > (v, 6a)|* < [|v][*
k=1

Therefore ||w,|| < ||v|| for all n. Thus ||Aw,|| — 0 as n — oo, since
Ant1 — 0 as n — co. But

n n

Awy = Av =Y (v, dp) Mk = v — Y (U, Pr) P

k=1 k=1
Therefore u = Y32 4 (u, dr) P

We haven’t quite completed the proof, since we need to show that our
procedure has found all of the nonzero eigenvalues. To do this we first review
some simple material involving the ranges and null spaces of operators. Let
B be an operator on ‘H with dense domain and let N = {u € Dp : Bu = 0},
Ry = {v € H : v = Bu for some u € Dy, be the null space and the range
of B, respectively.

Lemma 12 Ny and Np- are closed, and

4 1 D
RB:NB*, B*:RB'
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PROOF: The proof that the null spaces are closed is elementary. Suppose
that w L Rp. Then (w, Bu) =0 for all u € Dg. This implies that w € Dp-
and (B*w,u) = 0, s0o w € Ng«. On the other hand, if w € N« then B*w = 6
so (B*w,u) = 0 for all u € D which implies (w, Au) = 0orw L Rp. Q.E.D.

Now again we assume that A is symmetric and completely continuous.
This implies also that A is self-adjoint. Thus we have

RE=Ni=N. Ni=TR.

This implies that H decomposes into the direct sum H = N4 @ R4 of two
closed subspaces. We choose an ON basis 7, 7s, - - - for N4 and the ON basis
of eigenvectors ¢, ¢, -+ for R 4.

Corollary 4 let A be symmetric and completely continuous. Let {vx} be an
ON basis for Na and {¢r} be the ON basis forE constructed above. Then
{Vk, ox} is an ON basis for H, i.e., H=N4 D Ra.

CONTINUATION OF PROOF OF THE SPECTRAL THEOREM: have we
missed any nonzero eigenvalues of A in the list {\;}? Suppose A # 0 is an
eigenvalue with eigenvector ¢ and such that A is not in the list constructed
above. Since ; A¢ = ¢ we see that ¢ € R4. Therefore

phi = Y 321(0, ¢x)dr. However, by construction (¢, ¢x) = 0 for all k, hence
¢ = 6. This is impossible, so the list is complete. Q.E.D.

QUESTION: The theorem shows that every u € R4 can be expanded in
an ON basis of the eigenvectors of A, corresponding to nonzero eigenvalues,
where the series converges in the Hilbert space sense. However, in the case
that H is a space of functions one can ask about pointwise convergence of the
series. Also there is the question of the nature of the eigenfunctions ¢;. Are
they continuous, differentiable, ...7 We will develop some machinery that
will help us answer these questions for specific Hilbert spaces and operators.

We say that Condition I holds for a symmetric completely continuous
operator on H if

1. [|A]| #0, Da=H, Ra C Da.

2. For every bounded sequence {u,} in D4 there is a subsequence {v,}
such that Av, - v € Dy as n — oo.

REMARKS:
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1. If condition I holds then by the spectral theorem, all of the eigenfunc-
tions ¢ belong to D 4.

2. Suppose the following two requirements are satisfied.

a) For every nonzero u € Dy there exists a real number [u] > 0 such
that ||u|| < afu] where « is a fixed positive constant, independent of w.

b) For every u = Av € R4, v € Dy there exists a w € D4 such that

lim lw — i akqﬁk] =0, ar = (&, Pr).
k=1

n—0o0

Then w = u and lim,, o, [u — Y>F_; axo] = 0.

PROOF:

lw - i akPr,
k=1

Since the term on the left goes to 0 as n — 00, so does the term on the
right. Hence w = u Q.E.D.

n
> aflw = apdil-
k=1

Example 5 Let H = L%(D), where D is a bounded domain in R,. Thus
the inner product is (u,v) = [puvdz. Let A be a symmetric completely

continuous operator with Dy = {u : u eC (D)}. Set [u] = max, 5 |u(z)]
and define the volume of D by V(D) = [, dzx. Then if u € D4 we have

lull = /DIU(fC)PdeS V(D) max|u(z)| =alul,  a=yV(D).

2.1 Separable operators

We say that an operator A on the Hilbert space # is separable if it can be
obtained in the following way. Let n be a finite integer and let {uy, ug, - - -, u, }
be a linearly independent subset of 7, and {v, vy - - - v, } be any subset. Then
for any w € H we define



Now
n

|| Aw]| < Z [oj[ - [zl ],

so A is bounded. Furthermore, A maps H into a finite-dimensional subspace
of H, so A is completely continuous.

Example 6 Let H = L%([a,b], k) and define A by

Au@) = [ K@@k, K@) = u@n0)

=1

foruj,v; € " and {u;} linearly independent. The kernel K(x,y) defined here
is said to be separable. Note that A is symmetric if K(x,y) = K(y, ), i.e.,

if K(z,y) = X7y uj(@)u;(y).

Theorem 30 Let A be a bounded operator on H such that there erists a
sequence {A,} of completely continuous operators on H with Dy, = H and
lim, 00 |[|[A — An|| = 0. Then A is completely continuous.

PROOF: Let {u,} be a bounded sequence in D4, (||u,|| < «). We use the
Cantor diagonalization argument:

A; completely continuous —

there exists a subsequence {u(V} of {u,} such that {A4;u{)} is convergent.
Aj completely continuous =

there exists a subsequence {u®} of {u{!} such that {Asu!?} is convergent.
As completely continuous =

there exists a subsequence {u®®} of {u(®} such that {Asu!®} is convergent.

Ay, completely continuous =

there exists a subsequence {u®} of {u*~1} such that {A4,u®} is convergent.
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Now consider the diagonal sequence ugl),ug),_u?), uf), - - Clearly {Akug-j )
j=1,2,---} is convergent for each k, since ugj) C {ul®} for j > k. Then for
any € > 0 we have

14w — Au?l| < [|Au? — Al || + || Ay — Agu?|| + [ Agary” — Ao
. Z . Z 6 6

< (1A = Al a1+ [ug?1] + A — 4?|] < o)+ 5 =+
if we choose k so large that |[A — Ai|| < ;5 and j, £ so large that ||Aku§-j) =
Akuy)H < 5. Thus the subsequence {Auy )} converges, which implies that A
is completely continuous. Q.E.D.

Let @ be one of the intervals [a,b], (a,b], [a,b), (a,b), where (—o0,b],
[a, 00), (—00,00) are permitted.

Theorem 31 Let k € C(Q) k(z) > 0 forx € Q,H = L*(Q,k). Suppose
K(z,y) is complex valued and continuous in (z,y) for all (z,y) € Q X Q,
and

2
J, [, 1K ) PR@)k(w)da dy < oo.
Then the operator defined on H by

Au(z) = /Q K(z,y)u)k)dy = (w, K@), uweH  (24)

s completely continuous.
PROOF: From expression (2.4) we have
Au(a)? < [ 1K (@,9)Pkw)dy - [ [uly) *Kw)dy
SO
4ul? = [ |Au@)ka)da < |JulP* | [ K () PRE)by)de dy

and
1A]2 < /Q /Q K (2, y) [Pk (@)k(y)de dy.

Thus A is bounded. Now let {u,} be an ON basis for H. Then {u,(z)u,(y)}
is an ON basis for K = L2(Q x Q, k(z)k(y)) and K(-,-) € K. We have the
expansion

K(ay) = Da@uly), = /Q /Q K (2, ) 2 (2)ue(y) k(@) (y) dz dy,
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where convergence is in K, not pointwise. Parseval’s equality gives
Slagel? = [ [ 1K (@, 9)Ph(@)k(w)de dy.
I QJIQ

Now consider the sequence of separable kernels

n

Kn = Z aj({Uj(.fL')’U,g(y), n= 27 37 T
j+e=1

and operators A, on H given by A w(z) = [, K, (7, y)w(y)k(y)dy. Clearly
each A, is completely continuous and

o0

1A — A2 < /Q/Q K (2,) — Ko(2,9) PE@)k(y)dz dy = Y |azl> = 0

jl=n+1
as n — oo. It follows from Theorem 30 that A is completely continuous.
Q.E.D.

Corollary 5 IfQ = Q1 x Q2% --xQ, C R, ( a bozlike domain in Euclidean
n space) where each Q; is an interval on the x; axis as defined above, then
the analogous result to Theorem 31 holds in R,,.

Definition 21 We say that the integral operator (2.4) is Hilbert-Schmidt
if K € I2(Q X Q k(@)k(y)), i-e., if Jg Jo |K (2, 3)Pk(z)k(y)dz dy < oo.
Corollary 6 If Q is as in Corollary 5 and A is Hilbert-Schmidt, then A is
completely continuous.

ASIDE: We will make frequent use of the following basic result from Lebesgue
theory.

Theorem 32 (Fubini) Let By = LL(Ry, k1), Bo = L:(Ry, ko), B= LL(Ryim, kiks),
where k1 = ki(z), ko = ko(y), © = (21, -, Zn), Yy = (Y1, , Ym)- If any one
of the Lebesque integrals

[ lfenkE@k@dd. [ ([ f@ylk@is) ke,

m n

/n (/Rm |f($,y)|kz(y)dy> ky(2)dz,

s finite, then all are finite and equal. Furthermore, if f € B then
/ Fhvkoda dy = / ( fklda:) kady = / ( kady) by da.
Rytm m R, Ry Rm

48



Thus, if f is a measurable function on R,,.,, and |f| is integrable, then so is
f integrable and each of these integrals can be evaluated as iterated integrals
in lower dimensional spaces. The order of iteration is immaterial. (In general
it is not permitted to change the order of iteration if f is only conditionally
integrable.)

We will not give here the extensive technical details needed to prove
this result. However, the idea behind the proof is relatively simple. It is
sufficient to consider the case n = m = 1,k = ke = 1. In our earlier
online notes we defined the space of Lebesgue integrable functions L'(R;) by
first defining the integrals of step functions and then completing the space
of step functions in the L' norm. Every Lebesgue integrable function was
obtained as the a.e pointwise convergent limit of a Cauchy sequence of step
functions. Any step function s on the line is associated with a partition
{z; - <zjo1 <zj <xjyq1 <---, j=0,£1,£2,---} of the real line.
Then the step function is defined by s(z) = ¢; for ; < & < z;41, where only
a finite number of the constants c¢; are nonzero. The integral of s is defined
by [sdx = 3; cj(xj41 — z;). The sum of two step functions (with different
partitions) is again a step function with a refined partition of the real line.

To define the Lebesgue space L'(R;) we proceed in an analogous manner.
A step function s is associated with a double partition

{($jayk):"'<xj71<37j<$j+1<"'a s < Y1 < Yk < Y1 < -0}

of the real plane, where 5,k = 0,4+1,4+2,---. The step function is defined
by s(z,y) = ¢j for v; < z < zj11, Yo < Y < Yg41, Where only a finite
number of the constants c;; are nonzero. The integral of s is defined by
[ sdx =3k cin(®js1 — 25) (Yk+1 — yx). The sum of two step functions (with
different partitions) is again a step function with a refined partition of the
real plane. Now it is a simple matter to verify the identities

/ssdxdy:/Rl (/Rlsdx>dy:/Rl (/Rlsdy)dx.

Indeed, for each & or ¢, s(Z,y) or s(x,7y) is a step function on the line.
The rest of the proof of Fubini’s theorem involves showing that this identity
continues to hold in the limit as we take Cauchy sequences of step functions.

BACK TO COMPLETELY CONTINUOUS OPERATORS
Corollary 7 Let D be a bounded normal domain in R, and H = L*(D, k).
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Let K be a function on D x D such that

[ K@) Pe@k)de dy = [ 1K (@) PEEk)xo(@)xob)ds dy < oo

2n

where xp is the characteristic function of D, i.e., the operator A such that

Aw(e) = [ K(,y)wly)ky)dy
for w € H is Hilbert-Schmidt. Then A is completely continuous.

Example 7 Let the domain D be as in the corollary and suppose

1. K(x,y):Mforx,yeRn.

lz—yl=
2. a is complez-valued and continuous for x,y € D, 0 < a < 5. NOTE:
A kernel K with properties 1 and 2 is said to be weakly singular.
3. a(z,y) = a(y,z), for all 2,y € D.
4. H=1L3D,k).
According to Hellwig (Theorem 3, Section 4.3)

/ dy Wn, (nV)l__
< -
plx—ylf ~ n—pF \w,

if 0 < B < n, where w, is the area of the unit n-sphere and V' is the volume
of D. Indeed, for fired x we can write y — x in polar coordinates centered
at . Then dy is proportional to v ‘dr dw,, where dw, is the differential
of area measure on the unit n-sphere. Then an estimate for the integral
is [P T:;Idr = T_j; where D is contained in a ball of radius B about x. It
follows that [, p, | K (z,y)|?k(z)k(y)dz dy < 0o, so the weakly singular kernel
K(z,y) defines a symmetric Hilbert-Schmidt operator on H.

2.2 Pointwise convergence of expansion for-
mulas

Suppose A is a non-zero symmetric Hilbert-Schmidt operator in L2(D, k)
with weakly singular or continuous kernel, as above, on the bounded domain
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D. Then A has non-zero eigenvalues {\,} with [A;| > |As| > --- and cor-
responding normalized eigenvectors {¢,} such that they form an ON basis
for R4. Thus if u € R4 then u = Y} (u, ¢n)¢n. When is this convergence
pointwise?

Theorem 33 Suppose the kemel_K 1$ continuous or weakly sin@lar on the
bounded normal domain D, and Do = L?(D, k). Then Ra C C(D).

PROOQOF: let v = Au, u € D4. Then
2
o) = vlaa)* = | [ [K(o1,9) = Ko, y) b@)u(v)dy

< [ 1K(@1,9) = K(az,9) k() dy/ [u(y) k(y)dy

< kollull* [ K (21,y) = K (w2,9)|dy,

where ky = max, 5 k(y). Now recall that we have verified the inequality

[ W<, S@h)={yeRy:le—b <b)

S@h) |7 —y |“ =

for n > a, where ¢q > 0. Let |x; — 23] < b and write

K(z1,) ,Qd:/ K(21,y) — K (29, y)[2d
[ 1K) = Kz )Py = [ K (@,9) = K (,0) Py

K(xq, ,Y)|°d
+/[ prsiorsy K @0 9) = Kz w)dy

The first integral on the right-hand side is bounded above by

2 (1K (@, )2+ |K (22, 9)[?) dy < eab™™

DNS(z1,b)

where ¢; > 0 and we have used our inequality. The kernel in the second
integral on the right is uniformly continuous in z;,xs, so both integrals go
to 0 as b = |z; — x| — 0. Thus v is a continuous function. Q.E.D.

Corollary 8 Let A be an integral operator with weakly singular kernel, D4 A=
H, and ¢ an eigenfunction of A with nonzero eigenvalue \. Then ¢ € C(D).
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PROOF: Ap = \¢p = A(\"'¢) = ¢ = ¢ € R4 C C(D). Q.E.D.

Let D be a bounded normal domain and K a weakly singular kernel with
K(z,y) = K(y,z) for all z,y € D, and H = L?(D,k). Then K defines
a symmetric completely continuous operator A (A is Hilbert-Schmidt) with
D, = C°(D). We know that A has nonzero eigenvalues \i, Ay, - - - with [\;| >
|Ag| > --- — 0 and corresponding normalized eigenfunctions ¢1, ¢, - - -, each
of which is continuous on D.

Theorem 34 let A be as above. If u € Ra, u = Av, v € Dy then u(z) =
et (U, @n)pn(z) for x € D where the convergence is pointwise uniform
absolute on D.

PROOF: Assume there are an infinite number of nonzero eigenvalues. (Oth-
erwise the theorem is trivial.) Recall that (¢;, ;) = d;; and A¢p; = \,;¢;. For
u € R4 with u = Av we have

(U'a (bj) = (AU, ¢J) = (Ua A¢]) = )‘j(va (b])

1. Let Sg(z) = XF_ (u, ¢n)dn(x) € CO(D) for each integer k. We will
show that {Sk(x)} is a uniformly pointwise convergent, sequence of con-
tinuous functions on D, so that it converges to a continuous function
w(zx) in D. Indeed, for k > ¢,

[Sk(z) = Se(@)* =1 - (u, én)n(2)”

n=~£+1 n={+1 n=_{+1

Later we will show that YF_, | [Aun(2)]? < f? < oo for all z € D.
Assuming this, we see that

|Sk(z) — |<5\}Z| y@n)|? =0

n=0+1

uniformly in x as k, ¢ — oco. Thus limy_, Sk(z) = w(z) and, since D
is bounded, ||Sy — w|| — 0 as k — 0.
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2. Si(x) — u(z), uniformly as k — oco. Indeed
[lu = wl| < Jju = Skl[ + Sk —wl[ =0

as k — o0, so u = w in ‘H and, since u, w are both continuous, we have
u(z) = w(z) for all x € D.

3. Finally, we have to show that 325, [A,én(2)|* is uniformly bounded on
D. Now u(z) = Av(z) = [p K(z,y)v(y)k(y)dy = (K (z,-), ), so

i Aubal()]? = i Ay ()P

= (o), B < (Ko ), K )

by Bessel’s inequality. However the right hand side of the last expres-
sion is just [p |K(z,y)[*k(y)dy < % < oo since K is weakly singular.
Therefore

Y Maga(2) < 52 < o0
n=1
for all z € D. Q.E.D.

Let A be symmetric and completely continuous on the Hilbert space H,
and reorder the nonzero eigenvalues {\,} of A so that

A2 A2 202022 A, > 2 Ay,
with associated normalized eigenvectors

¢17¢2a“'7¢’n7 """ ¢,n,"'¢,1.

Theorem 35

A= max (Au,u), A 1= min (Au,u),
[[uf|=1,ueH [[ul|=1,ueH

Ay = max Au,u Ay, = min Au,u
" ||u||=1,uL¢1,---,¢n_1( ), " Hu||:1,uJ_¢_n+1,---,¢_1( ),
n=23--
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PROOF: We give only the proof of the characterization of A;. The remaining
characterizations have similar proofs. If u € H with ||u|| = 1 then, setting
a; = (u, ¢;), we have 3, |a;|* = X; |(u, ¢;)|* < 1. Now

AUZZAU:(b] Z)\ u¢]
J

SO

positive negative
A N

(Au, u) 2/\ |(u, )12 =A1an|? + Nafag> + - + -+ XA gla o> + X 1la |

< M fas) < A

But (A(bl, ¢1) = /\1. QED

2.3 Relationships between completely contin-
uous and S-L operators. Green’s func-
tions

Consider a general regular S-L operator in Ry, (1.10). Here,
Au= = [=(p(a)) +q(z)u],  H =L ([t,m]k),

Dy= {u €H:ue C*([¢,m]); Biu= Byu= 0}
Bju = ajiu(l) + ajpu’(€) + agsu(m) + ajau’(m),  j=1,2,

and the o, are real. Assume By, B, are linearly independent and such that
A is a symmetric operator.

If the complex number y is not an eigenvalue of A then (A — pul)™! exists.
Further D(A,N[)—l = RA—NI = CO ([f, m]), ,R'(Afpl)—l = DA—MI = DA and

(A=uD) " f@) = [ gy W Wk)dy, f € C([Em))

where g(z,y, u) = g(y, z, u) is symmetric, bounded and continuous on [¢, m].
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Theorem 36 Let A be a general non-singular symmetric S-L operator as
defined above. Then

1. A has a countably infinite number of eigenvalues A1 < Ay < - - -, all real
with only +00 as a limit point. The multiplicity of an eigenvalue is at
most 2.

2. Let {¢;} be the corresponding normalized eigenvectors of the {\;},
Agp; = Njo;. Then the {¢;} form an ON basis for Dy, hence for H.
Furthermore, if u € Dy then

o0

ZU¢J¢J

where the convergence is pointwise uniformly absolute.

3. The eigenvalues are characterized by the minimization properties

min _ (Au,u) Aj = min (Au, u).

]
l|u|=1,u€D4 [lul|=1,u€DAu L1, ,pj—1

PROOQF': Choose i real and not an eigenvalue of A. Let B = A — ul. Then
B! exists and

B 'f(z) = /emg(x,y,u)k(y)f(y)dy

and the kernel is real and symmetric in (x,y), so B™! is a symmetric com-
pletely continuous operator. Further, Dg-1 = R4, Rp-1 = Dy. it follows
that B! has real nonzero eigenvalues {A;} and corresponding normalized
eigenvectors {¢;} such that B '¢; = A;¢; and {¢;} is an ON basis for
Rp-1 = Dy. B! has no zero eigenvalues.

If u € Dy then u(x) = 3,(u, ¢;)¢;(x) where the convergence is pointwise
uniform and absolute. Now

(A—pl)"'g; =B '¢; = Njoj == Aj(A - pl)g; = ¢

1
= A¢; = (p+ K)(ﬁj = A5

j
Therefore, \; = pu + AL is an eigenvalue of A if and only if A; is a nonzero
J

eigenvalue of B~!. Also the {¢;} are the eigenvectors corresponding to {);}.
Since A is bounded below, we can order the eigenvalues of A so that

AM< A< A< os = 400
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There are an infinite number of eigenvalues because D4 is infinite dimen-
sional. This proves statements 1 and 2. Statement 3 follows immediately
from Theorem 35. Q.E.D.

Example 8 Let
d2
A= —— = L?([0,27],1
oz = Le([0,27],1),
Da={ueH:ueC0,2r], u(0) = u(2r),u'(0) = u'(2r)}.

Note that A is symmetric. Indeed, for u,v € Dy

T du dv 2
2m = — —d = Av).
o * 0 d:vdx / udx2 v = (u, 4)

2y du
(AU,, U) = — o @’l)dﬂ? = —%U

To find the eigenvectors and eigenvalues we solve Au = Au for u € Dy
or —u" = Au. Applying the boundary conditions we find that the eigenval-
ues are N, = n%, n = 0,£1,42,--- and the corresponding eigenvectors are
bn = €™ /\/21. Thus each eigenvalue is of multiplicity 2 if n # 0 and the
eigenvalue 0 is of multiplicity 1. The {u,} form an ON basis for calH. If
u € Dy then u(z) =300 (u, uy)u,(x) where the convergence is pointwise
uniform and absolute. Note that this expansion

1 el 2 .
- —iny 7
u(@) = 5 [/O u(y)e "™dy| e

n=—oo

1s just the complex form of Fourier series.

REMARK: In the above examples, and examples to follow, of symmetric S-L
operators A with completely continuous inverses A~!, the S-L operators are,
in fact, essentially self-adjoint. (If A has 0 as an eigenvalue, just choose a
real p that isn’t an eigenvalue so that A — ul is invertible. Our argument
will then show that A — I is essentially self-adjoint, which implies that A is
essentially self-adjoint.)

To see this note that the bounded operator A ' =ATis self-adjoint and
D= = H. Thus Ry = D= = H and D; = R4=;. Since A is symmetric
we have A C A* = A", Now let v € D4 Then

(Au,v) = (u, A™v)
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for all u € Dz = R4=r. Every such u is of the form u = Zilw, where w € H,
and every w € H is of the form w = Au. Thus the above equation reads
(w,v) = (Z_lw,Z*v) = (w,z_lz*v),

for all w € H. (The last identity follows from the fact that the bounded

operator A~ is self-adjoint.) We conclude that v = A A, sov e D and
Av = A"v. This shows that A* C 4, so A* = A. Q,E.D.

2.3.1 Extension to an S-L operator in R,

We will sketch a treatment of pointwise convergence for expansions in terms
of eigenfunctions of S-L operators in R,,. Let D be a bounded normal domain
and H = L?(D). We consider only the S-L operator (1.21)

Au = —A,u, A, = Z

and
Dy = {u:uECl(E)ﬂC’Q(D), Au € H, and u =0 for z E(?D}.

Recall that A is symmetric, bounded below, and strictly positive.
Assume n > 2. We give a sketch of the construction of A=!. The functions
u = S, where
1

s, > 92
Sn(./l:’ y) — { (n—12)wn“1;_y|n 29 orn

2.5
—5-Injz —y|, forn=2, (2:5)

z,y € R, and w, is the area of the unit n-sphere, are called principal
solutions of the equation A,u = 0. For a discussion of these functions, see
Titchmarsh, “Eigenfunction Expansions, Part II,” Oxford, 1958. There the
following result from potential theory is proved:

Theorem 37 Let f € C*(D) and define u by
u@) = = [ Sulw,)f()dy.
Then u € C1(D) N C?(D) and Ayu(x) = f(z) in D.
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Suppose that D is such that the Dirichlet problem can be solved: Given
a continuous function g(z) on 4D find a unique function v € C?(D)NC°(D)
such that A,v = 0 and v(z) = g(z) for all x € D. Then for every y € D
we can find a solution y(z,y) of A,y = 0 and y(z,y) = —S,(z,y), for all
x € 0D. We define the Green’s function for this problem by

g(z,y) = v(2,y) + Sn(z,y).

Then Apg(z,y) = 0 for z # y, and if f is defined as in Theorem 37, the

function
u(@) = = [ 9@ y)f(y)dy

satisfies u € D4 and A,u = f(z) in D. Thus we have inverted the equation
Au = f to find the unique solution u = A1 f. It follows that C1(D) C D41

and
A f(z) = —/Dg(:v,y)f(y)dy

if f € C'(D).

One can show that g(z,y) is an Hilbert-Schmidt kernel if n = 2,3 so
then A ! is completely continuous. Furthermore, since A is symmetric we
have that A~ ! is symmetric. Therefore the expansion theorem for completely
continuous symmetric operators applies to A~!. Keep in mind that

Ap = \p <= %d) =A"'o.

We conclude that A has an infinite number of eigenvalues \; < Ay < --- and
corresponding normalized eigenvectors ¢i, ¢o, - - - with ¢,, € C'(D) and each
eigenvalue of finite multiplicity. Further, if u € DaNC?3(D) then Au € C*(D)

and
o0

Zuqﬁnaﬁn

where the convergence is uniform and absolute on D.
The following result enlarges the domain of functions with a pointwise
convergence expansion.

Theorem 38 1) If u € Dy then u(z) = [, g(z,y)f(y)dy where f(x) =
—Ayu(z). 2) If f € CY(D) then the function u(z) = [, g(z,y)f(y)dy is an
element of C?(D)NCY(D) and Apu= —f in D.

o8



SKETCH OF PROOF OF 1): This is a standard potential theory argument,
making use of the integration by parts formula (1.20). We choose a point
x € D and let J. C D be a ball of radius € about . Then we apply a variant
of formula (1.20) to the domain D — J,:

/ u@dyS —/ ga—udyS = / ul,g dy —/ gA,u dy.
aD+aJ. On aD+aJ. "~ On D—J. D—J.

Now A,g =0 and Ayu = —f in D — J., whereas u = g = 0 on dD. Thus
the equation reduces to

/BJE ug—zdys - /BJE gg—ZdyS = /D_JE gf dy.

The behavior of the two integrals on the left is entirely determined by the
singularity at x of the principal solution S,(z,y). It is straightforward to
show that as € — 0 the first integral on the left goes to u(z), whereas the
second integral goes to 0. As € — 0 the integral on the right obviously
converges to [p¢f dy. Thus u = [, gf dy. Q.E.D.

We conclude from this last result that if u € Dy then f = A,u € R4, so
() = 30% (U, ¢n)Ppn(x) where the convergence is uniform and absolute on

Sl2

2.3.2 Extension to mixed initial and boundary value
problems

Here we consider a mixed initial and boundary value problem Au 4+ u = f
where A is an S-L operator, f(z,t) is a given function and both f and u(z,?),
and all functions in the function space, are real valued. We choose A to be
an ordinary S-L operator on an interval on the real line

1
0 %) +q(z)ul, x € [£,m],

Au = % —8—:6(19(90)%

with separated boundary conditions

0
Byu(z,t) = anu(l,t) + a12—u(€, t) =0,
Ox
ou
Byu(z,t) = agiu(m, t) + QQQ%(m, t) =0,
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for 0 < t < co. Here By, By are assumed linearly independent. For each
0 <t < oo, A acts on the Hilbert space

H, = {u(x,t) : /gm w?(z, t)k(z)dz < oo} : (u,v); = /emu(x,t)v(:r,t)k(:r)dx.
The domain of A at time ¢ is

DYy = {u(x,t) €Hi: ueC?’ll,m], Biu= Byu= 0} :

Theorem 39 Suppose we are given functions ug(z) € CO[¢,m], f € C°(4 <
z<m, 0<t<oo). Then

1. There exists at most one solution u of the equation Au + % = f such
thatu € DYy, 2 € COUU <z <m, 0<t<o0), and u(z,0) = ug(z) for
all x € [, m].

2. If the solution u exists, it is given by the expression

uwt) = 3 (w0, 05) + [ (07 dr] - M5(0)

=1

where Ay < Ao < -+ are the eigenvalues of A and the {¢;} are the
corresponding normalized eigenvectors.

3. If a) ug(z), 2%, 2% ¢ ¢4, m], b) f = 0, and ¢) Byug = Byug = 0,

) o oz ¢
then a solution u ezists.

REMARK: Formally, assertion 2. states that the solution of Au +u = f is
t
u= e Myy+ et / e f dr.
0

Lemma 13 let = € [a, b] and suppose
1. 52, vi(x) = v(z) for all x € [a,b].
2. vi(x) € C*a,b], for all j.
8. 332, vi(x) = g(x) where the convergence is pointwise uniform on [a, b].

Then v € Cta,b] and v'(z) = 32, vli(x) for all x € (a,b).

= 25=1Y;
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PROOF OF THE LEMMA: Let s,,(x) = ¥j_, vj(z). Then s, € C'[a,b] and
sp(x) = v(z), s, (r) — g(x) as n — oo, where the convergence is uniform.
By the Fundamental Theorem of Calculus, s,(z) — sp(a) = [ st (y)dy goes
in the limit as n — oo to v(z) — v(a) = [; g(y)dy since the convergence is
uniform. Also, since each v is continuous and the convergence is uniform,
then g is continuous. Thus, by the Fundamental Theorem of Calculus again,

we have v'(z) = g(x) for all z € (a,b). Q.E.D.

PROOF OF THE THEOREM: Assume a solution u exists. Then u € DY
for all t € (0, 0), so

o

Z u, ¢)edi(x

j=1
where the convergence is uniform and absolute in z. Set «;(t) = (u, ¢;):.
Remarks:

o ;(0) = (uo, 9;)-

e We have
Au+a = f = (Au, ¢j)e + (0, ¢5)c = (f, ;)
= Aj(u, g)e + 5 (U ¢j)e = (f, d5)
= q;(t) + )\jaj( ) = (f, &)
e Thus

¢
a;j(t) = e Nt [/0 (f, qu)Te)‘deT + (uo, 05)] -

This proves assertions 1. and 2. of the theorem. To prove assertion 3. it is
enough to show that the series 352, (u, ¢;)e=""¢;(x) converges to a function
u that is a solution of the boundary value problem.

Remarks:

o 322 (uo, #;)#;(x) converges uniformly and absolutely to ug(z).
e )\j = +00 as j — oo.

o e = 0as j — co. Thus ¥, (uo, ¢;)e=%"'p;(x) = u(z,t) converges
uniformly and absolutely in x and t.
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o Let uj(z,t) = (ug, ¢;)e'¢;(x). Clearly Au, +i; = 0.

. 2, .
e It is enough to show that the series 3°, u;, 3=, %1;1, and >, % converge

uniformly in the interval £ <z <m, 0 <t, <t < oo, for every ¢y > 0.

o Y iy = — Y ;(u, ¢5)Aje Ntpj(x) and Aje Nt — 0, as j — oo, uni-
formly for all ¢ > ¢y > 0. Therefore }; 4, converges uniformly —
u(z,t) exists and u(z,t) = 3, u;(x, 1).

°* %i = ;i (ug, ¢j)e Y'¢(x). Assume that 0 is not an eigenvalue of
A. Then

A@:M@¢¢@zxﬁ1@2&£%@%®MWMW@,

where @r(a)
-2, L<y<z<m,
T w0 FSTSYS
with Av; = avy = 0,B1v; = Byvy = 0. Thus
PN = vi(y)k(y)9;(y) _ j/"lvz(y)k(y)¢v(y)
oj(z) = )\31)2(33)/Z pon dy — \jvi(z) ; pon dy
= vi(y)k(y)9;(y) ™ vy (y)k(y);(y)

dy—i(@) [

= dj(z) = ~Aui(e) [ O e

Therefore, 3=;(uo, ¢;)e Y'¢;(x) converges uniformly.

o Apj = N\jo; = ¢} = ,l, [—P'(ﬁ} +qo; — /\2k¢j] = 3;(uo, ¢5)e ']
converges uniformly. Q.E.D.

The corresponding problem for Au+ 4 = f has a very similar treatment.
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Chapter 3

Spectral Theory for
Self-Adjoint Operators

We start be reformulating the expansion theorem for symmetric completely
continuous operators in a manner that will generalize to all self-adjoint oper-
ators. Let A be symmetric and completely continuous on the Hilbert space
H, and let {\;} (including the zero eigenvalue if it exists) be the eigenvalues
of A. Denoting by ¢; the corresponding normalized eigenvectors, we now
have that {¢;} is an ON basis for H, not just R4. if u € H then

o0

u="> (u,$;)d;.

7j—1

Note that the eigenvectors ¢; are not uniquely determined, since the eigenspaces
corresponding to nonzero eigenvalues could have finite multiplicity, and the
zero eigenspace may even have countably infinite multiplicity. It is only the
eigenspaces themselves that are unique. The following statements are easy
to verify.

Theorem 40 Let )\ be a real number and define the operator Ey by

Bxu= 3. ()9,

{5:A; <A}
for any u € H.

1. E is a linear operator in ‘H, with Dg, = H.
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E,\ is symmetric.

E) is bounded and ||E\|| =1 if Ex # 0.
E? = E,.

If X > ||A|| then Ey = 1.

If A < —||A|| then E\ = 0.

E\E, = E,E), = E, where w = min(u, \).

Let S); be the eigenspace corresponding to eigenvalue ;. (Note that we
may have Sy, = S,, provided \; = A.)

Remarks:

1.

Let M, = {v €H:v LSy forall \; > )\}. Then M, is closed and
its definition is independent of the choice of basis {¢;}. Furthermore

/H:M)\EBM*.

. We have
veMys=v= Y (v,9;)9;
{7:A;<A}
veMy=uv= Y (v,0))¢;
{5:A5>A}
Given u € H we can write u = u; + up, with u; € My, ug € My and

the decomposition is unique. Clearly, u = 3" ,(u, ¢;)¢;

{72 <A} {7:A>A}

FE\u = u; = projection of u on M, independent of the choice of basis

{o;}.

. We have

Byu=u<=uveM,<=u= > (u ¢;)d;.
{7:A <A}
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6. We have

Bu=0<=ueMy =u= Y (ud)e;
{7: A >A}

Let p(A\) = (E\u,v) for u,v € H. This defines p on the interval (—oo, 00).

Theorem 41 p is a step function and right continuous, i.e., limy_, 5,4 p(A) =
p(h0). Also, p(A) = 0 if A < —|[Al], p(A) = (u,v) if A > ||A]l.

PROOF: Explicitly,
p(N) = (Exu,v) = () (u,¢5)05, D (v,6)8;)

{3:2; <A} {7:0 <A}
= Z (’LL,(ZSj)(’U,(bj).
{7:A <A}
Q.E.D.
Note that the eigenvalues of A are located at the jump discontinuities of
-

At this point we recall the Riemann-Stieltjes integral, a very useful tool
for representing the spectral resolutions of operators. Let [a,b] a < b be a
bounded interval on the real line. For any partition

A: a=xp<1<--<z,=0b
we define the maximum partition width ||A|| = max;_; ..., {z; —x;_1 }. Given
functions f(z), g(z) on [a, b] choose y;, such that zy_; <y, < zg, k=1,---,n.
Definition 22 The Riemann-Stieltjes integral f: f dg is defined by

/abf(“")dg(mo_ lim if(yk){g(xk) — gz},

Al
if the limit exists.

Here we are taking the limit over all partitions as the partition width goes
to 0. This is just the ordinary Riemann integral if g(z) = z. However the
Riemann-Stieltjes integral makes sense for functions g with jump discontinu-
ities. The improper Riemann-Stieltjes integral is defined by

/oo f(z) dg(z) = lim lim bf(x) dg(z),

— 00 b—+oca——00 Jq

if the limits exist.
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Theorem 42 let A be a symmetric completely continuous operator as defined
above. Then

(Au,0) = [~ Ndpuo) = [ N d(Byu,v) = ¥ Xi(u, 65) (65,0),

where the integral is Riemann-Stieltjes.

Note: We can also write A = [0\ dE) because

|Al[=0 =

lim S &(Eyy — Ex, ) = A,
k=1

where the limit is taken with respect to the operator norm. Further we can
write

Ay = /Oo A dE)\’LL = ZAk(ua ¢k)
— &

because

li E,u—FE =A
HA1|I|I—1>0]§1£I€( o U zkflu) u,

where the limit is taken with respect to the Hilbert space norm.

3.1 Projection operators
Let M be a closed subspace of the Hilbert space calH. Then
H=MaM,

i.e., every u € H can be written uniquely as v = uy + ug, where u; € M,
uy € M. Define the operator P : H :— H by Pu=u, forallu € H. P is
called the orthogonal projection operator onto M.

Theorem 43 let P be the orthogonal projection operator of H onto M.
Then

1. P is linear and symmetric
2. The projection operator onto M+ is Q@ = I — P.

3. P2=P.
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4. If P # 0 then ||P|| = 1.

5. P # 0 is a positive operator.

6. Rp =M, Np = M*, and Dp = H.
PROOQF:

1. Let u,v e H, o, € C, u = uy + ug, v = vy + vy, With uy,v; € M,
Ug, vy € ML, Then au + Bv = (qu; + Bv1) + (aus + Bvy) where the
first term is in M and the second in M*. Thus Pu = u;, Pv = v; and

P(au + pv) = auy + vy = aPu+ [Pv.
Also

(Pu,v) = (u1,v1 + vo) = (ug,v1) = (ug + ug, v1) = (u, Pv).

2. Qu = us. But also (I — P)u = uy + ug — u; = us.
3. PPu= Pu; = u; = Pu.
4. If P # 0 then
|1 Pul]? = [[ur][* < fJur|[* + [Jua|[* = [Jul |, = ||P|] < 1.
But if u € Rp = M then ||Pul| = ||u||? so ||P|| = 1.
5. (Pu,u) = (PPu,u) = (Pu, Pu) = ||Pu||* > 0.
6. This is evident. Q.E.D.

Theorem 44 If R is symmetric, Dp = H, and R?> = R, then R is an
orthogonal projection on Rg. In particular, Rg is closed.

PROOQF: Note that for any u € H,
||Rul]* = (Ru, Ru) = (Ru,u) < |[Rul| - ||ul],

so ||Ru|| < ||u|| and R is bounded with ||R|| < 1. Now let M = Rg. Then
v = Ru+ (u — Ru) = u; + us and R(Ru) = Ru, so u; = Ru; € M. Now
uo = v — Ru and for any v € H we have

(ug, Rv) = (u — Ru, Rv) = (u, Rv) — (Ru, Rv) = (u, Rv) — (u, Rv) = 0.
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Therefore u — Ru € M*. Finally, we must show that M is closed. Clearly,
M C (MYt =M. let v € (M1)L. Then also Rv € M C v— Rv(M*)1, so
v—Rv € M+N (M) Thus v — Rv =0, so v € M. Thus M = (M+)+ =
M. Q.E.D.

The proof of the following is straight forward.

Theorem 45 Let P, P, be orthogonal projections on the closed subspaces
My, My, respectively. Then

1. If PP, = PP, then P, P, is the orthogonal projection onto My N M.

2. If PPy = 0 then (P1Py)* = 0= PP, and M; L M,. We say that
P, and P are orthogonal to one another. In this case P, + Ps is the
orthogonal projection onto My @& M,.

3. If PLP, = P, P, then P, + P, — P, P, is the orthogonal projection onto
My + M,.

4. PPy, = P, = P,P, = P, and this is true if and only if My C M.

3.2 The spectrum of an operator

Recall the following facts about closed operators B:

1. If B! exists then B! is closed.
2. if B~! is bounded then Ry is a closed set.

3. If Dp is a closed set then B is bounded.

Now let A be a closed operator (not necessarily symmetric) on the Hilbert
space H with D4 = H. Let A be a complex number. Then the operator A—\I
is also closed. There are exactly four possibilities for A:

1. (A= XI)7! exists and is bounded, with R4_y; = H. In this case we
say that X is a regular value of A. The set of all regular values of A
is called the resolvent set of A. The set of all non-regular values is
called the spectrum of A.

2. The equation (A — AI)u = € has a nonzero solution u € D4. We say
that A is an eigenvalue of A. The set of eigenvalues forms the point
spectrum of A.
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3. (A — XI)7! exists with R4_»; = H, but the inverse isn’t bounded.
Hence Ra_x; # H. We say the ) belongs to the continuous spec-
trum of A.

4. (A=AI)~! exists but R4 _x; # H. We say the A belongs to the residual
spectrum of A. The deficiency of A is dim [R_,,].

The sets 0p(A),0¢(A), or(A) comprise the complex numbers A in the point
spectrum of A, the continuous spectrum of A, and the residual spectrum of
A, respectively.

Theorem 46 Let \ € og(A). Then the deficiency of X is m if and only if
X € op(A*) with multiplicity m.

PROOF: Let vy,---,v, be a basis for R} _,;, where m may be infinite.
Then ([A — Mu,v;) = 0 for all u € Dy, so v; € Dig_y- and [A — M[*v; =
A*v; — Avj = 6. The converse is similar. Q.E.D.

Recall that if A is symmetric and A € op(A) then ) is real.

Lemma 14 Let A be symmetric and A = « + 158, with o, 8 real. Then
[(A = ADul[* > B2[[ull.

PROOF: We have

1(A=AD)ul[* = (Au—u, Au—Xu) = || Aul[*+[A*||u][* = A(u, Au) = A(u, Au)

= || Aul[*+(a+5%)||u][*—20(u, Au) > || Aul*+(a62+5%)|[u] [*—2|at]-[Ju |- | Au]|
= [[|Aul| — |a] - [[ul ]* + 82|l = B2[|ulP?,

where we have made use of the fact that (Au,u) = (u, Au) is real for a

symmetric operator. Q.E.D.

Theorem 47 If A is symmetric and A € oc(A) then X is real.

PROOF: Suppose A € 0c(A), A = a+1i8, and 8 # 0. Then ||[(A— A])u|]* >
B2||ulf? for all u € Dy. Let v € Ra a1, 50 v = (A — M)u for some u € Dy.
Then ||v]]? > B?|[(A — AI)"'v||?, so (A — AI)~! is bounded. Impossible!
Q.E.D.

We conclude from these results that if A is symmetric then the sets op(A)
and o¢(A) contain only real elements. In general, we can’t say anything
about the reality of og(A) for A symmetric.

Recall that a self-adjoint operator is closed.
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Theorem 48 If A is self-adjoint then then spectrum of A lies on the real
azis and og(A) is the empty set.

PROOF: 0p(A) and 0c(A) are real, since A is symmetric. If A € og(A) then
0 <dim Ry ,; =dim N,. 5;, so Av = A*v = I for some nonzero v € Dy-.
Thus A € op(A), so A = )\ is real and A € op(A). Impossible! Q.E.D.

We have achieved a considerable simplification in the spectral classifica-
tion for a self-adjoint operator A. There are just three possibilities:

1. Nisregular <= R4_;y = H.
2. X€o0p(A) <= Ra 1 # H <= Na_x # {0}
3. A€ OC(A) < Ra_xs 75 H but Ra_r =H.

Example 9 Let A = i%, acting on the Hilbert space H = L§(—00,00) of
complex-valued square integrable functions on the real line. Here, Dy =
{u absolutely continuous : u,u’ € H}. We will show later that A = A*, and
assume this here. We classify the spectra of A. Let A € R. Then

Au = u = i = du = u(z) = ce”.

Clearly u € H <= ¢ = 0. Therefore A & op(A). Now choose v € ‘H and

consider the equation (A — AE)u = v, oriu’ — Au = v. Writing this equation
in the form

d . .
d_(ez)\xu) — _iez)\z,u
X

, we see that the general solution is
. Z .
eMu(x) = —i/ e (t)dt + c.
—00

We must have ¢ = 0, for otherwise u could not be square integrable. Hence

w(z) = (A — AE) v = —i / ATy (1) dt.

—0o0

We will show that Ra_xg # H. Suppose v(t) = x[0,1](t). Then

0 if x <0
u(z) = —i [ et gt = e_ﬂ% fo<z<l1
—i [, eMtP)dt = —¥(ei’\ -1) ifz>1

It follows that u € H, so v & Ra—xg. Thus A € oc(A) for all real .
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Example 10 Let B = i%, acting on the Hilbert space H = L5[0,00). Here,
Dp = {u absolutely continuous : w,u’ € H,u(0) = 0}. In this case B
1s symmetric and closed. The adjoint operator is given by B* = i% with
Dp+ = {u absolutely continuous : u,u’ € H}. (Note that if u € Dy and
v € Dp- then

(Bu,v) :/0 W' dzr = /0 uw' dz + wv | = (u, B*v),

since the boundary term at oo vanishes and u(0) = 0.

Now let X be a complex number. If Bu = \u then u(x) = ce™® and this is
square integrable only if c = 0 Thus op(B) = 0. Recall that X € op(B) +—
A € op(B) U og(B), and in this case op(B) = 0. Now B*u = \u implies
iv' = du so u(x) = ce™® € H if Im(A) < 0 = Im(\) > 0. We conclude
that if A = a+if with 5 > 0 then X\ € or(B). Here, the deficiency of A is 1
and e~ spans Ry_,g-

3.3 Square roots of positive symmetric bounded
operators

The space of bounded operators on a Hilbert space H is closed under the

operator norm.

Theorem 49 Let {B,} be a sequence of bounded operators that is Cauchy
in the operator norm, i.e., ||B, — By|| — 0 as n,m — oco. Then there exists
a unique bounded operator B such that ||B — By|| — 0 as n — oo.

PROOQOF: For every u € ‘H define Bu = lim,,_,, B,u, where the convergence
is in the Hilbert space norm. Then

1. B is well-defined: ||B,u— Bpul| < ||Bp—Bnl|-||u|| = 0 as n,m — oo.
Therefore, lim,,_,o, B,u exists.

2. B is linear: Let u,v € H, o, 8 € C. Then
|| Blau + pv) — (aBu+ SBv) || <

||B(au + Bv) — By(au + pv)|| + || (aBpu + 8BLv) — (aBu + SBv) ||
< ||B(au+pv)— By (au+pv)||+|a|-||aByu— Bul|+| 8| || Byv—Bv|| — 0
as n,m — oo. Therefore B(au + fv) = aBu + (Buv.
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3. B is bounded: Let u € H, ||u|| = 1. Then
||Bul| < ||Bu = B — nul| + || Byul|.

The first term on the right can be made < 1 by choosing n sufficiently
large. The second term on the right is bounded, say || B,|| < a because
{B,} is Cauchy in the operator norm. Hence ||Bu|| < a =1, so |B is
bounded.

4. ||B|| = lim, 0 ||Br|| and ||B — By,|| — 0 as n — oo: Let u € H,
|lu|| = 1. Then

||Bu=Byul| < ||Bu=Bpul[+|[Bnu—Buul| < [[Bu=Bpu||+||Bpn—Bal|-

Given € > 0, we can make the first term on the right hand side < $ by
choosing m sufficiently large, and the second term < § by choosing m
and n sufficiently large. Thus ||B — B, || < € for n sufficiently large.
Q.E.D.

Now let A be a bounded, symmetric and positive operator on H. (recall
that A is positive if (Au,u) > 0 for all u € H. The main purpose of this
section is to define and construct the positive square root of A. That is, we
will define B = v/A such that 1) B is bounded, symmetric and positive, and
2) B? = A.

Note: This is easy in the special case A = C' where C' is a symmetric com-
pletely continuous positive operator. Then C has nonzero eigenvalues {\;}
and corresponding normalized eigenvectors {¢;} such that

Cu =3 Aj(u, 6;)9;.
J

Since C' is positive, we have A\; > 0 for all j. Thus, denoting by /A; the
positive square root of A;, we can define

VCOu =3 /A, 6,);

and this operator has the correct properties.

Lemma 15 Let T be a bounded operator on H. Then the operators T'T* and
T*T are symmetric and positive.
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Remark: Recall that if T is bounded then so is T*. It follows that 77T* and
T*T are bounded.

PROOF OF THE LEMMA: (TT*)* = T*T* =TT*. Also
(TT*u,u) = (T*u, T*u) = ||T*u||> > 0.
The proof for T*T is similar. Q.E.D.

Theorem 50 If A is a bounded symmetric positive operator, there exists a
unique bounded symmetric positive operator B such that B = A.

PROOF: Without loss of generality we can re-scale A, if necessary, so that
0 < (Au,u) < |[ull?,

i.e., ||A|| < 1. Therefore (u,u) > (u— Au,u) > 0, so the operator A" =1 — A
is posmve and symmetric, and ||A'|| < 1. Now A = I = A’ and, formally,

M=), SG-DE-2)

T—Alz=1- A 2227 g2 AN e
1 - A e e e [EULE
I claim that the series

1. 1-3---(2n—3)
__1 /4/ /y 2 14/ 3 /4/ n
o = Lo 1A o g AP g b A

for n > 2, converges for all ||A'|| < 1. If ||A'|| < 1 this is true by the ratio
test. Suppose ||[A'|| = 1. Then
_2n—-1 3 4

_ <:1_____
2n+2 2n + 2 3n

Gn+1
Qp,

if n > 17. Now consider the series > > , = L that we know to be convergent for
a > 1. From Taylor’s theorem with remalnder we know that the expansion
-1
CM(O,/ ).’L'Q(l . y)a72
2!
holds for any x < 1, a > 1 where y satisfies 0 < y < & < 1. Thus the

remainder term is positive and (1 —z)® > 1 — ax. Clearly, the ratio between

successive terms in ) >° n—a is

flz)=1—-2)*=1—azx+

1

L 1

nl :(1__)a>1_g,
(n—1)




so, by the comparison test, there is a positive constant cy such that

<ad <

3

It follows from this that the formal series [I — A’ ]% actually converges abso-

12
lutely to a bounded symmetric operator B, and B? — ([I — A’]E) =1-A"=
A. Further,

(Bu,u) = (u,u) — %(A’u, u) + M((A')Z,u,u) T

i
2HuH2—<HA’H 14 + )I\UI|2=HU\\2\/1—IIA'H20,

so B is positive. Since B2 = A we have ||B||2 > ||A]|| so ||B]| > ||A]|2.
However, (Bu, Bu) = (B*u,u) = (Au,u) < [|A][ - [Ju][?, so [|BI| < y/I[A]l.
Thus |[BJ| = y/[[A]].

Remark: It follows that B commutes with all bounded symmetric operators
that commute with A. We signify this through the notation BccA.

Finally, we must show that B is unique. let B, B’ be positive, symmetric,
bounded, such that B? = (B')? = A. Now B'A = (B')® = AB', so B'B =
BB'. Forany u € Hletv = (B—B')u. let v/B',\/B be bounded, symmetric,
positive square roots of B’, B, respectively. Then

[VB'|[? + ||VBol||* = (B'v,v) + (Bv,v) =

(B'Bu — Au, Bu — B'u) + (Au — BB'u, Bu — B'u) =0,

because BB' = B'B. Thus vBv = v Bv = 6, which implies Bv = B'v = 6.
Now

||v||?* = (Bu — B'u, Bu — B'u) = ([B — B'1*u,u) = ([B — B'lv,u) =0,
sov=~0and B=B". Q.E.D.

Theorem 51 Let B be bounded and closed. If A belongs to the spectrum of
B then |A| < ||B]].
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REMARK: The theorem implies that if |A\| > ||B||, then A belongs to the
resolvent set of B. Furthermore, if A is bounded and symmetric then the
spectrum of A is contained in the interval [—||A|l, || A]| ].

PROOF OF THEOREM: Suppose A € C, |A| > ||B||. Then (B — \I) =
—A(I — ;B) where ||1B|| < 1. Formally,

11
B-M)'=-—-(I--B)'=-2-%Y —
(B —A) R )\z_:)\

and this series converges in the operator norm, since

LBl
Z B = 0= g

)< oo

Therefore

(i An1+13") (B-AD) =1,

and (B — AI)™" = ¥0° ) 577 B exists and is bounded. This means that X
belongs to the resolvent set of B. Q.E.D.
Note that if A is a bounded symmetric operator, then A? is bounded,

symmetric and positive.

Definition 23 let A, B be bounded symmetric operators on the Hilbert space
H. We say A > B if (Au,u) > (Bu,u) for all u € H In particular A >
0 <= A is positive.

Note that this definition is quite different from the definition of > for exten-
sions of symmetric operators.

By definition, if A is bounded symmetric then A? > 0, so it has a unique
positive square root.

Definition 24 Given a bounded symmetric operator A, we have bounded
symmetric operators |A|, Ay, A_ given by

1 1
A=V, Ay =o(jA[+4), A= (4] - A).

Note that A=A, — A_.
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Example 11 let C be symmetric and completely continuous, with nonzero
eigenvalues {\;} and corresponding normalized eigenvectors {¢;}. Then for
any u € H we have

Cu = %:)\j(u,%)%
C*u = %:)\j(%%)cbj,
= V= 5 il 65)6
Cou= 3101+ Cpu= S 2 03w 67)0

Cu=5(1C] = Cpu= =34, < 0Nl 67)6;.
J

Let
M={ueH: Au=0}=N,4,,

and let P be the orthogonal projection operator on M

Example 12 Consider the operator C' again. Here, M = {v = E,\jso(v, ®;)0}
and for uw € H we have Pu = 3. <o(u, ¢;)9;.

In general, P has the following properties:

1. PP=P, P=P,

2. Rp=M

3. APu=0@forallue H,so ALP=0=PA,

4. |AlccA? so |AlccA. This implies A ccA, A_ccA.

5. PccA. Indeed, if D is bounded symmetric and DA = AD then DA, =
A.D. If v € M then § = DA,v = A, Dv, so Dv € M. Therefore
DPu= PDPu for all u € H so

DP =PDP = PDP+ PD = DP = PD,

and PccA.
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6. A P=PA = A_. Indeed |A|ccA, so

1 1
AL = J(AI+ A)(IA] - A) = 2(AP - 49 =0,
This implies A H C M, so PA_=A_.

7. (I — P)A = A(I — P) = A;. This follows from the previous identity
and A=A, — A_, which gives PA = AP =—-A_.

8. Ay +A_=|A|>0

9. A,, A are positive operators. Indeed, A = PA_ + PA, = P|A| and
this is a positive operator since

(P|Alu,u) = (P?|Alu,u) = (JA|Pu, Pu) > 0.
Similarly
A =[Al-A_=[A[- P|A| = (I - P)|A[ > 0.
EXTENSION: Let p be a real number and set A, = A — ul. Then again A,

is bounded and symmetric, and we can define A,, A,_,|A,|, P,, M, in the
usual way. We obviously have P,ccA,, A,tccA,, etc. so P,ccA, A,iccA.

Definition 25 We say that the set of orthogonal projection operators {P, :
—00 < j < 0o} is the spectral family of A.

Example 13 let C' be the symmetric completely continuous operator Cu =

Z]- )\j(u, ¢])¢J Then

Cuu = Z[Aj — p](u, ;) 95,

Puu = Z (U" ¢])¢]

A <p

Lemma 16 If B,C are positive symmetric bounded operators on H, and
BC = CB then BC is positive symmetric and bounded.
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PROOF: Only the statement that BC' is positive needs demonstration.

(BCu,u) = (VBVBCu,u) = (CvVBu,VBu) > 0.

Q.E.D.
PROPERTIES OF {P,}:
1. P,P, = P,P,

2. P2=P, P: =P,
3. P, <P, if p <v. PROOF:
A/,L—}—_AI/—}——‘FAI/* Z A/,L—}—_AU++AU7_A/J,7 — A“—AU - (I/_/JI)I Z 0.

Now A,y > 0= A, (A, — A, +A,_ ) >0. Recall 4,, 4, =0 =
ApyApy > Ayp Ay so

(AV+AN+U’: ’U,) Z (AI/+AV+U': u) = HAV-I-U’HQ'

Thus Ajyu =0 = A,yu =60 = M, C M,. Therefore, P,P, =
PP, =P, and

P,—P,=P,—P,P,=P,(I—-P,) >0,

since the final term is a product of two commuting positive operators.
Q.E.D.

4. Let M = sup =1 (Au, u), m = inf| =1 (Au, u). If g < m then P, = 0.
If u > M then P, = 1.
PROOF: If pn < m then A, = A — pl > 0 since
(AU, U) - :U'(U'a U’) > m(ua u) - :U’(U'a U’) >0

Thus
|AM| =A, = A =4, A, =0.

Note: (Aju,u) > (m — p)(u,u), so Ayu = Ajpu =0 = u = 0.
Therefore P, = 0.

If > M then —A, =ul — A >0,
= |A)|=-A4, = Ay =0= P, =1

Q.E.D.
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Before continuing with our list of properties of the family of orthogo-
nal projection operators {P,} we introduce and prove a crucial convergence
property of monotone increasing sequences of operators.

Definition 26 We say that < -,- >: H x H — C' is a positive Hermitian
form on H if

1. <wu,v > is linear in the first arqgument.
2. <u,v>=<v,u>
3. <u,u>>0foralueH

Note that the positive Hermitian form has all of the properties of an inner
product, except that < u,u >= 0 doesn’t necessarily imply v = 6. It follows
that the Schwarz equality holds for ,-,- > in the form

| <u,v> < <uu><v,0 >,
for all u,v € H.

Theorem 52 Let {A,} be a sequence of bounded symmetric operators such
that A; < Ay < --- and ||4,]| < a < oo for all n. Then there exists a
bounded symmetric operator A such that Au = lim,_,o, Ayu for all u € H.
(We say that A, strongly converges to A, i.e., converges in the Hilbert
space norm, not the operator norm.)

PROOQOF': By adding an appropriate multiple of I to each operator, and then
rescaling, we can assume that 0 < A; < Ay--- < I. Now let A, = A — Ay,
so that A, > 0if m > n. Then < u,v >= (Amau, v) is a positive hermitian
form. Therefore

||Amnu||4 = (AmnuaAmnu)2 = | < uaAmnu > |2 <
< Uy >< Apnty At >= (A, v) (A2, u, Apntt).
Now 0 < Ay < I 50 ||Apa|| < 1. Therefore ||Anul|* < (Amnu, u)||u][? and
1A, = Anl]* < [(Amu, w) = (Agu, w)] - [[ul .

But, since {(A,u,u)} is a bounded monotone increasing sequence, it follows
from this that {A,u} is a Cauchy sequence in the Hilbert space norm. There-
fore lim,,_,,, A,u = Au exists for all v € H. In is easy to check that A is
linear, bounded and symmetric. Q.E.D.
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Corollary 9 If the {A,} of the theorem are orthogonal projection operators,
then so is A.

PROOF: let u € .
142 — A,|| < ||A% — AgAu|| + || ApAu — A, A, |

< [I(A = An)Aul[ + of|(A = An)ul| = 0

as n — 0o. Therefore A, — A2 and A, -+ Aasn — oco. Thus A2 = A, so A
is an orthogonal projection operator. Q.E.D.
Now we return to our listing of properties of the family {P,}.

5. Set Py, = P\ — P,, for A > p. Then
,U,P)\N S AP)\N S )\P)\N'
Note: P,, is a projection operator, since

P}, = (P\— P,)? =P{ —2P\P,+ P =P, —2P,+ P, = P,— P,.

PROOF: P,\P)\uZP,\P)\—P)\PMZP)\—PMZP)\MZ(I—PM)P)\M, SO
(A — /LI)P)\N = AMPAN = AM(I — PM)PAM = _AIL + P)\u 2 0.
Therefore, APy, < APy, and APy, > uPy,. Q.E.D.

6. ]imA_,,H_O P)\ = PM-I-O = PN’ i.e. SM = lim)\_HH_O P)‘M = 0, in the sense of
strong convergence.

PROOF: The limit S, exists, since the {P,,} is monotone for fixed p.
Furthermore, S, is an orthogonal projection operator. Now pPy, <
APy, < APy, = uS, < AS, < uS, = AS, = uS, = A5, = 0.
Furthermore,

(I-P,)Py,=P,=— ([-P,)S,=S,=— P,S,=0.

Now A,S5, =0= (I - P,)A,5,=0= A4,,.5,=0= S, HC M,
= 0=PF,S5, =5, QE.D.

80



3.4 The spectral calculus

We have shown that the spectral family of orthogonal projection operators
{P,} associated with the bounded symmetric operator A has the following
properties:

1. P, <P, for p<vw

2. PP,=PFP,P,=P,for pn<v

3. Poyo= P,

4. lim, 1o P, =1, lim,,_ P, =0.

Any family of orthogonal projection operators { P, } satisfying properties 1.-4.
is called a spectral family, independent of any association with an operator
A.

Now we are at the point where we can discuss Riemann-Stieltjies integrals
over a spectral family, and use such integrals to define the spectral resolutions
of self-adjoint operators. Let {P,} be a spectral family.

Definition 27 Let § be an interval on the real line. We define the operator
P(6) as follows:

§=(ab) < P(6)=P_o—P,
§=(ab) < P =P —P,
§=[a,b] < P(§) =P — P,
§=la,b) <= P(6)=Poo— Pao

Here is the basic idea. Let f(\) be a bounded function on the real line
and let A = {6 : k = 0,+1,+2,---} be a decomposition of (—oc, ) = R;
into pairwise disjoint intervals: Ry = Ugdy, 6; N d; = {0} for i # j. In
particular, the left and right-hand endpoints of &y are pg_1, jux, respectively
(the endpoints may or may not be included in d;). Let |0x| = pup — g1 be
the length of interval J; and set |A| = sup,, |0x|. Now choose a point A\ € dy
for each k. We define the spectral integral of f by

o0

[ FdP = lim Y WP,

|A]—0 e oo

provided the limit exists. Convergence is in the operator norm.
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We will construct the integral in stages, starting with the integral of
a bounded step function. Let f(\) be such a function. Thus there is a
decomposition A = {0y} of the real line such that f()\) = ¢, for A € &, and
lck|] < M for all k. (It is OK for f to be nonzero on a countably infinite
number of intervals.)

Lemma 17 > 2°, ¢, P(dx) converges to a bounded operator on H.

PROOF: Note that Y -p°; P(dx) = I and P(6;)P(6;) = 0ifk # j. Let u € H.
Then

n n n

1> alP@ull?= > [al[[POull* <M* 3 |[P(0k)ul?

k=m+1 k=m+1 k=m+1

= M* ||| > P@p)ull* = |1 >0 P(8k)ull*| — 0
k=1 k=1

as n,m — oo, since each of the sums on the right-hand side converges to
||u||?. Thus 32, cxP(0)) converges. Furthermore

I ;ckP(%)uIIQ = gggo; e *|[P(0k)ul[* < M* ,}iggol; 1P (8k)ul* = M?[|u] %,

so the operator is bounded. Q.E.D.

Thus, the spectral integral exists for step functions. Note that the inte-
gral is independent of A, as follows from a standard argument in Riemann
partition theory. For step functions f we have

[ 0P = S P (6) = 5(4)
where f(A) is defined by the expressions to the left.
The following theorem can be proved by simple verification:
Theorem 53 Let f, f1, fo be bounded step functions. Then
1. fO)=0= f(A)=0
2. fh)=1= fA) =1
3. f(A) = a1 fi(A) + a2f2(A) = f(A) = a1 fi(A) + a2 f2(A)

82



4- f(N) = (N f2(A) = f(A) = f1(A) f2(A)
5. [IF(A)] < maxxer | f(A)]
6. [f(A)]* = F(A) where f(\) = fON). If f is real then F(A) is self-

adjoint.
7. F(A)ec{ P}
8. (f(A)u,v) = [2, fF(N)d(Pru,v) and || f(A)ull? = [ |f(N)Pd||Prul
9. If |[f(A) — g(N)| < € for all X then [|f(A) — g(A)|| <e.

Now let f(\) be bounded and uniformly continuous on (—oc, 00). For
each integer n let A, = {67} be a partition of (—oo, 00) into pairwise disjoint
intervals, so that |A,| — 0 as n — oco. Let A} € 6} and define a sequence of
step functions { f,(A)} by fn(A) = AR if AZ. Then f,(A) — f()) uniformly on
(—00,00), 80 ||fn(A) — Fro(A)|| < maxy |fn(A) — frn(A)| = 0 as n,m — oo.
from the last theorem we see that the operator sequence {f,(A)} is Cauchy
in the operator norm.

Definition 28 For f uniformly continuous we define f(A) by

F(4) = lim fo(A) = lim [~ f,(\)dPy = [ = F(N)dP.
Corollary 10 Properties 1.-9. in the theorem above hold also for uniformly
continuous functions on (—oo, 00).

The above results can also be extended to piecewise continuous functions.

REMARK: We can justify the notation f(A) as follows. Suppose A is a
bounded symmetric operator and { Py} is the spectral family of A. Then from
our previous results, in particular APy, > A > pPy,, we have A = [\ dP;,
ie., A= f(A) where f(A) = A. Furthermore, if m = inf| =1 (Au,u), M =
SUP| =1 (Au,u) we have mI < A < MI and P\ = 0if A <n, P, = [ if
A> M. Thus A = f(f/\ dPy for any a < m, b > M. Finally, if f is any
function that is continuous on [m, M| we can extend f to a function that is
uniformly continuous on (—o0, 00) and zero outside [a, b]. Thus we can write
f(A) = [P f(\)dPy, and the operator exists and is uniquely defined.
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Theorem 54 (Spectral Theorem for bounded self-adjoint operators.) Let
FA) = ap\" + - - -+ a1\ + ag, with a, # 0 be a polynomial in A, so

f(A) =a, A" +-- -+ a1 A+ aol.
Then A" = [% A" dPy, r =0,1,---, and f(A) = [Zo, f(A)dPx.
Let B be a closed operator with resolvent set p(B).

Lemma 18 The resolvent set of B is open.

PROOF: Let £ € p(B). Thus (B—£I)7! = R(£) exists and is bounded, with
Dr(¢) = H. Formally,

(B—pl) ' =[(B=&N) = (u=OI] " = (B=&N) [T = (p=ORE)]
=R [T+ (n—ORE) + (n— )’ R*(&) + -]
i_o: (n—&"R"(€).

Note that this last series converges absolutely in the operator norm if |y — § | <
Therefore, (B—pl) ™! = R(u) exists and is bounded if [p—¢| <

‘R(g . HR(£)||
oreover, ‘ \R(f) | |
R < )
1Rl < 1— u— €[ [[RE)]]
Q.E.D.

Theorem 55 Let A be bounded and symmetric, and A a real number.

1. Suppose there exists € > 0 such that P, = Py for all i such that |p—A| <
€. Then X € p(A).

2. Suppose for every e > 0 there exist u,v such that P, — P, > 0 and
lu— Al <€, |[v— Al < e Then X belongs to the spectrum of A.

3. P\ 7é P, = P)\+0 < A€ UP(A).
4. X is a point of continuous increase of the spectral family {P,} <= X €
Uc(A).
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PROOF:

1. Let
RN = [ 1 ap, = L p
( )_/oo = A / /)\+e m -

so R()) exists. Now

+oo +oo
(A= A)R()) = / (4 — N)dP / —)\dP P, =I.

_ oo /,I/ — —00

Therefore R(\) = (A — AI)~'. Furthermore, ||R(\)|| is bounded:

IRV < e

2. Suppose A € p(A). Then we can find py € p(A) such that [ug — A| <,
(say € > o — A > 0), and P,, > Py. Choose v # 6 in the range of
P,, — P\. Thus v € M, ;N Mx. Now P,v =0if p < X and P,v = v if
1 > po. Therefore,

M Ho
(Av, Av) = || Av]? = / 12d(Pw, Pw) = /A 2d(Pw, Po)
and
1200]
I(A = AD)v[|* = A (1 — X)?d(Pyv, Pyv) < (o — A)?|[v|? < €[[v][*.

It follows that ||(A—AI)7!|| > L for € arbitrary. Impossible! Therefore,
A belongs to the spectrum of A.

3. Let A > p and assume P, # Py. Then pPy, < APy, < AP,,. Now
go to the limit as p — A — 0:

APy — Py_g) < A(P\ — Py_o) < A(Px» — Py_o).

Hence, A(Py — Py_g) = AM(Px — Py»_o). Let v be a nonzero vector in
P, — Py o. Then Av = Av, s0 A € op(A).

Conversely, suppose A € op(A) and that v is an eigenvector. Then
1A= a1yol? = [ |u= AP, Paw) =0,

so ||P,vl||? is constant for p > ), and for |mu < A\. But P,v = v for u
sufficiently large, and P,v = 0 for p sufficiently small. Hence, P,v = v
for p > X and Pyv = 0 for p < A. This implies that Py ov = 0,
Py gv = P\v = v. Therefore, v € M) N M,{O. Q.E.D.
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3.4.1 The spectral theorem for unbounded self-adjoint
operators

In this section we begin to prove the analogs, for an unbounded self-adjoint
operator A, of the properties of the spectral family that culminated in The-
orem 54 for bounded self-adjoint operators. We start with an important
special case in which we can easily transform the problem so that Theorem
54 applies.

Let A be self-adjoint and bounded below. Thus, A may be an unbounded
operator, but there exists a finite real number a such that (Au,u) > a(u,u)
forallu € Dy, ie., A > al. Nowset B= A—(a—1)I. Then (Bu,u) > (u,u)
for all u € Dy.

REMARKS:
1. B is self-adjoint
2. If Bu =0 then u = 0, so B! exists.

3. Rgp = H. PROOF: If v € Ry then (Bu,v) = 0 for all u € D4. This
means that v € D« and B*v = Bv =6, s0 v =6.

4. ||B7Y| < 1. PROOF: Let w € Rp with w = Bv. Then
1B~ wl[* = (B™'w, B~'w) = (v,v) < (Bv,v) = (w, B~'w) < ||w|]||B™ w]|.
Hence ||B twl|| < [|w]].

5. B! is self-adjoint. Dg-1 = Rp = H.

6. B~!is positive. PROOF: Let w = Bu. Then

(B 'w,w) = (B 'Bu, Bu) = (u, Bu) > (u,u) > 0.

It follows from these remarks that B~! is self-adjoint and
0<Bl<I.

Therefore, from the spectral theorem for bounded self-adjoint operators, we
see that there exists a spectral family { P} such that B~' = [} X dP;.
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Now (formally)

/ —dPA/l)\dPA:/Oll-dPA:]

so B = fo dPy=A- (a—1)I and

a= [ [
where = (a — 1) + 1/A, and

I—-P , >
EN:{ -0 H=d

a—1) ] dP, = /OOM dE,, (3.1)

p—a+1

0. u<a.

DOES B = [y 1 dP, MAKE SENSE? We need to study the behavior of
the spectral famlly {P\} as A — 0. To do this we set P; = Py — Pk—il’
k=1,2,- -

REMARKS:
1. PlP,=0if k # L.
2. The {P/} are orthogonal projection operators.
3. Y%, Pl=1.

4. Set My, = P[H. Then if u € H we have the unique expansion
u=y u, where uy = Plu = Pluy

and (ug, ug) = 0 for k # £.

Now if v € Dp then v = B~'u, u € H, and

1
ve = PB \u= B 'Ply= Bty = /0 A dP\(Py — Py Jug =

1
k E+1

k+1

A dP,\uk.

e
e,
kA

It follows from this that

[

dP, = BP|

> =
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on H. Since Bvy, = BPjv we have

Furthermore,

[e'¢) [e'9) 1 1
:Z Z/’I XdP)\’U—/ _dP)\'U
k=1 k=1" %&+1
Bv||? g d|| Py v]|[? d||Py v||?
1Belf =3 [ S dipaoll = [T 5 Pyl
1% %+1

Indeed, one can show that v € Dp if and only if this last integral is finite.
Hence, the spectral expansion (3.1) is established rigorously for all v €

Day.

Let T be a self-adjoint operator on H with Dy = H.

Lemma 19 Let B =1 +T?, with Dg = {u € Dy, Tu € Dr}. Then

1.

Dp = (T + )T —4iI)""H, Ry = H and B is symmetric on its
domain.

(Bu,u) > ||u|?* for all u € Dg.

B! is self-adjoint and 0 < B~ < I.

. Let C = TB™', Do = H. Then C is bounded and symmetric, hence

self-adjoint, and ||C|| < 1.

PROQF:

1.

Bu = (T+4I)(T —il)u = (T —4I)(T +iI)u and, since T is self-adjoint
414 belongs to the resolvent set of T'.

(Bu,u) = (u,u) + (T?u, u) = |ul|* + ||Tul[* > [|u] >

Obvious from the preceding proof.

Since

C=TB'=TUI+T*)"'=T(T+il)"(T—il)™' = (T—il)"' —iB™"
we have

C*=(T+il) " +iB ' =(T+i) " +i(T—4il) {(T+)*
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=T(T—il) (T+il)'=TB '=C.
Also for v € H we have
|Cv||* = (TB™'v,TB™'v) = (B~ 'v,T*>B™ ")
= (B ', [T?* + I|B~'v) — || B~ 0| |?
= (B7'w,v) — ||B™ ] %.
Therefore,
[|C[[* + || B™0||” = (B™'w,v) < (v, v) = []o][*.

Q.E.D.

REMARKS:
1. Note that we have also shown that B~'T C TB~.

2. The lemma is remarkable in the sense that it holds even though 772,
hence B, may not be densely defined. Indeed, it could happen that
Dy = {0}. Nonetheless B! and C are globally defined, bounded and
self-adjoint.

Now we can apply spectral techniques to the bounded self-adjoint opera-
tor B~ in analogy to our earlier treatment of B~! where B = A — (a — 1)I
was bounded below. By the spectral theorem for B~! there exists a spectral
family {F3} such that

1
B! :/ A\ dF.
0

Here it is easy to show that Fy; = 0. Now set E,, = F1 _Fﬁ forn=1,2,---.
Then

ZEn:Fl—F():I
n=1
Similarly if we define the subspaces M,, = E,,’H, we have

H=) oM,

n=1

Since TB~! D BT where TB~! = C is bounded, then TE, 2 E,T, where
TFE, is bounded. Hence TM,, C M,,.
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Now set

Il y<l
— A n+l —n
sn(A) { 0 otherwise,
and let
o0 a1
S, = / sa(N) dFy = [ = dF,.
0 LA
Then .
B-'S, = /j 1 dFy = E,,
ey
SO

TE,=TB™'S, = CS,.

This shows that 7,, = T'E,, is bounded and self-adjoint. Thus each 7}, has a
spectral resolution in terms of the spectral family {PIE")}:

Tnz/,udPlE”), n=12,---.
Finally, set
P, = /n _ PE,,  B.P,=PBE,=F.
Then for any u € Dy we have
Tu=YTEu=Y [wdPMEu= [ pdPu.
n=1 n=1 -
Here,
Dy — {u e#: |[TulP = [~ 4 dl|Puul® < oo}.

This establishes the spectral theorem for unbounded self-adjoint operators.

3.4.2 More on essentially self-adjoint operators

Recall that a symmetric operator A on H is essentially self-adjoint if its
closure A is self-adjoint, i.e., if A = A*.

Theorem 56 Let A be a symmetric operator. Then A is self-adjoint if and

only if
Ratir = Ra—ir = H,

i.e., £i € p(A).
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PROOF: Tt is obvious that if A is self-adjoint, then +i € p(A). Conversely,
suppose +i € p(A), and let v € Dg+« O D4. Then (Au,v) = (u, A*v), for all
u € Dy, so

(Au + iu,v) = (Au,v) + (iu,v) = (u, A*v — iv).
By our hypothesis, we can find w € D4 such that A*v — v = Aw — fw, so
(u, A" —iv) = (u, Aw — iw) = (Au + iu, w).
Thus v = w € Dy. Hence A = A*. Q.E.D.

Theorem 57 The following are equivalent for a symmetric operator A.

1. A is essentially self-adjoint.

2. Ratir=Ra—ir=H.
3. Nayir = Na-_i1 = {6}.
Lemma 20 If A is symmetric then
Rjﬂ'l = Na-_ir, Rj—u = Ny ir.
PROOF OF THEOREM: The equivalence of 2. and 3. follows from the
lemma.

1. 1. — 3.: If A is essentially self-adjoint then A = A* is self-adjoint.
Hence Ny-1ir = {0}.

2. 3. — 1.: Consider [uy, us] € H & H with graph inner product
< [uy, us, [v1, v9] >= (u1,v1) + (ug, v2).
Recall that the graph of A is the subspace
Ta={[u, Au|, u € D4},

and that 'y, I' 4« are closed subspaces with I'y C I'4-. Suppose 'y #
['4-. Then there exists a nonzero u such that [u, A*u] € ['y- N T =
Cas N4 = (u,v) + (A*u, Av) = 0, for all v € D4. Hence A*u € Dy-
and (A*)?u = —u. Thus (A* +il)(A* —il)u = 6, or u = 0. Impossible!
Hence 'y~ =T4. Q.E.D.
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Example 14 Let H = L%(—o00, ), Au = —ihu', and

Da, = {u(x) cu € C'(—o0,00) NH, Au € H}

Lemma 21 A, is essentially self-adjoint.

PROOF: From an earlier example, we know that Ay is symmetric and

Da; = {u(z) : u absolutely continuous , u, Au € H}.

Solving the equation (A} + il)u = 0 for u € Dyx we have —hu' +u = 0,

SO0 U

= ae®™. However, since u € H we must have v = 0. Similarly, the

equation (A} —il)u = 0 for u € Da: has only the solution u = 0. Therefore,

A

=4. QE.D.

Now we classify the spectra of the self-adjoint operator Aj.

1.

2.

op(A%) = 0: Indeed if Atu = \u then u = ae™*" € H = u= 0.

oc(A}) = R, the real azis: For v € H and X real, the equation (Aju —
ANu = v, or —ihu' — Au = v, has the general solution

)\

?wt) dt ha:
h/ + ce

As x — —oo then for any v € H we have u(x) — ce%w, so u can’t
belong to 'H unless ¢ = 0. Thus the solution u 1s umque However,
for fized real A, unless v satisfies the condition [ et v(t)dt = 0,

we have that u(x) — a%e%‘” for nonzero a, so that u & H. Clearly,
A& p(A3) and or(A}) =0 (since A} is self-adjoint), so \ € oc(A?).

Example 15 Here H = L*[0,+oc), A = —iu' and

DAz{ueCl[O,—f—oo)ﬂ’H: u' € H and u(O)zO}.

We have shown earlier that A is symmetric and

Now

Da = {u € H : u absolutely continuous, u' € H} .

(A" +ilu =0 = —iv' +iu =0 = u(x) = ae”.
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If u € H then u = 0. However,
(A*—ihHu=0= —iv' —iu=0= u(z) = ae *.

Note that u € H for a # 0. Therefore, A is not an essentially self-adjoint
operator. In fact, we will show later that A cannot be extended to a self-
adjoint operator.

Example 16 The Fourier Transform. We describe, briefly, how the well
known Fourier transform fits into the spectral theory of self-adjoint operators.
Consider the interval I = (—oo,+00) and the Hilbert space H = L%(I,1).
The operator A acts formally on this space via the differential operator T =
—i%. This is essentially the operator A, above, which we have shown is
essentially self-adjoint. The equation Tu = Mu has the solution u(z) = €®
which is not in H for any real A. The spectrum of the self-adjoint operator

A is continuous and covers the real line. For any u € H we define

1 no_.
lim e Yu(x) dr = Tu(y).

27r n—oo —n

9(y) =
The basic properties of the Fourier transform on L%(I,1) are that

1 . n YT
lim e g(y) dy,a.e.

A /27'(' n—oo J_,

[ lu@Pde = [ lo)dy.

We define the spectral projection operators Ey by

Eyu(z /%yw ) dy = — // V@D £(1) dt dy,
A ’_27r Yy o Y

so dByu(z) = Z=e""g()) d\ and

u(z) =

and

Au = / X\ dEyu(z / AP g(N) dA.

The following results give some sufficient conditions for a symmetric op-
erator to be essentially self-adjoint.

Theorem 58 Suppose
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1. A is symmetric.
2. Ra=H.
3. ||Aul| > al|ul|, for allu € Da. Here, a > 0.

Then A s essentially self-adjoint.

PROOF: By 3. A7! exists and [|[A~'|| < £. Since A is symmetric, it follows
that A~! is symmetric, hence self-adjoint. Now suppose (A* + il)v = 6.
Then, for all u € Dy, we have

0 = (u,[A* +il]v) = (Au,,v) — (iu,v) = (w — 1A w, v),

where v = A7'w. Choose a sequence {w,} in R4 such that w, — v as
n — oo. Then A~tw,, = A-1v so

(v —iA Tv,v) =0 = ||v||* = i(A Tv,v) = 0,

since the left-hand side is real and the right-hand side is imaginary. Thus
v = 0. A similar proof shows that if (A* —iI)v =6, then v = 0. Q.E.D.

Corollary 11 If A is symmetric operator, R4 = H, and A™" ezists and is
bounded, then A is essentially self-adjoint.

Corollary 12 If A is a symmetric ordinary Sturm-Liouville operator then
A is essentially self-adjoint.

PROOF: Choose a real number A, not an eigenvalue of A. Then (A — AI)™!
exists and is bounded. Hence R 4_x; = H, so A— I is essentially self-adjoint.
This implies that A is essentially self-adjoint. Q.E.D.

3.5 A first look at deficiency indices

Definition 29 Let A be a symmetric operator. The positive and negative
deficiency indices of A are given, respectably, by

Di(A) = dim Ry ,;; = dim Ny«_i1,

D_ (A) - dim ij’il' = dimNA*_i_z‘I.
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Here it may be that one or both of the deficiency indices are infinite. Note
that A is essentially self-adjoint <= D, (A) = D_(A) = 0.

PREVIEW OF COMING ATTRACTIONS: A can be extended to a self-
adjoint operator <= D (A) = D_(A).

What is the significance of the complex numbers +i?7 Answer: conve-
nience.

Let B be a linear operator with D = .

Definition 30 The complexr number X is a point of regular type of B if
there exists a positive number k(\) such that ||(B — A )u|| > k||u|| for all
u € Dp, i.e., if and only if (B — XI)™" exists and is bounded.

Note that it isn’t required that (B — AI)~! be densely defined. Now let
Reg(B) be the set of points of regular type for Bj,

Lemma 22 Reg(B) is an open set in the complex plane.

PROOF': Suppose \g is a point of regular type, and A is a complex number
such that |A — Ao| < 2k(X\g) = 6. Then

1(B = AD)ul| + X = Ao| - [ul| > [[(B = AoT)ull

= [|(B ~ AT)ull > k() ~ ShQo)lllull = SHo)] ]|

Q.E.D.

Note that if B is symmetric and A is not real, then |[(B — Al)ul|| >
IIm A| - ||ul[, so A is a point of regular type for B. It follows that the points
of nonregular type for a symmetric operator must form a closed subset of the
real line. We will show that if A is symmetric then dim R_,; is constant
on any arcwise connected subset of Reg(A). This will show that dim R{ ,;
is constant on the upper half plane. Thus ¢ is chosen only for convenience.

To prove this result we have to introduce some machinery. Let U : H —
‘H be a linear operator.

Definition 31 U is an isometric transformation if
1. DU - 7‘[
2. (Uu,Uv) = (u,v), for alluw € H, i.e., U*U = 1.
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If also Ry = H then U is a unitary transformation and also UU* = I,
soU*=U"".

REMARKS:

1. If H is finite dimensional, then every isometry is unitary.

2. If H is infinite dimensional then an isometric transformations may not
be unitary. For example, let {e, } be an ON basis for 4. Then the linear
transformation defined by Ue, = e,11, n = 1,2, is an isometry but
not unitary.

Theorem 59 Let M and N be closed subspaces of the Hilbert space H, with
corresponding orthogonal projection operators P,Q, respectfully. If ||P —

Q|| < 1 then M can be mapped linearly and isometrically onto N'. In par-
ticular, dim M = dim N .

PROOF: If ||P— Q|| < 1 then ||P(Q— P)P|| < 1, so the symmetric operator
A=I+P(Q—P)P>al >0,

where a > 0. Therefore the operators A~' and (A’l)% = A2 exist and are
bounded, positive and symmetric.

Consider the operators U = QA_%P and U* = PA_%Q. Now P CC
A=— P CC A_%, SO

U*U = PA2QQA :P = A :PQQPA ?
— A" PQPA 2 = A 3[P+ P(Q — P)P|A2
= A"3PAA™? = PAT3AA": = P

Clearly, U : M — N. I claim that this map is onto. First of all, UM is
closed in A/. Now suppose there is a v € N such that v L UM. Then

(v,Um) = (U,QA_%Pm) =0,
for all m € H so U*v = 6. But U*v = PA~2Qu = 0. Thus
PQu=ATA"2PQu = A*PA™:Qu = A3U*v = 0.

This implies (@ — P)Qu = Qu. However, since ||Q — P|| < 1 we must have
Qv = 0. Since v € N this means that v = 6, so U is onto. Q.E.D.

Let PP = E—P, Q = E — @ where P,(Q are orthogonal projection
operators.
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Lemma 23 If [|Q'P|| < 5 and [|[P'Q|| < 3 then [P — Q|| < 1.

PROOF: For any nonzero u € ‘H

1
P-Q=PQ-PQ, |PQulf=|PQQul’<-Qul,

1
1PQull” = (PQu, PQ'u) = (Q'PQu, Q'u) < [|Qu|",
SO
1 1
1(P = Qulf’ = [|1PQQuI” + | P'QQuIl* < S[|Qul|* + Z11Qul[* < [[ul[*.
Q.E.D.

Theorem 60 Let I be an arcwise connected subset of Reg (A). Then dim Ry g
is the same for all A € T'.

PROOF: Let Py be the orthogonal projection operator on the space R4, -

By the Heine-Borel theorem, it is enough to show that for each Ay € I" there

is a 0(Ag) > 0 such that || Py — Py,|| < 1 for |A — Ag| < d. Let Ay € I" and let
ko) lull < [I(A = XoE)ull < [[(A = AE)ul[ + |(A = Ao)| - |[u]]

for all u € Dy. Thus if |A — Ag| < § then
2
1(A = AB)ul] = Sk(Ao)l[ull-

Therefore, if |\ — \g| < § and v € Ry, with ||v|| = 1, we have

, (v, (A~ ME)) (0, (A = AB)u+ (A= AoJu)]
P, v|| = su = su
1Pl = S0 S Rl — o A= %eB)d]

= sup < su =_.
weDs |[(A = XE)ull ~uepy  3k(Ao)][ull 2
Therefore, |[(E — Py,)v|| < 3 for unit vector v € R4_,5. Similarly |[(E —
Py,)w|| < 5 for unit vector w € Rj_,,z- Thus, the theorem is implied by
the preceding lemma. Q.E.D.

(A=), w)| %kng)|lv\|-\\UI\ _1
3
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Corollary 13 If A is symmetric and X is a complex number with Im A > 0,
then dim R4, g = Di(A) and dim ’RjJFXE =D_(A).

Corollary 14 If A is symmetric, closed and bounded below, then Dy (A) =
D_(A).

Corollary 15 If A is symmetric and there is a real A such that A € Reg (A),
then D (A) = D_(A).

3.6 Essential self-adjointness of generalized Sturm-

Liouville operators
In this section we will determine the essential self-adjointness of a family
of Sturm-Liouville operators in R, similar to that which was introduced
in Section 1.3.2. Now, however, we will consider only the case of partial
differential operators in n variables that act on functions defined on the full
n-dimensional Euclidean space R,. That is, there is no boundary, though

there is a weight function k(x). We denote points in R, by = = (x1,- -, z,).
Our Hilbert space is

H= {u(m), real valued : /Rn \u(z)[*k(z) dz < oo} = L2{R,,k}

(u,v) =/ u(z)v(z)k(z) dz, u,v € H.
Formally, the Sturm-Liouville operator is

M= s [— 5 (i (@)t oy + 159y (@it + 3 () + q(x)u] -

£j=1 j=1 j=1

(3.2)

This formal operator enables us to define three operators, A;, Ay, A3 with
domains

Dy, = {u ECO’OO (Rg)},

D, = {u & (Rg)},

Da, = {u € C*(Rs) 1 u € H and Au € H},

respectively. We require
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1. pej(), k(x), q(x) real and p,; = pj
2. pyj(z) € C*(R,), pj(z) € C*(R,), k,qe€ C'Y(Ry,)
3. k>0forallz e R,

4. X7 i1 Pej(x)6eE; > p(x) X, [€5]* for all z € R, and arbitrary complex
&;. Here p(z) > 0 for all z € R,,.

Recall that the S-L operators A;, Ay, A3 are symmetric. Furthermore,
DAl C DA2 C DAg

and Dy, = H.

To prove the essential self-adjointness of these operators we need a tech-
nical (and deep ) lemma. Let G be an open, simply connected subset of R,,,
and let D be the differential operator

n
= > aje(@) sz, + Zaj T)Ug; + a(T)u.
j=1

Here,
0 0

Do = {u(@): ued™ (@)},
and we require
1. ay(z), a;(x),a(z) complex and az; = a e
2. a(w) € C*(G), a;(z) € C*(G), alz) € C(G)

C3(
3. Thjo1 aei ()5 > p(x) X_ €] for all z € G and arbitrary complex
&;. Here p(z) > 0 for all x €G.

Lemma 24 (Hermann Weyl) Let n(z) € C1(G) and suppose w(z) is locally
integrable in G. If

/Gw(ac)Du(a:) dx = /Gn(x)m dx

holds for allu € Dp then w(z) = w(x), a.e., where w € C*(G). Furthermore,
D*w =n, a.e., where D* 1is the formal adjoint of D.
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Theorem 61 The operators Ay, Ao, As, defined above, are essentially self
adjoint.

PROOEF: We will show that D, (A;) = D_(A;) = 0. Since Aj C Aj C A5,
the theorem will follow. Suppose v € Dy, and Ajv = iv. Then

(147~ iEJo,u) =0, forall ue Dy, =6 (R)

— (v, [A1 +iEJu) =0, forallu €C’ (Ry).

Note: v is locally integrable in R,, since

/B lv| dz = /B \v|ﬂ(%)dm < \//B lv|2k d:v/B%dx < 00,

where B is any compact set.

It follows from the Weyl lemma for the case n = 0 that we can assume
v € C*(R,). Thus Av = 4v, and v € Dy,. Since Az is symmetric, we must
have v = 6. Thus D, (A;) = 0. A similar proof gives D_(A;) = 0. Q.E.D.

Corollary 16 Let A € op(A3) and suppose there is a mnonzero v such that
Asv = \v. Then, by redefining v on a set of measure zero if necessary, we
can assume v € Dy,, Asv = Av.

PROOF: ([A5 — AEv,u) = 0 for all u € Dy, implies from the Weyl lemma
that v € C?(R,). Thus v € D4. Q.E.D.

In Chapter 4 we give a detailed proof of the Weyl lemma for second-
order ordinary differential operators. The verification for partial differential
operators is more challenging, and we merely sketch a proof of the Weyl
lemma for the case Du = —A,u + a(z)u. (More details can be found in
Hellwig.) We need to show that if

/Gw(x)[—Anu(x) +a(z)u(z)] de = /Gn(x)u(x) dx
for some n € C'(G) and all u el (G) then w € C?*(G).

Fix a point £y € G and let K; be a ball centered about z, such that K; C
G. Let K, be a ball centered at zy such that Ky C K;. Let p(x) eC (K1)
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such that p(xz) =1 for all z € K. Let s(x,y) = s(y,z) be the fundamental
solution of A,u = 0:

1 2= 2
[ e 0
s(z,y) {—%ln|x—y|, n=2.

Suppose w € C?(G) and set n(z) = —A,w(z) + a(z)w(zr). ;From Green’s
formula,

[ w@ALpw) sy dy— [ pw)s(e.5)Akw() dy = w(a)

1

if z € Ky, where AY signifies that A,, is acting on the y coordinates. Thus
we have

w(z) = /K w(y)Anlp(y)s(z, y)] dy + /K p(y)s(z, y)n(y) — aly)w(y)] dy.
1 1
(3.3)
However, for the Weyl lemma we can only assume that w(z) is locally inte-
grable. The Green’s formula computation suggests that we define a function
v(x) by the integrals

v(z) = / w(y)Anlp(y)s(z, y)] dy + / p(y)s(z, y)[n(y) — aly)w(y)] dy.
Kl Kl
Note by inspection that v € C?(K3). If we can show that for all u E(%’oo (Ks)

[ v@ul) dy= [ wul) dy = [ w@)[D¥@) - n(@)¥(@)] do (3.4)

K

where
U(z) = p(@) [ sy x)uly) dy,

and D¥(z) —n(z)¥(z) = 0 for z € K3, it will follow that
[ u@)lvo) — w(w) dy =0

so that v(y) = w(y), a.e. in Ky. This will imply that (3.3) holds.
We have

/Kﬂ(y)“(y) dy = /K1 w(z) [ /K2 u(y)Aslp()s(y, z) dy| do
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+ [ [p@ln() = a@yw@) dy [ ul)s(e,y) dy] do
= [ 0@ |25 [ uw)s(y,2) dy| o+
Note that
ule) = =A% [ sy, wel” (K)
and set ¥(z) = p(z) [, u(y)s(z, y)dy. Then we find
[ u @) - w@) dy =~ [ wul)dy
[ w@A @) + [ n(2) - alz)o(@)]¥(@)de

==/ w(z) [DY(x) — n(z)¥(x)] dz = 0.

Q.E.D.

3.7 B-bounded operators and their applica-
tions

Definition 32 Let B,C be operators on the Hilbert space H with Dg C Dg¢,
D = H. We say that C is B-bounded if there exist real constants ¢,
with 0 < e <1 and such that

|Cul| < €f|Bul| + 6] |ul]
for all u € Dp.

Note that any bounded operator C' is automatically bounded with respect to
any other operator B. The main interest is in cases where C'is an unbounded
but B-bounded operator.

A principal result for such operators is

Theorem 62 Suppose B, C are operators on H with Dg C D¢, Dg = H. If

1. B is essentially self-adjoint
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2. C 1is symmetric
3. C is B-bounded.

Then B + C is essentially self-adjoint and Dpyc = Dp.

PROOQOF': The basic strategy behind the proof is to show that there exists
a complex number A with Im A # 0 such that both (B + C' + AE)Dp and
(B + C + AE)Dp are dense in Dp, so that the deficiency indices of B + C
are both zero. Clearly, B + C is symmetric in 4. Since B is essentially self-
adjoint it follows that (B + ikE)Dp is dense in H for all real k£ # 0, and that
(B+ikE) ! exists and is bounded. Indeed ||(B+ikE)u||? = ||Bul|*+k?||u||?
for u € Dp so ||(B + ikE) Y| < |11c_| We will show that there exists a real

k # 0 such that (B + C £+ ikE)Dg is dense in H.
Note that (formally)

(B+C +ikE)Dg = (C(B+ikE) "' + E) (B +ikE)Dp
and, since C' is B-bounded,
|C(B + ikE) u|| < ¢|B(B + ikE) “u|| + 6||(B + ikE) tul|.

Therefore,

|C(B+ikE) | <e+ |Z|

Now choose |k| so large that e + % < 1. This means that the operator
A =C(B+ikE)™" is bounded with norm ||A|| < 1. But this in turn means
that the operator

(B+A)" =3 (~1)47

J=0

exists and is bounded. Here,
Rera=Dwiay-+ = Da=Rprie-
Therefore,
(C(B+ikE)™" + E) (B +ikE)Dg = (B+ C + ikE)Dg
is dense in H. Q.E.D.
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Corollary 17 Replace requirement 1. in theorem 62 by
1. B is self-adjoint.
Then C + B 1is self-adjoint.
Corollary 18 Suppose
1. B is essentially self-adjoint
2. C is symmetric and Dc O Dp
3. ||Cul|® < p1(u, Bu) + po||ul? for some p1, p2 > 0 and all u € Dp.

Then C + B 1s essentially self-adjoint.

PROOQOF:
|C(B+ikE)  'u||* < p1(B+ikE) 'u, B(B+ikE) 'u) + po||(B + ik E)ul|?

< pill(B +ikE) 'ul| - [[B(B +ikE) "ul| + pof |(B + ikE) ull*

B(B +ikE)™! 2
< ([t ke 2+ 2

Therefore, by choosing |k| large enough, we have ||C(B + ikE)™!|| < 1.
i From the proof of Theorem 62 it follows that (B + C 4+ ikE)Dg is dense in

H. Q.E.D.
We will apply these results to essentially self-adjoint operators introduced

in Section 3.6. Recall that the Hilbert space is
H = {u(x), real valued : / 2)|%k(z) dr < oo} = L{R,, k},

and the formal Sturm-Liouville operator is

M= [— 3 (5 (), + 13" Py (), + 535y + q(wu] -

£,j=1 j=1 j=1
(3.5)
Here,

1. pej(x), k(x), q(x) real and p,; = pje
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2. pej(z) € C*(Ry), pi(z) € C*(Ry), k,q€ C'(Ry,)

3. k>0forallz € R,

4. szzlpgj (x)&gf_j > p(x) ?:1 \§j|2 for all z € R,, and arbitrary complex
&;. Here p(z) > 0 for all z € R,,.

The essentially self-adjoint operators A, A, have domains

Dy = {u el (Rg)},

02
Dy, = {ued (m)},
respectively.

Theorem 63 The operators Aq, Ao remain essentially self-adjoint if q sat-
isfies the weaker condition q(x) € C°(R,).

PROOF: Suppose ¢ € C°(R,,). Clearly there exists some ¢(x) € C'(R,,) such
that |g(z) — §(x)| < k(z) for all x € R,,. Let A;, j = 1,2 be the symmetric
operators corresponding to the potential function ¢(z), and A;, j = 1,2 be
the symmetric operators corresponding to the potential function ¢(z). Then
the Aj are essentially self-adjoint. Define the operator C' by

_ q(z) = q(z)
The Aju = Aju+ Cu, C are symmetric with D C 75;1], and ||Cul| < ||ull.

Since C' is a bounded operator, it is trivially Aj—bounded. Thus by Theorem
62 the operators A; are essentially self-adjoint. Q.E.D.
A deeper result is the following.

Theorem 64 Suppose q(x) is a real potential in R, and a finite positive
number M such that

2
/ R
y—al<k |T — y[r—ite

forallx € R, all R € (0,1) and some o with 0 < « < 4. Define the formal
operator A by

Au(z) = —Anu(z) + q(z)u(z).
Then A, and Ay are essentially self-adjoint.
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SKETCH OF PROOF: The theorem follows from the inequality
la(z)u(z)|| < KiRPMY2||Ayu(@)|| + KR DM Ju(z)||  (3.6)

where K, Ky are constants and u € Dy, or u € Dy,. If we set Bu = —-A,u
and Cu = ¢(x)u we see that C is symmetric, B is essentially self-adjoint and
there exist constants €, such that

|Cul| < €[ Bul| + d]|u]|

We can require 0 < € < 1 if we choose R sufficiently small. This shows that
C is B-bounded, so that B + C' is essentially self-adjoint. Thus the theorem
follows once we show that (3.6) holds. We will indicate the proof of the
inequality shortly.

Theorem 64 shows that the operators A; and A, can be essentially self-
adjoint even when the potential ¢(x) has a singularity in R,. Indeed, we
have the following estimate.

Theorem 65 Let b(x) = p~°(z), where p*(z) = 7 23, 1 < m < n and

3’
0>0. Ifa>0,20 <4—a<m then for all x € R,, n > 2 we have
b*(x)
——dy< M
/Iy—T«ISR |z — y|n—ite

forall0 < R < 1.

SKETCH OF PROOQF: This follows from introducing spherical coordinates
r,0; in R,. In these coordinates dy ~ 7" 'dr dw where dw is the area
measure on the unit sphere in R,,. The maximum possible singularity of the
integral occurs at x = y, and we can evaluate this case by passing to spherical
coordinates and see that the integral converges as indicated by the statement
of the theorem. Q.E.D.

To indicate the proof of the inequality (3.6) in Theorem 64 we will review
and extend some results about the operator Ay with ¢ = 0, i.e. (restricting
to the important case n = 3 for simplicity)

where



Then A, is symmetric,
Ay C A3

and A = A, is self-adjoint and A, is essentially self-adjoint. (The analogous
statements are also true for A;.) L
Recall some of the steps in the construction of A,. The Fourier transform

u(y) = Fu(y) = 3 rlglolo///|$|<r e Yy(z)dr,

where © = (z1,%9,23), Yy = (yl, Y2, y3) is a unitary mapping of H onto H =
L?(R3) (in the y coordinates), i.e., the map is 1-1, onto and preserves inner
product. Now if u € DA2 then

Auly) =~ [T emasuta)s = lyaty).

Now let K be the operator with maximal domain that multiplies by ly|? in
H:

D ={ieH:|yoy) e H}.
Clearly, K = K*. Let A be the operator on H defined by A = F 'K F.
(Note that F~! = F* since F is unitary. So (Au,v) = (F'KFu,v) =
(K Fu, Fv) "= (Ka,0) ", where (-,-)is the inner product on H. ) We see
that A is an extension of A,. Further, A = A*, since K = K*. Thus A, (as
well as A;) has a self-adjoint extension. We have already shown that, in fact,
121 = AlAQ.
Now if u € D; then

gt ][] < ol ] | fwcn
_Q;E///EF;;«MMﬂMMM@

< ol ] [ [ [+ atriaray

for all @ > 0. The first integral in the last inequality can be evaluated
explicitly, and we find

(@) < —5—||(A+a®)ul| < (a2 |(Aul| + o2 |Jul)) ~ (3.7)

T (27)2al/? — (2m)

[MI[°5)
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for all & > 0. This shows in particular that u(z) is bounded and continuous
if u € D 4. Note that (3.7) is the verification of (3.6) in the case n = 3. The
proof for general n is similar.
To make clearer how Theorem 64 can be applied, we will look more care-
fully at the case n = 3. Suppose ¢ is locally square integrable and that
q(z) = q(2) + ¢ ()
where ¢qq is a bounded measurable function in Rz and ¢; € L?(R3).

NOTE: A physically important example is the Coulomb potential

1
q(z) = -, r=+/z? + 23 + 24
r

Here q is locally square integrable and we can take

(z) = 0, r<l1 (2) = L o<r<1
D\r) = %, r>1, 2\?) = 0, r>1.

Let @ be the operator defined by multiplication by ¢(z) and let
Quu(z) = qi(2)u(z), Do, = {u € L*(Rs) : qu € L*(Ry)},

Qou(z) = qo(z)u(z),  Dg, = L*(Ry).
Then Q) = Qo + @1 and Dy = Dg,. Now consider the operator

H=A4+Q=A+Qy+Q,

where A is self-adjoint and @ is symmetric. . Recall that if u € D ; then
u(z) is bounded, hence u € Dg. Let Dy = D .

Theorem 66 H is self-adjoint and A; + Q (with Da,+g = Da,), is essen-
tially self-adjoint.

PROOF:
u €Dz = [|Quul| < llai]|sup u(x)| < Kllg:||(a™"?|| Aul| + a*/?[[u]]).
Also, ||Qou|| < ||u||sup |go(z)|. Thus
K B
1Qull < [|Quul|+[|Qoul| < WH%H'HAUHJF[Ka3/2|\ql\\ + sup |go(w)|]-[[ul .

Choose « so large that K||q;||/a'/? < 1. Then Q is A-bounded. Q.E.D.
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3.8 The graph approach to extensions of sym-
metric operators

We now continue the development of the operator graph approach to linear
operators that was introduced in Section 1.3.1. Here we will be interested
in the possible ways that a symmetric closed operator can be extended to
a self-adjoint operator. Recall that if A is a linear operator on the Hilbert
space H, with dense domain, the graph I'(A) of A is the set of all ordered
pairs [u, Au| € H & H with u € D4. If we assume that A is symmetric, then
A C A* and I'y» DO I'y. Thus we can regard I'4 as a subspace of the graph
Hilbert space I' 4« with graph inner product

<u,v>= (u,v) + (A*u, A*v), u,v € Dy.

A is closed if and only if I'4 is a closed subspace of I'4«. Recall also that if
B is symmetric and B O A then

ACBC B* C A"

(In the following we will, for convenience, often employ the identification
v 4> [v, A*v] between elements v € D4+ and elements [v, A*v] € ['4+.)

Definition 33
D+ = {U € DA* A'u = ZU,}, dim D_|_ = D_|_(A),
D ={u €Dy : A'u = —iu}, dim D_ = D_(A),

Here, D, ,D_ are called the positive and negative deficiency subspaces
corresponding to A.

Theorem 67 D4, D,,D_ are mutually orthogonal closed linear subspaces in
Dy« (with respect to the inner product < -,- >) and

DA* :DZ@D+ @D_

PROOF:
1. D L D_: Let uy € Dy, u_ € D_. Then
<Up, U >= (u-i—a U’*) + (A*U-H A*U’*) = (U’-H U’*) + (7;11,4_, _Z'U’*)

— (U,_|_,U_) — (u+,u_) = 0
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2. Dy L Dy Let uy € Dy, u € Dg. Then
<u,uy >= (u,uy) + (A%, A*uy) = (u,uy) — i(Au, uy)
= (v, uy) —i(u, A'uy) = (v, uy) — (u,uy) = 0.
Similarly, D_ L Dx.
3. fv L D4, D;,D_ then v =0: If u € D4 then
(<u,v>=0=(u,v)+(A"u, A"v) = (u,v) = —(A"u, A"v) = A™v € Dy,
and A*A*v = —v. Thus
(A* +iE)(A* —iE)v = 0 = (A" — iE)v € D_.
For any v € D_ we have
(u_,[A*—iEw) = (u_, A"v)+i(u_,v) = i(A"u_, A"v)+i(u_,v) =i < u_,v >=0.
Therefore [A* —iEJv =6, so v € D;. But v L D,. Hence v = 6.
Q.E.D.
REMARK: Let
P, = —%(A* +iE), P = %(A* _iE).
Then
1. P, +P_ =F.
2. P,P =P P, =0,
3.
P2 = —%(A* +iE)* =

(A*A* 4+ 2iA* — E) (A* +iE) = P,.

1 o
4 2
Similarly, P? = P_.

4. Pov=v=—= A'v=1w and P.v =v = A*v = —v.

5. < Pru,v >=< u, Prv > for all u,v € Dy-.
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Thus, Py are orthogonal self-adjoint projection operators on D 4+, commuting
with A*. Also P, projects onto D, and P_ projects onto D_.

Let B be a closed symmetric extension of the symmetric operator A. The
following observations are pertinent:

1.
D;C Dy CD;® D, ®D_ =Dy

2. If uy is a nonzero element of D, then u, ¢ Dp. Indeed, if u, € Dp
then (Bu,,u,) would be a real number. However,

(Buy,uy) = (iug,uy) =il|luy||* # 0

is not real. Similarly, a nonzero element of u_ of D_ cannot belong to
Dp.

3. Which elements of Dy ® D, @ D_ = Dy« do belong to Dg? If v € Dp
then it can be expressed uniquely in the form

v=u+Uuy =u_, u€Dg, uy €Dy, u_ €D_.
Let
S, ={uy €D, : v=u+u; +u_ for some v € Dg}.

Then there exists a 1-1 map C' : §4 = D¢e — D_ such that Dy =
Dz ® S, where

S={u++0u+: U4 ES+}
Indeed, if both u, + u_ and uy + u’ belong to Dp then u_ — v’ €
DpND_, which implies u_ — u’ = 6. Thus the map C is 1-1.

Lemma 25 If A; is a closed symmetric extension of A then there exists an
isometric (i.e., inner product preserving) map C of a closed subspace D¢ of
D, onto a subspace R¢ of D_ such that Dy, = D5z ® S, where

SZ{U++CU+§ ’U,_|_€Dc}.

Conversely, if C is such an isometric operator from the closed subspace D C
D. to Re C D_ then the restriction of A* to Dz ® S is a closed symmetric
extension of A.
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PROOF: Let a,b € Dz @& S so that

a=1u+us+ Cuy, b=v+vy+ Cuv;.
Then
(A1a,0) = (Au +iuy — iCuy, v + vy + Coy) =
(Aju,v) + (Aju,vy) + (A, Coy) + i(ug,v) + i(ug, vy)
+i(uy, Cvy) —i(Cuy,v) — i(Cuy,vy) — i(Cuy, Coy)
= i(us, v4) — i(Cuy, Coy),
(a, A1b) = (u +uy + Cuy, Ayv + vy —iCoy) =
(u, A1v) + (uy, A1v) + (Cuy, Arv) — i(u, v4) — i(uy, vy)
—i(Cug,vy) +i(u,Cvy) —i(ug, Cvy) +i(Cuy, Coy)
= —i(us,v4) + i(Cuy, Coy).
Hence

(A1a,b) — (a, A1d) = 2i [(us,vy) — (Cuy, Cvy)l.

Thus A; is symmetric if and only if C is isometric. Note that < v, u, >=
2(uy,uy) and < vy, vy >= 2(vy,vy). Note further that if A; is symmetric
then & must be a closed subspace of D4+, in the graph norm. Since C' is
isometric, it follows that S; = D¢ must also be closed (in both the graph
and the usual || - || norm). Q.E.D.
Recall that
AC A C A C A~

Lemma 26 Let C be an isometric map of a closed subspace D¢ of |calD
onto a subspace R¢c of D_, and let A, be the resulting closed symmetric
extension of A. Then Da: is a closed subspace of Da-. let Di(A;) be the
deficiency subspaces of Ay with decomposition

DAT - DAl EB D+(A1) EB D_(Al)

Then

Di(A)={ueD,(A): <u,Dec>=0}, D_(A)={ueD_(A): <u,Rc>=0}.
(3.8)
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PROOF: Clearly D, (A;) C D, (A) and D_(A;) C D_(A). The only part of
the lemma remaining to be proved is the characterization (3.8).

1. u € Dy(A)) —<u,Dg >=0: Let v € Dg C Dy (A). Then v + Cv €
D4, implies u L (v 4+ Cv) in the graph inner product. Hence

<u,v+Cv>=0=<u,v>+<u,Cv>=<u,v >,
since v € Dy, Cv € D_. Similarly u € D_ =< u, R¢ >= 0.

2. u € Dy(A), < u,Dec >= 0 = u € D (A;): Here we must show
u € Dyx. For this it is enough to show that (A,v,u) = (v, A%, u) for all
v € Dy,. Now

(Ajv,u) = (Aa +iay —iCay,u) = (Aa,u) +i(ay,u) —i(Cay,u)
= (a, A™u) +i(as,u) —i(Cay,u) = —i(a,u) —i(Cay,u).
Similarly,
(v, A"u) = (a + ay + Cay,iu) = —i(a,u) — i(Cay,u).
The proof of the statement involving R¢ is similar. Q.E.D.

Theorem 68 If C is an isometric map of all of Dy onto all of D_ then the
restriction Ay of A* to Dz ® S, S = {u+Cu: u € D,} is self-adjoint.
Conversely, if Ay is a self-adjoint extension of A, then there exists a unique
isometric map C such that A, is obtained as above.

PROOF: If C' maps D, onto D_ then from Lemma 26
Da: =Dy, © {0} © {0}
so A; = Aj. Conversely, if A; = A} then
D.(A)=D_(A) ={0} = Dc=D,, Re =D-_.
Q.E.D.

Corollary 19 A symmetric operator A has self-adjoint extensions if and
only iof dim Dy = dim D_. If this is the case, the possible self-adjoint ex-
tenstons of A are in 1-1 correspondence with isometric maps C' of D, = D¢
onto D_ =R¢.
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Definition 34 Let M, N be vector spaces with M C N. We say that M
is of co-dimension m in N if N = M & K where dim K = m.

Corollary 20 Dy is of co-dimension D (A) + D_(A) in Da-.

Corollary 21 Suppose D (A) = D_(A) = m. A symmetric extension A,
of A is self-adjoint if and only if the co-dimension of D4 in Dy, is m.

EXAMPLE: Let p
A:i%, H = L3{[0,1]},

D4 = {u(x) : u absolutely continuous, Au € H, u(0)=u(l)=0}.

Here, A is symmetric and closed. Further,
D+ = {u(x) : u absolutely continuous, Au € H}.

We will compute D, for this case. If A*u = 4u then u(z) = ce®. Since
Jy €**dz = (e — 1)/2 we see that Dy = 1 and {u1(z) = \/%5€*} in an ON

basis for D,. Similarly, D_ =1 and {v;(z) = \/83%216”} in an ON basis for
D_. Define the linear transformation Cp : Dy — D_ by

Cour = ewvl, 0<6<2m.
We see that the possible self-adjoint extensions of A are Ay, where
Dy, = {U(x) =u(z) +a(e® +e)  ueDy, ac C}.
Here,
Agv(z) = i/ () + ia(e” — T177), u(0) = u(1) = 0.

To characterize the domain of Ay in a simpler fashion, note that if v € Dy,
then
v(0) = a(1 + 1), v(1) = a(e + €?),
SO
v(0)  1+et¥
v(1)  1+eiC

=By
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where |Bg| = 1. Thus v € Dy, if and only if v € Dy, and v satisfies the
boundary condition

Bv) = v(0) - fpu(1) =0, |G =1, ¢ = 22— 1
e — By

REMARK: We can consider B(v) as a bounded linear functional on D 4-
(with respect to the graph inner product). Indeed, we can find a wy € Dy«
such that < wy, D4, >= 0 and normalize it so that B(v) =< wp,v >. Thus
v € Dy, if and only if and only if B(v) =< wy,v >= 0. We will exploit this
point of view in the next chapter.

We conclude this section with a result that illustrates the wide variety

of possible spectra for the self-adjoint extensions of a symmetric operator A
with D, = D_ > 0.

Theorem 69 Let A be a symmetric operator with deficiency indices Dy =
D =m >0 and let X be a real number such that X € Reg (A). Then there
erists a self-adjoint extension A of A such that A € op(A) with multiplicity
m.

PROOF: Let Dy = {u € H: A*u = Au}. From Theorem 60 we know that
dim Dy = Dy = D_ =m. Let
D;=Das® Dy C Dy,

(we know that this sum is direct, since A & op(A)), and let A be the restric-
tion of A* to Ds.

We show that A is symmetric. For any u,v € Dyjjge4 we have the unique
decompositions u = ug + uy, v = vy + vy Where ug, vy € D4 and uy, vy € D,.
Then ~

(Au,v) = (Aug + Auy, vo + vy)
= (Aug, vo) + (A ux, vg) + A(up, va) + (Aug, vy)
= (Aug, vo) + (ux, Avg) + M uy, va) + (Aug, vy),
and 5
(u, Av) = (ugp + uy, Avg + A*vy)
= (uo, Avo) + (ux, Avo) + (uo, A™vx) + (unr, A™vy)
= (Aug, vo) + (ux, Avg) + (Aug, vy) + Auy, vy),
so (Au,v) = (u
Dyin Djis m.

, Av). Further A is self-adjoint because the co-dimension of
Q.E.D.
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3.8.1 Symmetric operators bounded below

In this section we show that if A is symmetric and bounded below by the

real number a then we can directly construct a certain self-adjoint extension

A of A, called the Friedrichs extension, that is also bounded below by a.
We first consider the case that a > 0.

Theorem 70 let A be a symmetric, strictly positive operator with lower
bound a > 0. Then there exists a self-adjoint operator A such that

1. ADA
2. A" exists and is bounded in H
3. a is the greatest lower bound of A.

Note that the equation Au = v can always be solved for v € H.

PROOF: We will embed D4 in a new Hilbert space F. We first introduce a
new inner product (u,v) = (Au,v), defined for all u,v € D4. The new norm

is ||ul|' = \/(u,u)" = sqrt(Au,u). Note that
(I[ul)* = (Au, u) > a(u,u) = allu| |

Thus ||u|| < ﬁ||u|| We see that D4 with inner product (-,-)" is a pre-Hilbert
space D';. We can complete this space to get a (unique) Hilbert space F since
that (with respect to the norm || - ||") D/, is dense in F.

REMARKS:

1. Since ||lu—v|| < ﬁHu—vH', every Cauchy sequence in D4 (with respect
to || - ||") is a Cauchy sequence with respect to || - ||.

2. Suppose {u, : u, € D} is a Cauchy sequence with respect to ||-||" and
u, —' u* € F. Then also u,, — v € A in the || - || norm. However,

[lun —u|] < u'l|" =0

L
- u_
Va

as n — oo. Thus v = u*.
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. Suppose {u, : u, € Dy} is a Cauchy sequence in D’y such that
lim, o ||un||” # 0. Then u, —' v* € F with v* # 6 and, also
U, — v € H. Can v = 6?7 No, because if v = 6 then

(u,v*) = nh_}rglo(u, Up) = nh_)rglo(Au, un) = (Au,v) =0

for all u € D4, which implies v* = 6, a contradiction.

. It follows that we can assign to each v* € F a unique v € H and this
correspondence is linear.

. The correspondence
F — H

*

vt — v
of F into H is 1-1 and u — u for u € Dy4. Therefore, we can identify
F with a dense subspace H, of H.

. For u € Hy, v € H we have

1
[ (u, 0)| < Jul] - [Jo]] < %HUH Nl
Therefore L,(u) = (u,v) is a bounded linear functional on Hy =
From the Riesz representation theorem, there exists a unique w € Hg
such that
L,(u) = (u,v) = (u,w)".

Denote this correspondence v — w by w = Bwv. Clearly, B is a linear
operator with domain A and range in Hy. If Bv = 6 then (u,v) =0
for all u € Hy which implies v = 6. Therefore B is 1-1. Set A= B;.
Then D; C Hy and R; = H.

. We show that B is bounded and symmetric in H. Note that (u,v) =
(u, Bv)' for u € Hg, v € H. Define vy € H by u = Buy.

SYMMETRY:
(Bwg,v) = (u,v) = (u, Bv)' = (Bvg, Bv)' = (Bv, Bup)'

= (Bwv,vy) = (vg, Bv).
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BOUNDEDNESS:
[ Lo(u)| = [(u, w)'| < fful[- |[w]]
for a unique w € H,. Here, ||w]||’ is the best bound. Aso,

1
Lo ()| = [(u, 0)| < Jul] - [Jo]| < WIIUII'- [l

Therefore

ol o
U >l 2 Vallwll = 12 > |[Bol] > Val Byl

Vva

This proves that ||B|| < 1/a.

. A is self-adjoint.

. A is an extension of A. Indeed for u,v € Dy C Hy € H we have

(u, BAv)' = (u, Av) = (Au,v) = (u,v)’

so BAv = v. Hence A7 Av = v forallv € Dy = v € Ry, = D,
|longrightarrowv € D ;. Therefore Av = Av for all v € Dy.

10. A is bounded below by a. For suppose u € Dj, Au = v, Bv = w.
Then
(Au,u) = (u, Au) = (Bv,v) = (Bv, Bv)' = (||Bv||')* > al| Bv||” = al|u[|”
Q.E.D.

Corollary 22 If A is symmetric and bounded below by a real number a then
there exists a self-adjoint operator A such that

1.

2.

ADA

A is bounded below by a.

PROOF: We need consider only the case a < 0. Set C = A+ (1—a)E. Then
C is symmetric and bounded below by 1. The preceding theorem implies that
C has a self-adjoint extension C' bounded below by 1. Set A=C—(1—a)E.
Q.E.D.
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Chapter 4

Spectral Theory for
Second-order Ordinary
Differential Operators

In this chapter we will apply the general spectral theory for self-adjoint op-
erators to the physically relevant case where the eigenvalue equations are
second-order ODEs. We will work out the explicit details of the spectral ex-
pansions for a number of important examples. Since the deficiency subspaces
for a second-order symmetric OD operator are of dimension at most 2, we
can give a rather complete analysis of the self-adjoint extensions. This is
in contrast to the case of partial differential operators where the deficiency
subspaces may be infinite-dimensional.

4.1 The setting for the second-order ODE eigen-
value problem

Definition 35 Let I be an interval on the real line, either [¢,m], or [£,m),
or (£,m] or (£,m), where £ = —oo and m = oo are also allowed. A formal
second-order ordinary differential operator 7 on I is an expression

= aQ(x)7 + al(x)% + ao(x), a]-(x) € 02(1)

Here the a; are complez-valued functions and as(x) # 0 for any x € 1.
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Definition 36
H*(I) = { f € CYI): f absolutely continuous on each compact sub — interval of I}

Theorem 71 Let g be complez-valued, measurable and locally integrable on
I, let co,c1 be complex numbers and xo € I. Then there exists a unique

f € H*(I) such that
1. 7f =g,
2. f(xo) =co, [f'(x0) =c1.
PROOF: From the definition of H?(I) there is no loss of generality in the

proof by assuming [ is closed and bounded. Our original equation 7f = g is
equivalent to the first-order system

Pow = A (4.1)
Gy, 0@, 0w, )
d.fC( )+CL2(.7))f1( )+a2(x)f0( ) GQ(.T).

Now let

0 1
«4(3?)2[@@ M]

ax(z)  ax(z)
Then system (4.1) and the initial conditions can be written in the matrix
form

f'(z) = A(z)f(z) + g(=), f(xg) = [ €0 ] ) (4.2)

C1

By the Fundamental Theorem of Calculus (generalized to L'), this is in turn
equivalent to the matrix integral system

£@)+ [ AWt dy= [ 8ly) dy+ o), (43)

Zo 0

or

f@) + [ AWE() dy = k()
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where k(z) = [ g(y) dy + (). Finally, if we define the matrix integral
operator A on vectors
ho(z)
h(z) =

h1($)
by

the system takes the form
(E+ Af =k, (4.4)
where Fh(z) = h(z).
Now (4.4) is a Volterra equation of the second kind and always has a
unique solution. Formally, the solution can be written as

f=(E+A4) ' k=k - AK+ A’k — -+ + (=1)"A"k + - - -

In fact
(E+A) 'k = Z 1)" A"k
n=0

converges uniformly and absolutely on I to a vector-valued function that
is the solution to our problem. To show this we will make use of the ma-
trix norm |A(y)| and the vector space norm |h(y)| = \/|h0(y)\2 + |hi(y)|?,
each evaluated for a fixed y, and the associated Banach space norm on
vector-valued functions ||h|| = [; |h(y)|dy. (We need the standard property

[A(y)h(y)| < |A(Y)|- h(y)[.) Let a = sup,e; |A(y)|. Then

[Ak(z)| = | [ AWy < [ |AWKE) dy <o [ ()] dy

Sa/lk(y)\ dy = al |k,

A%k |—|/ k(y)dy| < a [ alli] dy = a” l|(@ — ).

2

z r—x
) = A K] < 0 7o el a0 dy = a7

(x — mo)™ !

Ak(r)| = | [ A)A%K()dy| < "1
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Thus,
Y (1) AK(E) < 3 k||

n=no n=no ( 1)'

and the right-hand side converges uniformly in 7. Q.E.D.
Corollary 23 If g € C°(I) then f € C*(I).

Now we define a basic (minimal) symmetric operator Ag related to a
(formally symmetric) operator 7. The possible self-adjoint operators related
to 7 will be extensions of Ajy.

ASSUMPTIONS:

1
k(x)

Tu(z) =

([=p(@)u' (@) + q(@)u(z)), H=Li{f,m}, k), (4.5)

and
1. I ={¢,m} an interval on the real line
2. p,p,q,k € C°(I) and real
3. p(z) >0, k(z) >0 in I.

The operators Ay, A; are determined by
Dy, = {u: u €C? (I)}, Aou = Tu, u € Dy,, (4.6)

DAIZ{'U,EH: u € H*(I) and’ruEH}, Ayu=rTu, u€Dy, (47)

Here, we have chosen 7 in the most general form so that it will be formally
symmetric, i.e., it will be symmetric if all of the boundary terms vanish in the

integration by parts. This is exactly what occurs for the minimal operator
Ag.

Theorem 72 A, is symmetric and A = A;.

The first statement in the theorem is easy, but the second relies on the
Weyl lemma, which we will prove in detail.
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Lemma 27 (Weyl) Let v be a measurable complez-valued function on I such
that v is square integrable over every compact subinterval of I. Suppose

[ v@)ruwk(y) dy = (w,7u) = 0

for allu € Dy, i.e., u €C? (I). Then (after modification on a set of measure
zero) v € C*(I) and Tv = 0.

PROOQF': There is no loss of generality in assuming the I is compact. Let
¥ be the set of all solutions o of the equation 70 = 0, o € C*(I). From
Theorem 71 it follows that dim ¥ = 2, so that X is a closed subspace of .
The Weyl lemma will follow from a string of three subordinate lemmas.

Lemma 28 Ifw € H, w L ¥ then (w,v) = 0.

REMARK: Lemma 28 shows that
ve (XHt=X=1,
since X is closed.

Lemma 29 Dy N Yt is dense in ©*.

Lemma 30 Ifg € Dy, and g L X then (g,v) = 0.

REMARK: Lemmas 29 and 30 prove lemma 28.

PROOF OF LEMMA 29: D,, is dense in H. let 01,09 be an ON basis
for ¥ and choose ¢1, ¢o € Dy, such that the2 x 2 matrix {B;; = ¢;,0;)} is
nonsingular.

Let h € 1. Choose a Cauchy sequence {h,} in D4, such that h, — h.
We will construct a sequence {k,} in D4, N X+ such that k, — h. Write
kn = hn— Y71 anede and choose {ay} such that (k,,0;) =0, j = 1,2. This
gives 2 equations in 2 unknowns for each n. The solution is

2

kn = hn - Z (B_l)ij(hha Gi)¢j € DAO N EL'

i,y=1
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Indeed,
(kn,01) = (hy,01) — Z(Bil)iijl(hnaal) =0,
(%]

with a similar result for (k,,0y). Now
kn ——n—o0 h — Z(B_l)ij(hﬂ QSZ)QSJ = h.

Q.E.D.

PROOF OF LEMMA 30. If g € D4, N T+ then (g,v) = 0. If there exists a
w € Dy, such that 7w = g Then

(v,9) = /Ivgk(x) dx = /Ivmk(x) dx = 0.

We can prove the lemma, if we can find w. recall that we can assume without
loss of generality that I = [¢,m]. From Theorem 71 there exists a unique
solution w of 7w = g such that w(¢) = w'(ell) = 0. We must verify that
w € Da,. Clearly w € C*(I). Then foe all o € 3 (the nullspace of 7) we
have

0= /Z " (roYwk do = /e " oYrwk dz + p(m) (o (m) @ (m) — o' (m)w(m))

= p(m)(e(m)w’'(m) — o' (m)w(m)).

Since p(m) # 0 and o(m),o'(m) are arbitrary, we must have w(m) =
w'(m) =0, s0 w € Dy,. Q.E.D.

PROOF OF THEOREM 72: We must show Aj = A;.

1. Ay C Af: If w € Dy, then for all u € Dy, we have

/I(Tu)@k dx = /uWk dx

I

so w € Dyy with Ajw = Tw.

2. Ay C Ay: Let f € Da; with Ajf = g. Then (Aou, f) = (u, Agf) =
(u, g) for all u € Dy,. From Theorem 71 there is a fo € H*(I) such
that 7 fy = g. Therefore

/I(Tu)fk dz = (u,g) = /IU,T—fOk dx = /I(TU,)%]{Z dx
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for all u € D4,. This implies

/(fo—f)mk dz =0

1

for all u € Dy4,. Therefore (by the Weyl Lemma) fo — f = h € C*(I)
and 7(fo — f) =0.

This means that f € H*(I) and 7f = 7f;. We conclude that f € D4, and
Asf =A1f=7f. QE.D.
At this point we know that

Ay =A;, Da=Dg5;06D, 0D
where
Di={u €Dy, : Tu=+iu},
and D consists of C? functions. Recall that D, = dim Dx.

Corollary 24 D, <2, D < 2.

Corollary 25 If I = [¢,m] is closed and bounded then every solution of
Tu = £iu s in Dy,. Thus in this case Dy = D_ = 2 and Ay has infinitely
many self-adjoint extensions.

Corollary 26 Since the coefficients of T are real, we have D, = D_ in all
cases. This means that Ay always has self-adjoint extensions.

PROOQOF': The solutions of 7u = tu are complex conjugates of the solutions of

Tu = —iu. Indeed, D_ = {u(x) : u(z) € D;}. Therefore Ay has deficiency
indices D, = D_=0,1,2. Q.E.D.
We know that
Dy, = DA—OGBD+ ®D_

where Dy, has co-dimension 2d in Dy, and Dy = D_ = d = 0,1, 2. Further,
any self-adjoint extension A of Ay takes the form

Da=D4; 0 S, S={u+Cu: ueD,}

where C' is an isometry of D, onto D_, D has co-dimension d in D4 and
D4 has co-dimension d in Dy,. Now we describe a convenient method for
specifying A. Let

St={veDy : <v,D4s>=}0.
Clearly, dim St =d and St C D, & D_.
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Lemma 31 St ={u—Cu: u€D,}.

PROOF: Let M ={v—Cv: u € D,}. Then if u,v € Dy we have
<u+ Cu,v—Cv>=<u,v>+ < Cu,—Cv >=< u,v>— < Cu,Cv >

=<u,v>—<uv>=0.

Thus M C S§t. However, dim M = d = dim 8, so M = S8+. Q.E.D.
Let vy,---,vg be an ON basis for S*, with respect to the graph inner
product. Then Dy = {u € Dy, : < u,S8t >=0, i.e,

Dy={u €Dy, :<u,v;>=0, j=1,---,d}.

We call each of the conditions < u,v; >= 0 a boundary condition for A,
and we characterize D4 by these boundary conditions.

4.2 The theory of boundary values

Definition 37 A boundary value for tau on I is a bounded linear func-
tional B on the Hilbert space D4, that vanishes on Dy, (and therefore on
Dy

REMARK: B is a boundary value for 7 +— there exists a unique v €
D, & D_ such that B(u) =< u,v >, for all u € Dy;.
Suppose I = {{,m}.

Definition 38 B is a boundary value at ¢ if B vanishes on all functions
in Dy, that are zero in a neighborhood of .

There is a similar definition for a boundary value at m.

Theorem 73 Let By,---, By be d linearly independent boundary values on
I such that
(Aru,v) = (u, A1v)

for all u,v € J, where
j:{’U,EDAII Bk(u):07 k:l”d}

Then the restriction of Ay to J is self-adjoint.
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We can be more specific concerning the form of boundary values for ODEs.
If B is a boundary value for 7 on I then, from the general theory, there exists
av e Dy ®D_ C C*I) such that B(u) =< u,v >, for all u € Dy,. Now
since
B(u) = (u,v) + (Aju, Ajv) =0
for all u € Dy,, we have Ajv € Dy, and A;Ajv = —v, i.e, 770 = —v. Let

U = —7v, so 70 = v. Then for any u € D4, we have

B(u) = (u,7%) — (ru, ) = lim /:(uﬁ—(m)ﬁ)dx.

r—f,s—m

= Jim p(2) (u(@)7(@) — ' (2)3(2)) — lim pla) (u(@)(2) - o' (2)())

= [u, ¥)m — [u, U]

where the symbols [u, D], [u, D], are defined by the obvious limits.

Lemma 32
u € Dz = [u, Wlm = [u, w]e =0

for all w € Dy,.
PROOF"

1. <=: Easy.

2. =: If u € D4 we have (Aou,w) = (u, Ayw) for all w € Dy, = Dy
Thus [;(rv)wk dz = [; uTwk dz so

[u, w]p — [u, W], =0,

for all w € Dy,. Now let s € C?(I) with compact support such that
s = 0 for x in a neighborhood of x = ¢ and s = 1 in a neighborhood
of x = m. Then sw € Dy, and [u, sw]; = 0, [u, sw]|y, = [u, w]y,. Thus

if u € D4 we must have 0 = [u, sw]; — [u, sw]y = —[u, w],, Similarly
[u, w]g = 0.

QE.D.

REMARKS:
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1. If, say, m € I, i.e., I = {¢, m], then

[t, 0 = p(m) (u(m)ﬁ'(m) — u’(m)ﬁ(m)) = aju(m) + agu'(m).

2. If B(u) =< u,v > is a boundary value at, say, m then [u, ], = 0 for
all u € Dy,.  PROOF: Let s € C?(I) with compact support and
such that s = 0 in a neighborhood of m and s = 1 in a neighborhood
of . Now for u € Dy, we have also that su, (1 — s)u € D4, and
u = su+ (1 — s)u. Since B is a boundary value at m we have

B(u) = B(su) + B ((1 — s)u) = B ((1 — s)u)
= [(1 = s)u,0)m — [(1 — s)u, 9]¢ = [(1 — s)U, D).

Q.E.D.

Theorem 74 The space M of boundary values is 2d-dimensional and is the
direct sum of the subspaces My, M,, of boundary values at £ and m: M =
M, ® M,,.

PROOF: Choose s1, s3 € C%(I) such that each function has compact support
on the real line and

1. s+ss=1onl

2. s; = 0 in a neighborhood of m

3. s =0 in a neighborhood of /.

Let B be a boundary value: B(u) =< u,v >, for all v € D,,. Here,
v=uy+u €D, dD_. Recall that v = —Cv = —i(uy —u_) € D, +D_.
Now @ = $10 + s90. Since Dy, = Dz @ Dy @ D—, we have the unique
decompositions

8117:”14-’171, SQ{}ZU/Q""EQ, ’U,l,’LLQEDA—O, 171,172€D+-|—D_.

Then
17—171—172:U1+’U,2
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where the left-hand side belongs to D, +D_ and the right-hand side belongs
to D4;. Therefore, u; = —ug, U = 01 + U9, and the last equality holds if and
only if v = vy + v9. Therefore

B(u) =< u,v >=< u,v >+ < u,ve >= By (u) + By(u).
I claim that B; is a boundary value at £. Indeed,
By (u) =< u,v1 >= [u, U1]m — [u, 01]
and 01 = $10 — uy, Where u; € D45 Now for all u € Dy, we have
[w, 01]m = [, $10]m — [, u1]m =0 -0 =0,

so By(u) = [u, —01]p. Similarly, By is a boundary value at m. This decom-
position is unique, because if B € M, N M,, then B(u) = [u, 0], — [u, D], =
0—0=0. QE.D.

REMARKS:
1. The most general boundary value at m is of the form
Bn(u) = [u,0)m, ©€DL®D_.

Similarly the most general boundary value at £ is of the form B,(u) =
[U, 1~}] 0-

2. If vy € D4 then vy(£) = vy(£) = vo(m) = vy(m) = 0.
3. Suppose I =[¢,m}, i.e., £ € I. Then

[, gle = p(€) (u(t)g'(€) — ' (£)g(D)) .

4. Clearly there exists a v € Dy, such that

—1
v(l) = —, V'(()=0
O =—5 V(O
Write v = vg + g where vg € D4, g € D1 © D—. Then
—1
g l) = T gl ) = Oa
0= —5 40
S0 [u, gle = u'(£) for u € Dy,. Hence v'(¢) = 0 is a boundary condition

at ¢

129



5. Similarly we can find g € D, & D_ such that
o) =0, ¢(0)= "~

p(€)

=0

Then [u, g]; = u() for u € D,,. Hence u(¥)
at ¢

is a boundary condition

6. It follows that By (u) = u(f), Ba(u) = u/(£) form a basis for the bound-
ary conditions at the fixed endpoint ¢ Thus a fixed endpoint always has
two linearly independent boundary conditions.

Lemma 33 Let I = {{,m} and ¢ < ¢ < m. Let 7' be the restriction of
T to I'{{,c|]. Then T and 7' have the same number of linearly independent
boundary values at .

PROOF: Let Dy, be the restriction of D4, to I'. Every boundary value of 7
at £ is of the form B(u) = [u,v]s, v € Dy & D_. Let ¥ be the restriction of v
to I'. Then ¢ € D', @ D_ and [u, 0], = [u,v], is a boundary value of 7' at .

Conversely, if w € D!, @ D’ we can extend W to a function w € Dy, on
I, not unique. Write w = vy + v where vy € Dz, v € Dy @ D_. Then

[u,v] = [u,v0 + v]e = [u, w]y = [u, D],
is a boundary value of 7 at £. Q.E.D.
Corollary 27 There are at most 2 boundary values at £.
PROOQOF': In general T can have at most 4 boundary values. There are exactly

2 boundary values at any interior fixed point c. Hence there can be at most
2 independent boundary values at £. Q.E.D.

4.2.1 Limit point and limit circle conditions

Let I = {¢,m} with ¢ € (£, m). Thus I can be decomposed into the subinter-
vals I' = {{, c|, I" = [¢,m} that have only the point ¢ in common. Let 7/, 7"
be the restriction of 7 on I to I', I", respectively. Let d,d', d” be the number
of linearly independent solutions of (7 — i¢)u = 0 in Lo(I), Lo(I"), Lo(I"), re-
spectively. Note that d’' = d; is the number of linearly independent solutions
of (T —14)u = 0 square integrable near ¢, and d” = d,, is the number of linearly
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independent solutions of (7 — i)u = 0 square integrable near m. Finally let
be, b, be the number of linearly independent boundary values of 7 near ¢ and
near m, respectively. ;From the last corollary we have

2d =dim (D, @ D_) = by + by,
2d' = dim (D!, ® D_) = b, + 2,
2d" = dim (D', @ D") =2+ by,.

Now since d' = d; = 1 or 2 we see that b, = 0 or 2, and since d’ =d,, = 1 or
2 we must have b,, = 0 or 2. it follows that there are 4 cases:

Case d; d, b, by,

i)

2 2 2 2
i) 1 2 0 2 (4.8)
i) 2 1 2 0
iv) 1 1 0 0

Definition 39 Ifd, = 1 we say that T is in the limit point case at x = /.
If dy = 2 we say that T is in the limit circle case at x = £. There are similar
definitions for x = m.

The reasons for this point/circle terminology will be made clear shortly.

We see from table (4.8) that A is self-adjoint if and only if the limit point
case holds at both £ and m (case iv).

For the remaining three cases let’s first review how we can use boundary
conditions to determine any self-adjoint extension of Ag. Each such extension
has domain Dy = D ® S where S = {u+Cu: u € D, } where C: Dy —
D_ is an isometry. Let vy,---,v4 be an ON basis for D, and v7,---,73 an
ON basis for D_. Then a basis for S is the set

d
wj:(vj+zck,jm)’ jzl:"',da
k=1

where {c;} is a d X d unitary matrix. Also, S* = {u —Cu: u € D,} has
the basis

d
ij: (Uj—ch,jﬁ), j=1,---,d.
k=1
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Therefore the boundary values defining A can be taken as

B;(u) =< u, wj' >= [U,wj_]m - [U’, wj_]f

where ij = —i(v; + Z%Zl Ck,jUk) = —twj. We conclude that the boundary
values
BJ(U’) = [uawj]m_ [uawj]ﬁa ] = 1,"'ad

determine Dy.

There is a second way of obtaining the same result. As before A is a
self-adjoint extension with domain Dy = D ®S and {wy, -+, wq} is a basis
for §. Therefore

d
’DA:{u+Zajwj: u € D4, a]-EC},
j=1

and
2 €D, <= (Av,2) = (v,Ajz) <= [v,2]]' =0

for all v € D4. Here the boundary condition [v, 2|7 is determined by
(Av, z) = /(Tv)Ek dz = [v, 2]}’ +/vﬁk dzx = (v, Az).
I I
However,

[, 27" = ajlw;, 2] =0 <= [w;, 2| =0, j=1,---,d.
J

Case i): limit circle - limit circle. Here d = 2 and w;, w, form a basis for S.
Then

Da={u € Dy, : Bj(u) = [u, wjlm — [u, wile = [u, w;]g" = 0}

Note that
[wj, wk]zn = 0, j, k= 1, 2. (49)

Now suppose I = [£, m] and set




45

p(€)’

Then
Dy ={u € Dy, : Bj(u) = au(f)+ bju'(¢) + cju(m) + d;u'(m) =0, j =1,2},
where, from (4.9),

bjar — @b, —djcr, + Tidy,
p(¢) p(m)

Conversely, it can be shown that any two linearly independent boundary
values By, By satisfying (4.10) define a self-adjoint extension of Ay.

=0, j,k=1,2. (4.10)

Case ii): limit point - limit circle. Here d = 1. Let {uy} be a basis for D,.
Then

S ={a(u,+e’mg): a €C}, Dy = {uta(us+e’ug): uc Dy, a € C}.
The element w = (uy + eu7) forms a basis for S so we have
Ds={v €Dy, : Bv)=[v,m], =0}

(Note that [v,m], is always zero since there are no boundary values at £.)
Therefore,

B(v) = lim p(e) (v(a)w' (@) — v/ () ().

A special case of this condition occurs when m € I. Then we have

where

w(m) = uy(m) + €’uy (m) = €2 (e7uy (m) + €*uy(m)),
w'(m) = ', (m) + e’y (m) = (7%, (m) + /%!, (m)).
Therefore we can write the boundary condition in the form
B(v) = av(m) + bv'(m) (4.11)
with a,b real and a? + b% # 0. Conversely, it is easy to show that the set

T ={v €Dy, : av(m)+ bv'(m) =0}
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defines a self-adjoint extension of A, for any a, b real and a? + b% # 0.

Case iii): limit circle - limit point. Here d = 1. This is a simple transposition
of case ii).
Suppose

1
I:{£7m}7 TU = %(_(pul)l—i_qu): H:Lg(kvl)
Theorem 75 (Weyl’s first theorem) Let Ay € C, £ < ¢ < m. If [ |u(z)|*k(z)dz <
oo for all solutions u of Tu = Au in [c,m}, then [ |v(x)[*k(z)dx < oo for
all solutions v of Tv — Av in [c,m}, where X is any complex number. This
means that T is limit circle at m. Similar remarks hold for {¢, c|.

NOTE: This means that there are exactly two possibilities at m:

1. There are 2 independent square integrable solutions of 7u = Agu in
[c, m} = 7 is limit circle at m.

2. There are 0 or 1 independent square integrable solutions of Tu = Aqu
in [¢,m} = 7 is limit point at m.

Example 17

TU = % ((x2u')') , I=(0,00), ce€(0,00),

2

i.e., k(z) = 22, p(x) = 22

, q(x) = 0. The equation Tu = A\u becomes

u” + gu' = \u.
x
Take the case A = 0. The trial solution v = x% is an actual solution if
ala + 1) = 0. Thus there are solutions ui(x) = x %, us(z) = 1. Now
Jo luj(z)22? dz < oo for j = 1,2, so T is limit circle at 1. However
[ |uj(z)P2? dx diverges for j = 1,2 so T is limit point at +oo. Thus

the deficiency indices are 1,1.

Before proceeding with the proof of the theorem, let us recall some facts
about the Wronskian of two solutions u(z), us(z) of 7u — Au = 0, where

Tu = 15y (= (o) + qu):




The basic result is that p(x)W (z) = constant. Let

[u, v)(2) = p(z) (u(2)v'(2) - v'(2)v(2)) |

so that a boundary value at m can be written in the form [u, v],,, = lim,_,,[u, v](z).
Then we have p(x)W (z) = [u1, Uz (x).

PROOF OF THEOREM 75: Let I' = [¢,m}. Suppose u,v are linearly
independent solutions of 72 = Mgz in L2(I', k). Let A € C and let w be any
solution of 7w = Aw on I' — 7w — Aw = (A — Ag)w. Normalize u,v so
that [u,7](z) =1 = p(x)W (x). Then by variation of parameters

z

w(z) = cu(z) + cv(z) + (A — )\0)/ E(t) (u(z)v(t) —u(t)v(z)) w(t)dt

z1
for ¢ < z; <m. Let

lwllzz = [ okt

for fixed x1, 2, and choose K so that sup,, .., (|[u[[2? - [|v]|7?) = K. By the
Schwarz inequality

[ @) (t) = u(®o(@) K@w(t)d] < Klluwl 2 (u(@) +ol@)), o <o <o

= [w(z)| < lerl - |ul@)] + lez| - [o(@) [+ [A = Aol - K - [Jwl][Z3 (Ju(z) + [v(2)])
= [Jwllz? < (ler| + [e2]) K + 2[A = Aof - K* - ][22

Now choose z; so large that |A— Xo| K? < 1/4. Then [|w||2> < 2(|¢;|+|c2|) K,
independent of x5. Thus

/m w(t)Pk()dt < 0o = w € LA(I', k).

Q.E.D.
We return to the case of the general 7 operator defined on the interval
I = {¢,m}. Choose ¢ € ({,m) and set I' = [e,m}. Now, fix a, 0 < a < 7.
Then there is a unique basis of solution ¢(z, A), ¥ (x, A) of 7u = Au in I' such
that
é(c,\) = sinq, p(c)d'(c,\) = — cos a,

(e, \) = cosa, p(c)Y' (e, \) = —sina.
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REMARK: ¢, are entire functions of the complex variable A\ for fixed =,
and ¢, ¢ are linearly independent. In fact

¢(c) ¥(c)

paw( =t 50 1) | =1= 16010

Therefore [¢,)](z) = 1.
Define the boundary values By, By at ¢ by

Bi(u) = cosa u(c) +sin a p(c)u'(c), By (u) = sin a u(c) — cos a p(c)u'(c),

so that Bi(¢) = By(v) = 0. Now choose b € (¢,m) and consider the bound-
ary value Bj at b defined by

Bs(u) = cos 8 u(b) + sin 8 p(b)u/(c),

for some fixed § such that 0 < 8 < 7.

REMARK: Every solution v of 7v = Av on I’(except 1) can be written in
the form v = ¢ + M, up to a constant multiple.

1. What must M be so that Bs(v) = 07
SOLUTION: Since Bs(v) = B3(¢) + M B;(¢)) = 0, we have

Bs(¢) _  cot B ¢(b,A) + p(b)4' (b, A)
Bs(1)) cot 8 (b, A) + p(b)y' (b, A)

Note that M (b, A, 3) is meromorphic in A (i.e., it is analytic in the
A-plane except for isolated poles) and it is real for real \.

M(b A B) = — (4.12)

2. For fixed A, what are all values of M such that v satisfies a real
boundary condition at b7

SOLUTION: For a real boundary condition we have 0 < 8 < 7 so that
cot B runs over all real numbers (and oc). We have

_cotﬂ A+ B cotﬁ——MD+B
cot 3 C + D’ - MC+ A’

where
A= ¢(ba )‘)’ B = p(b)¢'(b, /\)’ C= ¢(b; /\)’ D= p(b)lﬁ'(ba )‘)'
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NOTE: Since [u,v](z) = p(z)(u(z)v'(z) — u'(z)v(z)) and p(z)W (z) =
[u, T](x) we have

[¢,4](b) = AD — BC, [4,¢](b) = CD — DC,
[6,%](b) =1, [¢,8](b) = AB — BA.

The possible solutions M form a circle Cj in the complex M-plane.
Indeed since cot 3 is required only to be real, we see that the equation
of Cy is L

MD+B MD+B

MC+A MC+A

or
(MD + B)(MC + A) — (MC + A)(MD + B) = 0. (4.13)
This last equation can be written in the standard form
AD-BC|* (|AD- BC|\’
M-———_ """ | (== " "1 . 4.14
‘ CD-CD <|C’D—CD|> (4.14)

If we denote by M, and 7, the center and the radius of the circle Cj,
respectively, we see that
CD-CD [, ](b)

b:

Ty =

AD = BO| _ ‘[cb Al )\ 1
ICD—CD| [, ¢](b)] [, ¢](b)]
since [¢, ¥](b) =
Recalling that v = ¢ + M1, we see from (4.13) that another way to
write the equation of Cy is [v,v](b) = 0. Indeed:

[v, 0](b) = [¢, &) + M, 9] + M [, ¢ + |M|*[4), )] = 0.

3. An inequality for the interior of Cj:

[v, 0] (b)

w0 <
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4. An integral representation for (. As before, let v = ¢ + M1 and
suppose Im A # 0. Then integration by parts yields

/cb(Tv)ﬁk dx — /cb vTuk dx = [v,v](b) — [v,v](c),

2i Im )\/Cb W2k dz = [v,v](b) — [v,0](c).

For the special case v = 1 we have
b
2 m A [ [k do = [, 9]0
since [¢,9](c) = 0. (Note that in general, [v,v](c) = —2i Im M.)

Therefore the equation for (', can be written as

b Im M
’k dr = —— 4.1
[ Pk dz = = (4.15)
and the inequality for the interior of Cj is

Im M
Im A\

b
/ 0|2k dz < (4.16)

5. It follows from (4.15) and (4.15) that if b > by then the circle Cp, is
contained in the interior of C,.

It follows that there are exactly two possibilities as b — m:

CASE 1: Cj shrinks to a point M, i.e., r, — 0 and M, — My, as b — m.
Then vy = ¢ + M2 has the property

m Im M,
/ lvo|?k da = o

ImA

< 00,
whereas since 1, — 0 as b — m we have [[¢,¥](b)| = oo, s0

/Cm 6|2k da = oo

Thus the only square integrable solutions of 7v = A\v are constant multiples
of vy where [vg, vo|, = 0. This is the limit point case.

138



CASE 2: ()} shrinks to a circle C with radius ro, = limy_,,, 7, > 0 and
center M, = limy_,,, M. Then

L (1)

R T I R TR

Now since v = ¢ + M1 we see that if M belongs to the interior or the
boundary of C, then

b Im M
2 _ 00
/c [vo[*k do = ImA\
for all b, so
m Im M
2 _ oo
/c vol "k dz = my =

and v is square integrable near m. Similarly, we know that  is square
integrable near m. Thus we can conclude that all solutions of 7v = A\v are
square integrable near m. This is the limit circle case.

Lemma 34 Let v = ¢+ M1y. Then M s on the boundary of Cu

Im M
Im)\

s [0, 0] = 0 > /m|vo|2k dz =

PROOQF:
[v,v](b) = [M [+, ¥](b) + M[, 6](b) + M (¢, ¥](b) + [¢, 6](b)

= [, $](b) (IM — M, = 13).
Q.E.D.

4.3 Qualitative theory of the deficiency index

We begin with a technical result and refer to Hellwig for the proof.

Theorem 76 Let I = {{,00}, Tu = %u + q(z)u. Suppose there exist con-
stants oy, a9 > 0 and a function M(z) > 0 such that

1. M(z), M'(x) are continuous on the interval oy < x < oo for some
finite xy.
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|
/ dxr = o0.
w0/ M(x)
Then the limit point case occurs at T = 0o.

Corollary 28 If q(x) > —kx? then x = oo is limit point.

PROOF: Set M(z) =1 and z > 0 in the theorem. Q.E.D.

Corollary 29 —u" + q(x)u is limit point at x = oo if g(x) > 0 for all x.

REMARKS:

1. Suppose we have the limit point case at m. Then M., is independent
of B. Therefore we can set 5 = 0 for convenience and obtain

- B e
Mo = Jim M(B,b,3) = lim M(0,,3) = = Jim -5

2. My () is an analytic function of A for Im A > 0 and for Im A < 0.
Further Im My, > 0 for Im A > 0 and if M (\) has zeros or poles on
the real axis, they are all simple.

PROOF: For fixed b the center and radius of C}, are continuous functions
of A for Im A > 0, and the circles are nested as b increases. Therefore if
A is restricted to a bounded set I' in the upper half plane the functions
M (A, b, B) are analytic in A and uniformly bounded as b — m. Thus
the functions M (), b, 5) are equicontinuous so M, — M, uniformly.
The uniform limit of a sequence of analytic functions is analytic. The
rest follows from the identity

m Im M
2 . [
/c |vo|°k dx = T

Q.E.D.
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Recall that I = {{,m}.

Theorem 77 Let A be a self-adjoint operator obtained from T by imposition
of separated boundary conditions. Suppose Im X\ # 0. Then there is exactly
one solution u(x, \) of (T — A)u = 0, square integrable at £ and satisfying the
boundary conditions at £, and exactly one solution v(z,\) of (1 — A\)v = 0,
square integrable at m and satisfying the boundary conditions at m. Further
u and v are linearly independent.

PROOF: Since Im A # 0 and A is self-adjoint, A doesn’t belong to the
spectrum of A. We break the proof up into cases, depending on the boundary
conditions at ¢ and at m:

1. limit point - limit point. Then there is exactly one square integrable so-
lution u at £ and one square integrable solution v at m and no boundary
conditions.

2. limit point - limit circle. There must be one boundary condition B at
m, none at /. There is exactly one solution u at ¢, square integrable.
All solutions at m are square integrable and there exists a square in-
tegrable solution v at m such that B(v) = 0. If there are two linearly
independent solutions at m satisfying the boundary conditions then
v € H and B(v) = 0, so v € Dy and v is an eigenvector of A with
eigenvalue A. Impossible!

3. limit circle - limit point. Same proof as case 2.

4. limit circle - limit circle. The proof is similar to case 2, but boundary
conditions have to be applied at both endpoints.

Q.E.D.

Corollary 30 The conclusions of the theorem hold in the limit circle - limit
circle case if A is real but not an eigenvalue.

PROOQOF': This follows from Weyl’s first theorem. Q.E.D.

Let A be a self-adjoint operator on I = {{,m}, defined by separated
boundary conditions. Suppose 7 is limit circle at m, and let B(w) = 0 be
the boundary condition at m corresponding to A. The following remarks are
pertinent:
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. There exists a v € D, @ D_ such that

B(w) = [w,v]m =< w, 7 > .

. Suppose wy, wy € Dy, such that w; = wy = 0 in a neighborhood of 2.
Then

(Twy, wa) — (w1, Twa) = (w1, Welm — [W1, Wale = (w1, Wa)m

since [wy,ws)y = 0. Therefore B(w;) = B(ws) = 0 so wy, ws € Dy,
which implies [wy, wal, = 0.

. If wy,wy € Dy, and B(wy) = B(ws) = 0 then [wq, ws], = 0.

. Let Im X # 0. By the theorem, there exists exactly one solution u of
(T — A)u = 0 which is square integrable near m and satisfies B(u) =
0= [u, V]m.

. From comment 3, if B(w) = 0 then [w, u],, = 0. In particular, [u, ul,, =
0 implies u = ¢ + M (X)) where M (A) lies on the unit circle.

. We have shown that B(w) = [w,v], = 0 = [w,u], = 0. Now u
defines a nonzero boundary value B(w) = [w,ul, =< w,?; > on
Dy, with v; € D, & D_. We have shown that < w,? >= 0 implies
< w, >=0, s0 9 = av, a € C. Therefore, the boundary condition
B(w) = 0 is equivalent to the boundary condition B;(w) = [w, u},, = 0.

CONCLUSION: All separated boundary conditions defining self-adjoint
operators are of the form

B(w) = [w,u]n =0

where )
U, =0, w=¢+ Mp, 7Tu=Au,

and M lies on the boundary of the limit circle.

B(ﬂ) = [E’ u]m = p(JL‘)W(x) =0.

Therefore, if w € Dy and B(w) = 0 then 0 = [G, wl,, = —[W, u]m. It
follows that if B(w) = 0 then B(w) =0, i.e., if w € D4 then W € Dy.
We say that the boundary condition B is real.
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4.3.1 Separated boundary conditions in the limit circle
- limit circle case

Again let I = {¢,m} and choose ¢ € (¢, m). Let Im A # 0 and ¢7) be a basis
for solutions of (7 — A)u = 0 as before. Denote by Cy the limit circle at m

and C_,, the limit circle at ¢. Let
uy = ¢+ My, M, € C_,
Uy = ¢+ Math, My € Co.
Note that uq, us # 0 must be linearly independent, since if u; = us then
/Zm \uy |2k do = [u, u], — [u,u), =0,
which is impossible. Let
Ds={w €Dy, : [w,u1]e =0, [w,usl, =0}.

Define Aw = 7w for w € Dy. We will show that A is symmetric, hence
self-adjoint. To do this we first solve the equation (A— AE)u = f for u € Dy
where f is any element of H = L2(I, k).

Normalize uy,uy so that [uy,Ts](x) = p(z)W(x) = 1. Then, using the
method of variation of parameters to solve the second order ODE we find

u(z) = aus (z) + bus(z) + /e " (s (@) ualt) — un(@)un (t)) F(2)E(E)dE.
Differentiating once we have
/(@) = au (@) + by (a) + [ (uh (@) ua(t) = wh(w)us () () R(E)
From these expressions we see that
[, w1y = blua, uale = 0

for u € Dy4.

Lemma 35 [ug, ui] # 0, [ug, u1]m # 0.
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PROOF: It is straightforward to verify the identity

[ur, u1](z) [ug, ug](z) — |[U1,U2]($)|2 = \[U1,U2](33)\2-

However, [u,Ts](z) = 1 for all z. Since [uy,u1](z) — 0 as z — £ and
[Ug, ug](x) — 0 as x — m it follows that [ug, u1]e # 0, [u2, U1]m # 0. Q.E.D

Since [ug, u1]e # 0 we must have b = 0. Similarly the boundary condition
for u at x = m gives

[, ta)m = aftr, s + [t11, Uz /é " s () f(k(t)dt = 0

where [u1, us], = 1. Thus we can solve for a and finally obtain the result

u@) = [ g, ;NS (Ok(W)dt = G,

where
—ug(z)us(t) £<z<t<m

9(z,tA) = { —uy(z)ug(t) £<t<z<m.
Note that u € D4 and

/em /Zm lg(z,t, \)[2dz dt < oo,

i.e., G is a Hilbert-Schmidt operator, which implies that G is completely
continuous, but not symmetric. We conclude that G = (A — AE) ! is a
bounded operator with Dg = H and Rg = Dj4.

REMARKS:

1. A is symmetric, hence self-adjoint. Indeed, if vy,vy € D, there are
fl, f2 € H such that V1 = Gfl, Vg = Gfg Thus

[v1,V2]m = [Gf1,Gfolm =0, [vi,v— 2] =[G f1,Gfa]e =0,
by explicit computation. Therefore
(Avi,v2) = (v1, Avz) = [v1, Valm — [v1, 12)e = 0.

Q.E.D.
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2. There exists a real number )\, that is not an eigenvalue of A. Indeed,
Aand G = (A—\E)™! have the same eigenvalues. But G is completely
continuous so it has only a countable number of eigenvalues. Thus there
must exist a real number Ay that is not an eigenvalue of G. Q.E.D.

3. Repeating the same construction as above, but for the real number )y
rather than the complex number A with Im A # 0 we can obtain a

function @)
) mvr)u(t) t<x
g(l',t, )\0) - { —’Ul(x)UQ(t) r <t
such that
[v1, u1]e = [v2, Us)m = 0, (1—X)v; =0, j=1,2,

so that the associated operator (A — X\g)~! is a symmetric (since Ay

is real), completely continuous Hilbert-Schmidt operator. Thus A has
a countably infinite number of eigenvalues A, such that )\, — oo as
n — oo (no finite limit point) and corresponding ON eigenvectors ¢,
that form a basis for 4. Thus

A¢n:)\n¢m n:172a"'a

and for every u € ‘H we have

If u € D4 then the series

o0

u(@) =3 (u, én)n(@).

n=1

converges uniformly in any bounded subinterval of I.
EXAMPLE: The Legendre equation
Tu = —[(1 -z, I=(-1,1).

Here, p(r) = 1 — 2%, k(z) = 1 and the eigenvalue equation is Tu = Au. let
us solve the equation 7u = 0, i.e., A = 0. If we can show that all solutions of
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this equation are square integrable, it will follow that this is the limit circle
- limit circle case. The equation to solve is

—(1 = 2Hu" + 220’ = 0.

Set v = u/. Then the equation is

, 2z :>dv ( 1 1 )d
V= —"—v — = — s
1— 2?2 v l—2z 14z ’

S0
Inu'=—In|1—z|—In[l+z|+1nc

or v/ = ¢/(1 — z?). Thus the general solution is

A basis for the solution space is

1+x)

ur(z) =1, uy(z) =1In (1 —x

Both these solutions are square integrable in I, so by Weyl’s first theorem,
this is the limit circle - limit circle case.

Now let us solve the general equation 7u = Au. We will try a power
series solution u(z) = >7° , a,z™. Substituting into the differential equation
we find

—(1-=2*)> n(n—1az" 2422 naz" " =AY az" =0.

Equating coefficients of 2™ on both sides of this identity we obtain the con-
ditions

—(n+2)(n+1)apse +n(n —1)a, + 2na, — Aa, =0,n=0,1,---,
or

(n+1)n—A
n+2)(n+1)

Apt2 = ( n-

1. One solution is obtained by setting ag = 1,a; = 0. We see that this is
an even solution and contains only even powers of . By the ratio test,
the series converges for |z| < 1. We denote this solution as u;(z, A).
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2. The second solution is obtained by setting ag = 0,a; = 1. This solution
contains only odd powers of z. By the ratio test, the series converges
for |z| < 1. We denote this solution as ua(z, \).

We assume that u;, us are normalized such that ||u,|| =1, j =1, 2.

Note that one of these solutions is a polynomial in z if and only if A =
k(k=1),k=0,1,2,---. Now let’s look for solutions of the form 3 b, (z—1)",
i.e., solutions expanded about x = 1. The result is as follows: There are

solutions
1—z

@) = Y enl=50)"

where

(k+D)p+2)---(p+k) - (p)(=p+1)---(—p+k—1)

(n!)?

and A\ = u(p + 1). The series converges for |z — 1| < 2. Note that

=1, c,=

1
=1, P="0FD
It can be shown that there is an independent solution that behaves like
ln(;—i) near x = l,i.e., has logarithmic behavior. Similarly, near x = —1
there is the solution P,(—z) and an independent solution that acts like
In(L2)

The following facts can be obtained from special function theory:
1. P,(z), P,(—z) are linearly independent unless y is an integer.

2.

3. .
im (1 =a?) Pl@) =
4.
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Thus, if 4 is not an integer, we have
ur(z,A) = Ay (Pu(z) + Pu(=2)), wus(z,A) = B, (Pu(z) — Pu(—1)),

where A,, B, > 0.
From these results we can write down an explicit basis for the boundary
values at r =1 and z = —1:

Bi(w) = fu, 1y = Jim (@*~1)u/(@), Bofw) = [w, 1.1 = Jim (e*~Dw'(2),

2 1+z
) / )

2 1+z, ,
= — In( Yw (x))

What does Dy, look like? Note that Bi(In1t2) = By(In ££) = 2. let
f € R4, where

By(w) = w, ()}, = lim (1 - 27) (w(:c)

z——+1

Ba(w) = [w,ln(i Rk

—x)]_ —whrgl(l — %) (w(fv) -

Dy ={u: ru=f, fe LX)}

By the method of variation of parameters we have the general solution

)1f(2) dt

1+2x z 1 141 142z
u = ¢ + ¢z In( ) / [In(

- ~1
=2 T 3G

[c1+2/ 1” £) df] + In (1+i)[cz—l/if(t) ).

- x2 2 / t) ]

Thus, By (u) = By(u) = 0 < ¢, = [, f(t) dt = 0 <= u(xz) is bounded at
—1 and +1.
Let

Note that v € H and

u'(z) =

Dy = {’LL € DAl : Bl(u) = BQ(’U,) = O}

and Au = 7u, for all u € D4. Then A is symmetric because for u,v € Dy
we have

(Au,v) — (u, Av) = [(1 — &) (u(2)v'(z) — v(@)u (z))] | = 0.
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Note:

1+z

@),

1+x 1—
1— x](l“) — 5[1}, 1](x)[u, In ]

(u,7](z) = %[u, (), In

The normalized eigenvectors of A are

1
vn(z) =4/n+ §Pn(x), Am=nn+1), n=0,1,2---

where the P,(z) are the Legendre polynomials. (A simple expression for
these polynomials is Py (z) = sim4-(z? — 1)") If u € Dy then u(z) =

o0 o(t, vp)vy () and the series converges uniformly on [—1,1].
To describe the general self-adjoint extension we need to consider the case

A=p(p+1) =i Thus

uy (2,1) = Au(Pu(@) + Pu(—7)),  ua(z,i) = Bu(Pu(z) — Pu(-1)).

Each self-adjoint extension is defined by a 2 x 2 unitary matrix 6 = (6;).
The domain for the self-adjoint operator Ay is

Dy, = DA—O@S.

A basis for S is

w1 (.T) = U (SL', ’[,) + 011’11,1 (Z'Z) + 912U2(3).i),

wa(x) = ug(x, 1) + O uq (2.7) + Oaug(z.7).

The boundary conditions describing Ay are
B (u) = [u, wl]l_1 =0, Bs(u)=/[u, wg]l_1 =0.

Then particular extension D4 is the case

-(4)

See the book of Akheiser and Glazman for more details.
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Example 18 Bessel’s equation. Before proceeding with our theoretical de-
velopment we look at Bessel’s equation

2
—(zu") + V—QU, —Aru=0, v>0
T

as an important example of one equation that leads to several very distinct
spectral problems. Here the formal differential operator action is

(xul)l V2

T 2

TU = —

Thus, in terms of our usual notation, k(zr) = z, p(xr) = z, q(z) = v?/22.
Since x = 0 1s a singular point for this operator were must choose our in-
terval I such that it does not contain x = 0 as an interior point. There are
essentially three distinct cases:

Case 1: I; = (0,b), b > 0.
Case 2: I, = (0,+00).
Case 3: I3 = (b, +00), b > 0.

To determine the nature of the conditions at the boundary points we set A =0
in the eigenvalue equation Tu = Au:

2

v2u

—zxu —u' 4+ —=0.
x

Substituting a trial solution u = x™ into this equation we find the condition
—nn—1)—n+v’=0=n=+v.

Thus for v # 0 we have a basis of solutions ui(z) = x¥, us(x) = ¥, (If
v =0 there is a basis ui(x) =1, us(z) =Inz.)

Case 1: I, = (0,b). At b we are clearly in the limit circle case. Clearly u;
belongs to the Hilbert space for v > 0. As for us, near x = 0 we have

1
/ ="
€ 20+ 2

1 _ 6_2U+2
= ¢ ” square integrable «<— v < 1.

For v > 0 we are in the limit circle - limit circle case provided v < 1.
(In this case the spectral expansion is in terms of Fourier - Bessel
series.) If 1 < v we are in the limit point - limit circle case. Finally,
if v = 0 we are again in the limit circle - limit circle case.
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Case 2: Iy = (0,+00). Here +00 is in the limit point case, so we have limit
circle - limit point for 0 < v < 1 and limit point - limit point for 1 < v.
The spectral expansion is in terms of the Hankel transform.

Case 3: I3 = (b,+00), b > 0. This is a limit circle - limit point case.

4.3.2 Separated boundary conditions and spectral res-
olutions in the limit point - limit circle case

We now consider a self-adjoint eigenvalue problem where the interval is of

the form I = [¢,m), we have the (regular) limit circle case at £ and the limit

point case at m. By introducing an appropriate change of variable we can

assume I = [0, 0o) with the limit point case at co. Assume that the boundary
condition at ¢ = 0 is

Bo(u) = sina u(0) — cos a p(0)u'(0) =0

for a constant « such that 0 < o < 7. To start with, we consider the regular
eigenvalue problem

Tu=Au, By(u)=0, By(u)=-cosp u(b)+sinf p(b)u'(b) =0
on the finite interval [0, b], where 0 < 8 < w. We argue as follows:

1. There exists a sequence {\,} of real eigenvalues and an ON set of
corresponding eigenfunctions {6y, }. Note that By(0p,) = By (0pn) = 0.

2. For any complex number X let ¢(z, A), ¥(x, \) be solutions of 7u = Au
such that
¢(0,A) =sina, p(0)¢'(0,A) = —cosa,
¥(0,A) =cosa, p(0)y'(0,)) =sina.

Then By(y) = 0.
3. Therefore there exist constants 7y, such that Oy, (z) = rp, (2, Apn)-

4. Let f(z) be a continuous function on I which vanishes outside the
interval 0 < z < ¢, where 0 < ¢ < b. Then by Parseval’s equality

2

/0 " (@) (@, A K(z) da

o0

[ 17@)Pk@) dr =3 P

n=1
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5. Let o
90 = [ @iz V() do

and let p,(A) be a monotone increasing function of A such that

a. pp has a jump of |ry,|? at each eigenvalue )\,, and is otherwise
constant.

b. pp(A +0) = py(A).
c. pp(0) = 0.
Then o o
|1 @k@) do = [ 19 dps().

here py(A) is the spectral function.

Now we are ready to state our principal result. Let o be a monotone
increasing function on (—oco,400). Further, let L?(o) be the space of all
complex valued functions h, measurable with respect to ¢ and such that

[T IO do () < co.
We consider the eigenvalue problem Au = 7u where
Dy = {u € L2([0,00),k) = H : u' abs.cont., Tu € H, and By(u) = 0}.
Theorem 78 Suppose T is in the limit point case at +00. Then
1. There exists a monotone increasing function p on (—oo, +00) such that

p(A) = p(p) = Jim (pp(A) = po(1))-

2. If f € L2(1,k) there exists g € L%(p) such that

2
dp(\) =0,

+oo

tim [ o)~ [ £@)vw Nik(a) do

a—+0 J_o

1.e.,

in L2(p), and

152



3. Let my(\) be the limit point at +00. Then my, is an analytic function
of A for Im X\ >0 and Im A <0, and

1o ,
pN) = pl) = Jim — [ T mo (v i) o

at points of continuity A, i of p.

+oo<1 1

mw(ﬁ)_m““"):/ A=l A—1ly

—0oQ

) dp(X) + et ~ &)

where the constant ¢ > 0 (actually we will show ¢ = 0) and Im £+0 # 0.

Before getting to the details of the proof of this important result, let
us restate the theorem in terms of the spectral resolution of a self-adjoint
differential operator. Here,

Au=171u, Dy ={u€ Dy, :sina u(0) — cosa p(0)u'(0) = 0}.

A is a self-adjoint operator. Given any f € H = L?([0,00), k) we define the
transform g of f by

90 = [ F@)(e V() da.

The expansion theorem for f takes the form

+o0
f@)= [ g A) dp(n).
where (7 —A)9(x,\) = 0 but in general ¢)(x, \) ¢ H. The spectral expansion
is

$@) = [ "By @) = [ o)l do,

—0oQ

SO
A

dEy f(z) = g(N)¢(z, A) dp(R),  Exf(z) =/ gN)(z, A) dp(A).

If f € D4 then N
Af@) = [ AgN(@,N) dp().

—0oQ
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Corollary 31 If g()\) € L2(p) then there exists an f € L*(I, k) such that g
15 the transform of f.

To finish the proof of our theorem we need two theorems that are proved
in real analysis courses:

Theorem 79 (Helly Selection Theorem) Let {h,}, n = 1,2,--- be a se-
quence of real monotonically increasing functions on (—oo, +00) and let H
be a continuous nonnegative function on (—oo,+00). If |h,(N)| < H(A),
n =12, —00 < A < +00, then there exists a subsequence {hy,} and
a monotonically increasing function h such that limg_,eo hn, (A) = h(A) and

|h(A)| < H(A), —00 < A < +00.

Theorem 80 (Integration Theorem) Suppose {h,} is a real, uniformly bounded
sequence of monotonically increasing functions on the interval a < A < ¢ and
suppose lim, o0 by (A) = h(A), for a < X\ < c. If f is continuous on [a,c]
then

c C

lim [ f(0) dhn()) = / FOA) dh(N).

n—oo a a

PROOF OF THEOREM 78: As in the lead-up to the theorem we consider the
basis functions ¢, 1 and the interval [0, b] with boundary conditions By, B, at
the left-hand and right-hand boundary points, respectively. We have chosen
1 so that always By (1)) = 0, so the eigenvalues and eigenvectors for this reg-
ular problem are {\y,} and {6y, }, respectively, where Oy, (x) = rp(x, Apn)-
Now let Im A > 0 and let my(X) = m(b, B, \) € Cy. Set

Xo(@) = ¢(z,A) + my(A)h(z, A),  [xe, xe](b) =0, 7X5 = AXe-
Choose my(A) such that By(xs) = 0. The completeness theorem for the
regular problem on [0, b] implies

0o 2

/Ob |Xb($)|2k($) dz = Zl |7“1m|2 ‘/Ob xo () (2, Apn) k() dx

Furthermore,

=) [ (@) (1, Aok () d =
/0 s (2)]8 (2, Ao ) o) dr — /0 (@)@, A )k (2) da
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= [Xbawbn](b) - [Xba ¢bn](0) =
because [Xs, V] (b) = 0 (since By(xp) =0, By(tp,) = 0), and

[Xbs Ybn] (0) = (@b, ] (0) + mp(X) [, Y] (0) =

(since [@p, Vb |(0) = 1 and [¢)p, ¥4, ](0) = 0). Therefore,

1
)‘_)‘bn

[ o) (a) do = [P0

From the Second Weyl Theorem we have

Immb()\)
/ x0(2) k(z) da = =2

/Ob Xo (@)Y (2, Mg ) k() do =

which implies

SO

[ n)_ Iy
—00 |)\ - /,L|2 Im )\

We investigate this identity in the limit as b — 4+o00. If A = 4, then for b > 1,
C: D C}, which implies

< constant =k

[ pu(t)

—00 ,U:2 +1
for all b > 1. Thus,
| dmp) < k(1 + ?)

for all @ > 0. Since py(0) = 0, this implies
lpp(a)| < k(1 +a®), —oo<a < oo.

It follows from the Helly Selection Theorem that there exists a limit function

plp) = lim py(n), |p(p)] < k(1 + p?).

bj—+oo

This proves the first statement of Theorem 78.
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02
Suppose f €C ([0,00)). Then f € D4 and

/0 i1 (x) dx—/ \/ (rf(z k(z) dz[? dpy(p).

Since

is the transform of f we have

| ne, wk@)da = [~ o)k da = pg(u).

Therefore,
|k de = [ n?lg(n) dos(n).

Now

[Tk da= [ g dpo] < 1= [ 19Go) dpn)+ [ lg(n)* dps(rn)

2 [ 2
| [T o= [ lg()? dpy(p).
We have

[Tk dz = [ g davt) = ([ "+ [)latnl? o)

= [ 19 dpy(n) — 0

as a — +oo. Furthermore
[ 9@l dps()a® < [ 19l dpalu) < [ (s Pk da
Therefore,
[e%s} a 1 [e’s}
[Tk da = [ g dp)| < = [T InrPk da.
Thus we have obtained Parseval’s Theorem
2 +oo 2
L1 = [ g0 dp(). (4.17)
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We could now use standard arguments to prove (4.17) for all f € L%(I, k).
This is the completeness proof of statement 2 in Theorem 78.
Once we have Parseval’s Theorem, the proof of the expansion formula

F@)= tim [" gz, \) dA

HV—00 )y,

becomes “standard abstract nonsense”. However we give the details.
Let f1, fo € H with transforms gy, go € L?(p). Then

| @ R@kE) do = [ (1901 do(n),

0

since
1 . , : ,
Jifa= 1 {|f1 + fol? = |fi = Sl +ilfr + ifo? — i f1 — lf2|2} :
Now let 6 = (A, v] and set

fa(z) = /A gy (@, 1) dp(p)

where ¢ is the transform of f. Let F' € #H such that F(z) = 0 for z > a
(say), and let G be the transform of F. Then

/Ooo fa(x)F(z) k

7) do = /0 " (@) F@) k() do =

|7 1@ Tk do= [ oGl ol

0 —00

Now let A® = (—o00, +00) — A. Then

| (@) = fa@)F@) k) dz = [ g(n)GTa) dp(p)

SO

[ = AT ke daf? < [ g dpl) [ 1G(n)? do()

</ W) dp(u /0°° |F(2)2k(z) dz
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F(x):{ f(z) = falz) f0<z<a

=0 ifxz>a

Then a
1 = fal k(@) da < [ lg()? dpp).

Letting a — +00 we have
AwV_JMQM@d$§[JAMVdMM-
Thus,
/)\I/ g(u)(z, p) dp(p) = fa — f € H as A — (—00,+00).
This finishes our verification of the expansion formula.

We turn to the proofs of the fourth and third statements of the Theorem.
We know that

too dpy(p) _ Im my(A)
- Im A > 0.
lw\A—MQ mA » N7

For any fixed A\ with Im A\ > 0 there exists a constant ¢ > 0 such that

“+v
/ dpy (M)2 <¢
v [A=pl

for all b > 1 and g > 0. Then if we let b — +o0, it follows from the
Integration Theorem that

“+v
/ dp(u)2 <e.
—v A= pf

Recall that
<k

/*“cbﬂu)
—0o0 /,l/2 +1
for all b > 1. This implies for all b > 1 that there exists a ¢ > 0 such that

s <= if v>1.
7 v

/*deu) q
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Similarly, there exists p > 0 such that

v dpy()
‘/oo pu?,u

<B ifvr>1
v

uniformly for all b > 1.
Now if Im A\ # 0, Im Ag # 0 then

too 1 1 Im mb()\) Im mb()\o)
_ _ _ L (41
/oo (\u—w |u—,\0\2> Apn() = =1y Tm Ao (4.18)

As b — 400, v — +0oo the left-hand side of (4.18) behaves as

(/—u +v 400 ( 1 1 ) J ( )
+ [ + ) —
oo e Tl S\ = AR T Ja=a2) Y

+oo 1 1
— — d ;
[ (e im0

whereas the right-hand side of (4.18) behaves as

Im my(X) _Im mp(Ao) . Im meo(A) _Im moo()\o).

Im A Im Ay Im A Im Ay
Thus,
oo dp(p) Im meo(A)
=——F= ImA>0.
/_oo A—pf 7T Ty 0 M7

We can show that ¢ > 0. Note that Im my(A)/Im A > 0. Now suppose
c < 0. Let Re A =0 and choose Im X so large that

+oo
[ de) el
—00 |)\ - ,U;‘Q 2

Then
Che=ld i
——+c=—+c
2 2 ’

which is a contradiction. Thus ¢ > 0. ( Actually it can be shown that ¢ = 0.)
We turn to the third statement of the Theorem. Let A v be points of
continuity for p. We have

A . o too e dp(o)
61—1>I—EO/U Im moo(,u—i— 16) d,LL o 61—1>I£0/y d,LL /—OO m
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+o0o

_ A—o vV—o
= lim arctan(

— t
- ) — arctan( -

e=+0J 0

) dotor
_ 7T/VA dp(o) = 7 (p(A) — p(0)),

because
™ iftA>o0>v
R o R e e
0 otherwise.
Therefore -
dm, = / Im 1o (1 + i€) dp = p(X) = p(v).

This concludes the proof of Theorem 78.

Corollary 32 The map f € H — g € L?(p) is unitary.

REMARK: If 7 is limit circle at oo, Theorem 78 still holds if we pick out a
unique my(A) € Cy by means of a boundary condition at oo:

B(u) = [uava]ooa CAS D-I-'

The corresponding boundary condition at b is By(u) = [u, v](b).
We describe how to compute mq,(A), Im A # 0, in the limit point case at
00:

o _ . cos@(b,A) +p(b)g' (b, A) sin B
Moo(A) = Jim m(b, 5,4) = = Jim N+ p(0) 0 (b, A sin B

The limit is independent of 8 so we can set § = 0 for simplicity:

¢(b, A)

o) == B
Example 19 Tuoke
d2
T:—E, I:[0,00)

Here the equation Tu = 0 has a basis of solutions ui(z) = 1,us(x) = x, so
the problem is limit circle at O and limit point at oo. We choose the boundary
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condition By(u) = u'(0) = 0. Then the basis of solutions ¢,v of Tu = Au
such that

6(0,0) =0, #(0,)) = 1, $(0,) = 1, (0, ) = 0
18

o(zr, ) = _sin\;/;x’ Y(x, \) = cos VAz.

Thus for Im X\ > 0 we have

m ()\) = — lim (23(37,)\) = lim tan \/Xb — _L L
i b—oo w(aj)\) b—o0 \/X ’L\/X \/X’
and, for e >0,
L ifu>0
I ~ = Vi
oo (41 + de) { 0 ifpu<O0
Therefore,
1 1 2
— =— | —dyu=-— - VA
p) = pN) = [ dn (Vv = V),
and we can take \
_ ) 2y ifp>0,
plu) = { 0 ifpu<0
We conclude that the transform and expansion erpressions are
()= [ Fa)eosiw e, [(a) =~ [ g(u)cos i au
9(u) = |, pz de, =_J 9l he

4.3.3 Separated boundary conditions and spectral res-
olutions with singular behavior at each endpoint

Now we consider the case where there is singular behavior at both endpoints
¢ and m. Without loss of generality, we can assume ¢ = —oo and m = 400,
so I = (—o0, +00).

Let ¢1, ¢ be solutions of 7¢ = A¢ such that

#1(0,A) =1, p(0)¢(0,\) =0,
$2(0,A) =0, p(0)@h(0,\) =1,
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for all complex A. Let a, b be finite numbers such that a < 0 < b and consider
a regular eigenvalue problem on the finite interval § = [a, b]. The problem is
Tu = Au with boundary conditions

B,(u) = cosa u(a) + sin o p(a)u'(a) = 0,
By(u) = cos 8 u(b) + sin 8 p(b)u'(b) =0, 0<a,fB <.

Then there exist a sequence of eigenvalues {5, } and ON eigenvectors {hg, }
such that 7hs, = Mg, hsn, and for all fi, fo square integrable on §, we have
Parseval’s equality

/a " @)l k() do = i ()P k() da / " ()i k(x) de. (4.19)

n=1"02

Now there exist constants {rs,1}, {rsn2} such that

hdn = T6n1¢1 (.’L‘, )\(Sn) + T6n2¢2 (.’L‘, )\(Sn)

for n = 1,2. (We can assume that the r’s are real.) Thus for any f € L2(I, k)
we can write

n

L@ k@) da= [ 5 Gailaan) dpsie()

h Jik=1

where

90.(1) = [ F(@)6x(x, Asn) do

and ps = (psjx) is the spectral matrix. The matrix elements are step
functions with their only discontinuities at {s,}. Here

Poik(A+0) = psik(Asn — 0) =D TomiTomk

and the sum is over all m such that A5, = As,. We require that ps;x(Asn+0) =
psjk(Aon) and psr(0) = 0. Note: ps is a Hermitian matrix.

In the folowing we assume Im A\ # 0. Let x, = @1 +m4¢2 be a solution of
TXa = AXa Such that By(x,) = 0.Thus m, € C, and [x,, xa|(a) = 0. Further,
let x» = ¢1 + mpo2 be a solution of 7x, = Axp such that By(x,) = 0, which
implies my, € Cp and [xs, x5](b) = 0. Note that x,, x» are linearly independent
and

W(XaaXb) = [Xaa%](x) = [Xa;%](o) = mb(/\) - ma()‘)'
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Now we apply the Parseval equality (4.19) to

] Xe(z,A) a<2<0
f1($)—{0 o<z <b, fa(w) = Xo(z,A) o<z <hb,
We consider three cases.
1.

2

[ xaan b d

0 00
J1A@P k@) de = [l kdo =Y
a n=1
To evaluate the left-hand side of this equation we observe that
0 0 0
27 Im )\/ IXa|? k dz = / (TXa)Xa k dx —/ Xa(TXa) k dx

= [Xaa Xa](o) - [Xaa Xa](a) = [XaaXa](O) = —2i Im ma()‘)'

To evaluate the right-hand side of the equation we note that

(/\ - )‘(Sn) /ao Xa@ k dr = [Xaa hén](o) - [Xaa hén](a) = [Xaa hdn](o)

= [p1 + Ma(X) P2, Tsn101 + Ton202](0) = Tonz — Tonima(A),

because
[f1, 1] = [d2, 9] =0,  [d1,¢2] = 1.
Thus the identity becomes

Im A\

_Im ma()\) _ Z |T6n2|2 + |7'6n1|2|ma()\)|2 - mrﬁnlma()\) - T&n?Wma()\)

A — Asn|?

2

/|f(:v)|2k(a:)d:v=/b| |2kdx=§j/bxh—kdx
5 2 0 Xb 2o b/lon

To evaluate the left-hand side of this equation we observe that

2i Tm A /Ob 1x6|? & dx = [x5, 5] (0)—[X6, X](0) = —[Xb, X5](0) = 23 Im my(N).

To evaluate the right-hand side of the equation we note that
b
(A= Aén) /0 Xohon k dz = [Xb, hen](0) — [Xb, hon](0) = —[xb, hen](0)
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= —[¢1 + mp(X) P2, Tsn1d1 + Ton202](0) = —Tonz + Tonimas(N),
Thus the identity becomes

Im my(A) _ 5 Tsn2|? + [Ton1 [2ms(N) > — TonaTsnims(N) — TsnaTonims(N)
Tm \ . PEESYSE '

- o 0 e
[ @ H@ k) dr=0= > | Xahon b da [ xuhin k do.

From the computations above we thus find

_ — Moz = Tsmma(N)) (=Tsn2 + Tsn1mp(A))
0=2 A=Al

5 —|7sn2|* + TonaTonima(A) + Tsn1Tonzms(A) — 7501 [*ma(X)my(N)
A — Agn|? '

n

We can express these three identities in terms of the spectral matrix
ps = (psjr- Indeed, noting that psi12 = pso1, we can write the identities as

1.
_Im m,(}) _ /+°° dpsaz (1) + dpsir (1) [ma(N)[? = dpsia(p) (ma(X) + ma(N))
Im A —o0 |\ — pul? ’
2.
Im my(A) _ / +00 dpgaa (1) + dpsri (1) [ms(N) [ — dpsiz (1) (ms(N) + mip(N))
Im A —o0 A — ul? ’
3.

0=/ 02 —dpszs (1) = dps1a (1) ma(Nms(A) + dpsia (1) (ma(A) +mu(A))
- A — pf? '
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Note that we have three linear equations for the three measures dps11, dpsi2, dpso-
Straightforward elimination yields the results

oo dpsii (p) _ Im Msi1 (M) B 1
/_Oo IAJ— = ImJA . Msn(N) = O — ()’ (4.20)
[ pemle) Im D) M) = T )
too dpsia(p) [+ dpsar () Im Miia(X) ~ Tmg(N) +mp(N)
Lo M&— > L» IAJ— u? oy M) = 2m,(N) —(Zn%(;))'

Note that a consequence of (4.20) is the inequality

Im (mb - ma) — /+oo |ma - Tn}b|2 dp(:u') >0
Im A —00 ‘)\ — [1,|2 -

This implies that m,(A) and my(A) are in opposite half planes for Im \ # 0.

Just as in the limit circle - limit point case we can let 6 = [a,b] —
(—o00, +00) and use the Helly selection Theorem to show that there exists a
sequence of intervals d,, = [ay,, b,] — (—00, +00), and corresponding bound-
ary conditions B,,, By, such that ps, jx(1) — pjr(p) for j, k =1,2. Further
we can show that the matrix function p(u) = (pjr(p)) is

a. Hermitian (Indeed we can assume that it is real and symmetric.)
b. The symmetric spectral matrix satiesfies p(A) — p(p) > 0if A > p.

c. Each pjj, is of finite total variation on any finite u - interval.

In the limit point case at —oo and +oo, p is unique, since C,, — pt.
and Cp, — pt. as n — oo. If there is a limit circle endpoint (say +oo)
then to define a unique extension we need a boundary condition By, (u) =
(U, V]oo, v € D4. Now take By, (u) = [u,v](b,) and define my, (A) € Cy(N) by
By, (Xb.) = 0, Xp, = ¢1 + mp,, B2

We conclude that in all cases we obtain a limit spectral matrix p(u) such
that

v

()~ o0 = lim [ T M+ i) d (123
where
My () = ! My (3) = MmN o

M_o0(A) — Moo (A)’
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Im_w(N) + Mmeo(N)
2m_oo(A) = meo(A)
Note: In the limit point - limit point case we have

B ¢1(a, A)
mfoo(A) - G‘EI_I]OO ¢2(U,, A)7

Mia(N) = Moy (N) = (4.25)

lim 616, )
b——+infty ¢2(b, /\) '

Mioo(N) = —

The derivation and proof of the expansion therem follows by analogy with
the limit circle - limit point case, and we just present the results. Let L?(p)
be the Hilbert space of all vectors g(u) = {g1(1), g2(t) } such that

ol = [ 3 0 o) <

0 j k=1

where
/ Z g;(p hk ) dpjr ().
0 jk=1
Note that |[g|| > 0. Now let f € H = L?(I,k). We define the transforms
9=1{91,92} of f by

gw= lim [ f@)é;@ ) k) do

a——o0, b=+ Jg

where the convergence is in the Hilbert space norm. The limit exists and g €
L2(p). Furthermore, for (I, f2) € L2(I, k), we have the Parseval equality

[ 1@ k@) de = [7 5 o (e o)
0 j k=1

i.e., the map f € H — g = {91,902} € L%(p) is unitary. The expansion
theorem is

/ Z%xugz« 1) dpjr(p),

k=1

where the convergence is in .
Example 20 Consider the eigenvalue problem tu = A\u where

n

TU = —u +gu, I=(0,+), 0<v.

166



If we set u = \/zv(zx) then the equation Tu = Au becomes

! 2
- ==+ Sv=X
Tz x

or
2

1, ,, v
;(mv) +pv—/\v,

which is Bessel’s equation.

Set A\ = 0 and look for solutions of Tu = 0 of the form u = z®. Such
solutions exist provided o = 1/2 + v. From this resilt we conclude that our
problem is limit circle at 0 if 0 < v < 1 and limit point at 0 if v > 1. It is
limit point at +oo for all v > 0.

Now we compute a basis of solutions of Tu = Au near x = 0. We use the
trial solutions

o0
u(@) =Y apz™®, a=1/2+v,1/2 -
n=0

From this we find the two solutions
ui(z) = Va,(VAz), us(z) = Vo), (Vaz),

where

1w = > wes (5)

n=>0
and the series converges for 0 < |z| < oo.

Note: The Gamma function is defined by
(8) :/ e'# 1 dt, Ref >0,
0

and extended by analytic continuation for all complex v # 0,—1,—-2,---. It
obeys the identities

™

L(B+1)=pL(B), TLEI1-p)=

~ sinwf’

In the special case B =n + 1 where n =0,1,2,--- the first identity becomes
I'(n+1) =n!l. Clearly, u — 1,u — 2 are linearly independent unless v is an
integer. Then J_,(z) = (—1)"J, ().
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We need to find solutions that form a basis for all v. Note that

J(3) = 7;{5/ _23;) (1+06), Jife) = 7(“:242():)_ ~(1+0(?).

Thus the Wronskian is given by W (J,(z), J_,(z)) = C or

2sinvm C
z

Wy, J-)(@) = — +0(2) =

I

™

or W(J,,J ) (x) = —20T  We define the Neumann function by

T

J,(z) cosvm — J_,(x) ‘

sin v

Y, (2) =

Using the L’Hépital theorem we can verify that the Y,(z) = lim,, Y,(z)
erists and defines a solution of Bessel’s equation for v = n. Further, we
have Lommel’s formula

1 1
W (Jo(@), Yo(@)) = S (), Jy) = ——W (Jy, J_y) = —

sin v

2
W(Jua J—l/) =

sin v sin v T

so{J,,Y,} is a basis of solutions of Bessel’s equation for allv # 0,—1,---. A
second important basis is {HY, H®)} where the Hankel functions are defined
by
. J_,(x) — e ], ()
HY(z) =, Y, (2) =
(@) = (@) + i, (2) e ),
J ,(x) — et ], ()

—gsin v

HP (z) = J,(z) — ¥, (z) =

Now fix a finite number ¢, 0 < ¢ and construct the associated basis of solutions
of Tu = Au at c:

62(z,3) = —5v/3e (L(VAD)Y, (V) = Y, (V) 1, (V)

$1(w, A) = gm (7. (VA2)Y;(VAe) = Y, (VAz) T, (VAc)) — 2lc¢2(x, A).

Then a straightforward calculation making use of the Wronskian formulas
yields

P2(c,A) =0, h(c,A) =1, ¢i(c,A) =1, ¢i(c,A) =0.
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Now assume v > 1, i.e., 0 is limit point. Then

/Oc ‘ﬁjﬂ/(ﬁx)ﬁ dr = oo, /Oc |\/5Ju(\/X$)\2 dr < 00.

We find T
o i@ A) VAL (VA 1
T T, AT

and, also,
d1(z, ) + mo(N)po(z, ) = \/%%

One can show that

9 12 ei(l‘—l/ﬂ'/2—71'/4)

HY () ~ (=)

— — +o0.
) Tl T

Therefore
/ VTH®D (VAz)[? dz < oo

if Im A > 0, and /rH)(v/\z) is the only solution that is square integrable
at +00. Thus

$1(z, A) + Moo (N2 (2, ) = K\/THO (VAz). (4.26)

To evaluate the constant K we set x = ¢ and find 1 = K+\/cH" (v/Ac). Then
differentiating (4.26) with respect to x and setting x = ¢ we obtain

XHD (Vae) 1
Hy (\/XC) 2c
Now we can compute the spectral measures for this limit point - limit point
case. We have

1 J,(vAe)HD (v Xe) _ame

— - _ e AHD (Ve
Mll()‘) mo()\) B moo(/\) \/XW(H,SI)(\/X.T), Jy(\/Xx)) 2 Jr/(\/X )Hu (\/X )7
() = TAD D g, g = 2
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Now we let X in the upper halfplane become real and positive .
. . T
m dpui(p) = lim M (p+te) = o J, (V).

If X in the upper halfplane become real and positive p, then we find dpy1(u) =
0. We obtain similar results forthe other spectral measures. There is no
spactrum for p < 0, but for u > 0 we find

m dpoa(p) = lim Moo (p + i€) = mi () Tm M1 (),

™ dpiz(p) = dpor(p) = lim Mio(p + 7€) = mo(pr) Im M ().

These (apparantly c-dependent) results will simplify greatly once we work
out the expansion theorem. In particular the dependence on ¢ will drop out,
as it must. Let f,h € H. then

[ @R =0 = [7 5 [T 56, de [ 100600 ) dt dpse(

k=1

oo

:/oo /OOOf(x) [61(z, 1) + mo (1) pa(z, 1)) d:r/o h(t) [#1(t, 1) + mo(p)da(t, p)] dt dpi1 ()

_ /0 > /0 " H@)ad, (Vi) dz /0 T ROVEL (VL) dt dp.

At this point we recognise the Hankel transform: Let f € H and define the
Hankel transform of f as

o) = | F@Val (i) do

The expansion formula is

0=/ 2/ 064(t, 1) dt du(z. 1) dpge()

= /000 [/000 F@&)(P1(t, 1) + mo(p)do(t, 1)) dt] [61(x, 1) + mo(p)dr (z, 1)] dpri(p)
=2 |7 sz dn
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Example 21 Hermite functions. We will go into enough detail in this ex-
ample to indicate how the spectrum is calculated, but not write down the full
expansion theorem. Consider the operator

ru=—u" +2%u, I = (—o0,+00).

We are interested in the eigenvalue problem tu = Au. If we set A = 0 then
the equation is —u" +x%u = 0 This is clearly the limit point - limit point case.
Indeed, consider the solution u(x) of this equation such that u(1) = v'(1) = 1.
Since u"(z) = z?u(x) we see that the second derivative is positive, so that
the first derivative is increasing. Thus this solution grows monotonically as
T — +00o and is not square integrable. A similar argument works for negative
x — —o0: choose the solution such that u(—1) =1,u'(—1) = —1.

We choose ¢1, ¢ such that T¢; = Mg, j = 1,2 and such that

¢1(0’ )‘) = 15 ¢11(0= )‘) = 0’ ¢2(Oa)‘) = 0’ QSIZ(O’)‘) =L

Note: If u(z) is a solution of Tu = Au then so is u(—x). Therefore ¢1(—x, \)
is a solution such that ¢1(0,\) = 1, ¢1(0,A) = 0 so ¢1(—z,A) = ¢1(x, N).
Similarly, ¢o(—x, \) is a solution such that ¢2(0,\) =0, %(/}2(—33, /\)‘m—o =
—1, s0 ¢a(—x, ) = —o(x, \). Therefore, since

im — ¢1 ($, )\)
b—o0 Qﬁz(x, )\) ’

Meo(A) =

and the numerator is even whereas the denominator is odd, we have

1 QSI(Z" )‘) _
m_oo(A) = im o) —Meo(A).

Now we construct a square integrable solution of our differential equation,
using a contour integral. Set

u(z, A) = e_$2/2/

o0

(0+) 2
e~ TE—2 /4Z—()\+1)/2 dz

where the coutour in the complex z-plane goes along the line z = x + 1€y just
above the positive real axis from x + oo until it reaches the circle z = ee'
of radius €. Then it moves counterclockwise around the circle and goes back
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along the line z = © — 1€; just below the positive real azris to +oo —ie. We
interpret the many-valued function z=AY/2 in the integrand as

1
2~ OFD/2 exp[—g()\ +1)Inz]

where In z is the branch of the complex logarithm that is real for positive z.
Now differentiating under the integral sign, which is permitted due to the
rapid decay of the integrand along the contour, we find

o (—2?+1—2xz— 22— A a?)e 27 /1~ 04012 g,

(1—=Nu(z, ) = e_$2/2/

o0

o+) d
— 26—352/2 /oo E(e—mz—zzﬂz—)\—i—lﬂ) dz = 0.

The u(x,\) is a solution of the differential equation. Furthermore, for fized
A it is straightforward analysis to get the bound

lu(z, )| < Ce @/%+e
as x — 00. It follows that

/oo lu(z, \)|? dr < oo,
0

Since we are limit point at 400 it follows that, to within a constant multiple,
u(z, A) is the only solution square integrable at +00. We conclude that there
15 a nonzero constant K such that

u(®, A) = K (61(2, A) + moo(A)d2(x, 1)) .
Now, u(0,\) = K and u'(0,\) = Kmu(A). Therefore,

()\) u/(o’ )\) f£+) e~ T2=2%[4,=A+1/2 g,
Meo(A) = =— .
u(O’ A) fcsg'i‘) e—mz—22/4z—)\—1/2 dz

Proceeding in this way it is straightforward, but tedious, to compute the com-
plete spectral resolution and expansion theorem.

Example 22 In order to show that our spectral machinery yields correct
results in familiar cases, and to improve understanding of the method, we
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conclude with a reqular self-adjoint boundary value problem where we already
know the spectral expansion. Consider the problem

Tu=—u", I=][0,7], By(u)=u(0)=0, By(u)=u(r)=0.

This is clearly the limit circle - limit circle case. Here we take a basis of
solutions for the differential equation as
sin \/Xa:
61(2, ) = 6(2.3) = cos(VAz),  dalz, ) = la, \) = 22D,
VA

We will adopt the method of the proof of Theorem 78 to restudy this problem.
Let xp(z,\) be the solution xp(x, ) = d1(z, \) + mp(N)da(z, N), such that
Bb(Xb) = 0. Then

Bb(Xb) =0= (bl (b, )\) + mb(/\)(bg(b, A)

; my(\) = _ 60N _ _\/Xcos(\/Xb)
b ¢2(b)\) SlIl(\/Xb) .
Therefore,
() = tim 210 _ VAcos(VAr)

bor (b, \) sin(v/ A

It follows that the spectral measure is given by

1 v 1 v - -
L (utie) dp = L [(im (VEEIECOWVREED)
g ™ Jy sin(y/u + i€m)

p(v)—p(7) = lim

e—0+ 77
Note that m,(u) is real and that

. VA cos(vV/A)
ma(A) = sin(v/An)

s analytic in the A-complex plane, except for simple poles at the points A =
1,22,3% -+ n?, - - with residue —2n*/m. This follows from the fact that

d sin v/ | B zcosﬁw_lsinﬁw | (1)t
A\ V)M T 2T 2 N2 )T o

From this we can see that p(p) has a jump +2n?/7 at the points yu = n?,
n = 1,2,---, and is otherwise constant. Thus from the proof of Theorem
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78 we get the following expansion result. Given any f € H we define the
transform of f by

o0 = [ £t do= [ 5™ g

Then the expansion theorem says

fo) = /Ooog(,u) sin(\>/§x) 72 2n sin(n. gh sin(na),

where

h(n) = /07r f(z)sin(nz) dx.

This is just the Fourier sine series for f.
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