Structure relations for the symmetry algebras of classical and quantum superintegrable systems

Willard Miller
miller@ima.umn.edu

University of Minnesota
A quantum superintegrable system is an integrable $n$-dimensional Hamiltonian system with potential: $H = \Delta_n + V$ that admits $2n - 1$ algebraically independent partial differential operators commuting with the Hamiltonian, the maximum number possible. Here, $n \geq 2$. The system is of order $\ell$ if the maximum order of the symmetry operators other than the Hamiltonian is $\ell$. Typically, the algebra generated by the symmetry operators and their commutators has been proven to close.
Similarly, a classical superintegrable system is an integrable $n$-dimensional Hamiltonian system with potential that admits $2n - 1$ functionally independent phase space functions, polynomial in the momenta, whose Poisson brackets with the Hamiltonian vanish.
Superintegrability captures what it means for a Hamiltonian system to be explicitly algebraically and analytically solvable, not just solvable numerically. Until recently there were very few examples of superintegrable systems of order $\ell$ with $\ell > 3$ and virtually no structure results.
The situation has changed dramatically in the last two years with the discovery of families of systems depending on a rational parameter $k = p/q$ that are superintegrable for all $k$ and of arbitrarily high order, such as $\ell = p + q + 1$.

We review a method, based on recurrence formulas for special functions, that proves superintegrability of quantum systems, and we introduce the classical counterpart of this method. Just a few months ago, these constructions seemed out of reach.
Schrödinger operator

\[ H = \Delta + V(x) \]

where \( \Delta = \frac{1}{\sqrt{g}} \sum_{ij} \partial_{x_i} (\sqrt{g} g^{ij}) \partial_{x_j} \) is the Laplace-Beltrami operator on a Riemannian manifold, in local coordinates \( x_j \). The system admits \( 2n - 1 \) algebraically independent globally defined differential symmetry operators

\[ S_j, \quad j = 1, \ldots, 2n - 1, \quad n \geq 2, \]

with \( S_1 = H \) and \( [H, S_j] \equiv HS_j - S_j H = 0 \).
A superintegrable system is of order $\ell$ if $\ell$ is the maximum order of the generating symmetries other than the Hamiltonian as a differential operator for the quantum system.

Systems with $\ell = 1, 2$ have been the most tractible due to the association with Lie algebras and separation of variables.
Superintegrability (Classical)

Hamiltonian

\[ \mathcal{H} = \sum g^{jk} p_j p_k + V(x) \]

on phase space with local coordinates \( x_j, p_j \), where

\[ ds^2 = \sum g^{jk} dx_j \, dx_k. \]

Superintegrable if there are \( 2n - 1 \) functionally independent functions polynomial in momenta

\[ S_j(p, x), \quad j = 1, \ldots, 2n - 1 \]

with \( S_1 = \mathcal{H} \), and globally defined such that

\[ \{ S_j, \mathcal{H} \} = 0, \]

where \( \{ \cdot, \cdot \} \) is the Poisson bracket.
A classical superintegrable system is of order $\ell$ if $\ell$ is the maximum order of the generating symmetries other than the Hamiltonian as polynomials in the momenta.

Systems with $\ell = 1, 2$ have been the most tractable due to the association with Lie algebras and separation of variables.
An integrable system has $n$ algebraically independent commuting symmetry operators.

A superintegrable system has $2n - 1$ algebraically independent symmetry operators. For many researchers the definition of superintegrability also requires integrability.

The symmetry algebra generated by the symmetries of a merely integrable system is abelian. The algebra corresponding to a superintegrable system is nonabelian.
Historical Significance

- The isotropic harmonic oscillator is classically and quantum second order superintegrable.

- Celestial navigation including sending satellites into lunar and earth orbits depends on the superintegrability of the Kepler system (Hohmann transfer).

- The quantum Coulomb or hydrogen atom problem is second order superintegrable. Thus the spectrum can be deduced algebraically. An important reason that the Balmer series was discovered far in advance of quantum mechanics.
Other Significant Links

- Quasi-Exactly Solvable quantum systems.
- Supersymmetry.
- PT-symmetric systems.
- Deep connections with special functions and orthogonal polynomials: 1) Solutions of the Schrödinger eigenvalue equation 2) Irreducible representations of the symmetry algebras.
Here $n = 2$, so $2n - 1 = 3$. Hamiltonian:

$$H = \partial_x^2 + \partial_y^2 - \alpha^2(4x^2 + y^2) + bx + \frac{1}{4} - \frac{c^2}{y^2}.$$ 

Generating symmetry operators: $H, L_1, L_2$ where

$$L_1 = \partial_x^2 - 4\alpha^2 x^2 - bx$$

$$L_2 = \frac{1}{2}\{M, \partial_y\} + y^2\left(\frac{b}{4} - x\alpha^2\right) - \left(\frac{1}{4} - c^2\right)\frac{x}{y^2}.$$ 

Here $M = x\partial_y - y\partial_x$ and $\{A, B\} = AB + BA.$
Add the commutator $R = [L_1, L_2]$ to the symmetry algebra. Then

$$[L_1, R] = 2bH + 16\alpha^2 L_2 - 2bL_1$$

$$[L_2, R] = 8L_1 H - 6L_1^2 - 2H^2 + 2bL_2 - 8\alpha^2 (1 - c^2)$$

$$R^2 + 4L_1^3 + 4L_1 H^2 - 8L_1^2 H + 16\alpha^2 L_2^2 + 4bL_2 H - 2b\{L_1, L_2\} + 16\alpha^2 (3 - c^2) L_1 - 32\alpha^2 H - b^2 (1 - c^2) = 0$$
We have a second order superintegrable system whose symmetry algebra closes at level 6.

If $\Psi$ is an eigenvector of $H$ with eigenvalue $E$, i.e., $H\Psi = E\Psi$, and $L$ is a symmetry operator then also $H(L\Psi) = E(L\Psi)$, so the symmetry algebra preserves eigenspaces of $H$.

Thus we can use the irreducible representations of the symmetry algebra to explain the “accidental” degeneracies of the eigenspaces of $H$. 
By classifying the finite dimensional irreducible representations of the symmetry algebra we can show that the possible bound state energy levels must take the form

\[ E_m = 4\alpha(m - 2c) + \frac{b^2}{16\alpha^2} \]

where \( m = 0, 1, \ldots \) and the multiplicity of the energy level \( E_m \) is \( m + 1 \).
Basic 2D Structure Results

If $\mathcal{H}$ is the Hamiltonian of a 2D second order superintegrable system with nondegenerate (3 parameter) potential then

- 3D space of 2nd order symmetries.
- 1D space of 3rd order symmetries.
- 6D space of 4th order symmetries and spanned by symmetric polynomials in 2nd order symmetries.
- 10D space 6th order symmetries and spanned by symmetric polynomials in 2nd order symmetries.
$H = \partial_x^2 + \partial_y^2 + \hbar^2\omega_1^2 P_1(\omega_1 x) + \hbar^2\omega_2^2 P_1(\omega_2 y)$

Here, $P_1$ is the first Painlevé transcendent. Third order quantum superintegrable but not classically superintegrable. Other examples with the transcendents $P_2, P_3, P_4$. 
The quantum system on the 2-sphere, the spherical analog of the hydrogen atom, is determined by

\[ H = J_1^2 + J_2^2 + J_3^2 + \frac{\alpha s_3}{\sqrt{s_1^2 + s_2^2}}, \]

where, \( J_1, J_2, J_3 \) are the angular momentum operators, \( s_1^2 + s_2^2 + s_3^2 = 1 \) and \( H \Psi = E \Psi \) where \( \Psi(s_1, s_2, s_3) \) is a function on the unit sphere, square integrable with respect to the area measure on the sphere.
The quantum basis for the symmetry operators is

\[ L_1 = J_1 J_3 + J_3 J_1 - \frac{\alpha s_1}{\sqrt{s_1^2 + s_2^2}}, \quad L_2 = J_2 J_3 + J_3 J_2 - \frac{\alpha s_2}{\sqrt{s_1^2 + s_2^2}}, \quad X = J_3. \]

The structure relations are

\[ [H, L_1] = [H, L_2] = [H, X] = 0, \quad [X, L_1] = -L_2, \]
\[ [X, L_2] = L_1, \quad [L_1, L_2] = 4HX - 8X^3 + X. \]

The Casimir relation is

\[ L_1^2 + L_2^2 + 4X^4 - 4HX^2 + H - 5X^2 - \alpha^2 = 0. \]
2-sphere Example 3

- The symmetry operators leave each eigenspace of $H$ invariant.
- Thus the degeneracies can be explained in terms of dimensions of the irreducible representations of the symmetry algebra.
- Use a highest weight vector argument to find these finite dimensional representations.
- Energy levels are (multiplicity $m + 1$)

$$E_m = -\frac{1}{4}(2m + 1)^2 + \frac{1}{4} + \frac{\alpha^2}{(2m + 1)^2}.$$
Classical analogs of Kepler’s 3 laws hold, due to superintegrability.

Hohmann transfer for orbital maneuvers in a spherical universe hold.

Quantum spectrum follows from irreducible representations of the symmetry algebra. Also solutions with real spectrum

\[ E_n = -\frac{1}{4}(2\mu_n + 1)^2 + \frac{1}{4} - \frac{a^2}{(2\mu_n + 1)^2}, \]

where

\[ 2\mu_n = n + \sqrt{(n + 1)^2 + 2a} \quad \text{and} \quad \alpha = i\alpha \quad \text{is imaginary: PT-symmetry}. \]
The generic 2-sphere potential

For $n = 2$ we define the generic sphere system by embedding of the unit 2-sphere

$$x_1^2 + x_2^2 + x_3^2 = 1$$

in three dimensional flat space. Then the Hamiltonian operator is

$$H = \sum_{1 \leq i < j \leq 3} (x_i \partial_j - x_j \partial_i)^2 + \sum_{k=1}^{3} \frac{a_k}{x_k^2}, \quad \partial_i \equiv \partial_{x_i}.$$

The 3 operators that generate the symmetries are $L_1 = L_{12}, L_2 = L_{13}, L_3 = L_{23}$ where

$$L_{ij} \equiv L_{ji} = (x_i \partial_j - x_j \partial_i)^2 + \frac{a_i x_j^2}{x_i^2} + \frac{a_j x_i^2}{x_j^2},$$
Structure equations

1. $R = [L_{23}, L_{13}]$, 

2. $\epsilon_{ijk}[L_{jk}, R] = 4\{L_{jk}, L_{ij}\} - 4\{L_{jk}, L_{ik}\} - (8 + 16a_j)L_{ik} + (8 + 16a_k)L_{ij} + 8(a_j - a_k)$, 

3. $R^2 = \frac{8}{3}\{L_{23}, L_{13}, L_{12}\} - (16a_1 + 12)L_{23}^2 - (16a_2 + 12)L_{13}^2 - (16a_3 + 12)L_{12}^2 + \frac{52}{3}(\{L_{23}, L_{13}\} + \{L_{13}, L_{12}\} + \{L_{12}, L_{23}\}) + \frac{1}{3}(16 + 176a_1)L_{23} + \frac{1}{3}(16 + 176a_2)L_{13} + \frac{1}{3}(16 + 176a_3)L_{12} + \frac{32}{3}(a_1 + a_2 + a_3) + 48(a_1a_2 + a_2a_3 + a_3a_1) + 64a_1a_2a_3$. 

4. Here $\epsilon_{ijk}$ is the skew-symmetric tensor and $\{A, B, C\}$ is the symmetrizer.
The Wilson Polynomials

\[
\begin{align*}
_4F_3 \left( \begin{array}{c}
-n, \quad \alpha + \beta + \gamma + \delta + n - 1, \quad \alpha - t, \quad \alpha + t \\
\alpha + \beta, \quad \alpha + \gamma, \\
\alpha + \beta, \quad \alpha + \gamma,
\end{array} \right) \\
\alpha + \beta, \quad \alpha + \gamma, \quad \alpha + \delta
\end{align*}
\]

\[= (\alpha + \beta)_n(\alpha + \gamma)_n(\alpha + \delta)_n \Phi_n^{(\alpha, \beta, \gamma, \delta)}(t^2).\]

1. Eigenfunctions of a divided difference operator \( \tau^* \tau \Phi_n = n(n + \alpha + \beta + \gamma + \delta - 1)\Phi_n. \)

2. \( E^A F(t) = F(t + A), \quad \tau = \frac{1}{2t}(E^{1/2} - E^{-1/2}), \)
\( \tau^* = \frac{1}{2t}[(\alpha + t)(\beta + t)(\gamma + t)(\delta + t)E^{1/2} - \\
(\alpha - t)(\beta - t)(\gamma - t)(\delta - t)E^{-1/2}]. \)
1. Set \( a_j = \frac{1}{4} - b_j^2 \), \( \alpha = -\frac{b_1+b_2+1}{2} - \mu \), \( \beta = \frac{b_1+b_2+1}{2} \), \\
\( \gamma = \frac{b_2-b_1+1}{2} \), \( \delta = \frac{b_1+b_2-1}{2} + b + \mu + 2 \),

2. The algebra is realized by \( H = E \) and

3. \( L_{12} = -4t^2 + b_1^2 + b_2^2 \),

4. \( L_{23} = -4\tau^*\tau - 2(b_2 + 1)(b_3 + 1) + \frac{1}{2} \),

5. \( -E = \frac{4\mu+2(b_1+b_2+b_3)+5)(4\mu+2(b_1+b_2+b_3)+3}{4} \)
\( + \frac{3}{2} - b_1^2 - b_2^2 - b_3^2 \).
The Problem

- For possible superintegrable systems of order $> 2$ it is much harder to verify superintegrability and to compute the symmetry algebra.

- How can we compute efficiently the commutators and products of symmetry operators of arbitrarily high order?
IDEA:

- Requires a 2nd order symmetry that determines a separation of variables.
- Formal eigenspaces of Hamiltonian are invariant under action of any symmetry operator, so the operator must induce recurrence relations for the basis of separated eigenfunctions.
- Use the known recurrence relations for hypergeometric functions to reverse this process and determine a symmetry operator from the recurrence relations.
We can compute the symmetry operators and structure equations by restricting ourselves to a formal “basis” of separated eigenfunctions.

Then we appeal to our theory of canonical forms for symmetry operators to show that results obtained on restriction to a formal eigenbasis actually hold as true identities for purely differential operators defined independent of “basis” functions.
Recent winner of the Journal of Physics A Best Paper Prize! The quantum Tremblay, Turbiner, Winternitz system (in polar coordinates in the plane) is

\[ H = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} - \omega^2 r^2 + \frac{1}{r^2} \left( \frac{\alpha}{\sin^2(k \theta)} + \frac{\beta}{\cos^2(k \theta)} \right) \]

where \( k = \frac{p}{q} \) is rational. Solution of \( H \Psi = E \Psi \) is

\[ \Psi = e^{-\frac{\omega}{2} r^2} r^k (2n+a+b+1) L^k_m(2n+a+b+1) (\omega r^2) (\sin(k \theta))^{a+\frac{1}{2}} (\cos(k \theta))^{b+\frac{1}{2}} P_n^{a,b}(\cos(2k \theta)), \]
Here $\alpha = k^2\left(\frac{1}{4} - a^2\right)$ and $\beta = k^2\left(\frac{1}{4} - b^2\right)$. The $L^A_B$ are associated Laguerre functions and the $P_{a,b}^n$ are Jacobi functions.

For $k = 1$ this is the caged isotropic oscillator, for $k = 2$ it is a Calogero system on the line, etc.

Use gauge transformation to get eigenfunctions

$$\Pi = e^{-\frac{\omega}{2} r^2} r^k (2n+a+b+1) L_{m}^{k(2n+a+b+1)} (\omega r^2) \ P_{n}^{a,b}(x)$$

$$= Y_{m}^{k\mu}(r) \ X_{n}^{a,b}(x)$$

where $x = \cos(2k\theta)$, $\mu = 2n + a + b + 1$. 

Energy: \[ E = -2\omega \left[ 2(m + nk) + 1 + (a + b + 1)k \right] \]

Separation: \[ L_2\Psi = \left( \partial_{\theta}^2 + \frac{\alpha}{\sin^2(k\theta)} + \frac{\beta}{\cos^2(k\theta)} \right)\Psi = -k^2\mu \]

where \( \mu = 2n + a + b + 1, \quad k = \frac{p}{q}. \)

Look for recurrences that change \( m, n \) but fix \( u = m + nk. \) The two transformations

(1) \( n \to n + q, \quad m \to m - p, \)

(2) \( n \to n - q, \quad m \to m + p \)

each achieve this.
Consider $X_{n}^{a,b}(x)$. Raise or lower $n$ with

(1) : \[ J^{+}_{n} X_{n}^{a,b} = (2n + a + b + 2)(1 - x^2)\partial_{x} X_{n}^{a,b} \]
\[ + (n + a + b + 1)(-(2n + a + b + 2)x - (a - b))X_{n}^{a,b} \]
\[ = 2(n + 1)(n + a + b + 1)X_{n+1}^{a,b}, \]

(2) : \[ J^{-}_{n} X_{n}^{a,b} = -(2n + a + b)(1 - x^2)\partial_{x} X_{n}^{a,b} \]
\[ - n((2n + a + b)x - (a - b))X_{n}^{a,b} \]
\[ = 2(n + a)(n + b)X_{n-1}^{a,b}. \]
For $\mathcal{Y}_{m}^{k\mu}(R) = \omega^{k\mu/2}\mathcal{Y}_{m}^{k\mu}(r)$ where $R = r^2$ change $m$ by

$$K_{k\mu,m}^{+} \mathcal{Y}_{m}^{k\mu} = \left\{ (k\mu + 1)\partial_{R} - \frac{E}{4} - \frac{1}{2R}k\mu(k\mu + 1) \right\} \mathcal{Y}_{m}^{k\mu}$$

$$= -\omega \mathcal{Y}_{m-1}^{k\mu+2},$$

$$K_{k\mu,m}^{-} \mathcal{Y}_{m}^{k\mu} = \left\{ (-k\mu + 1)\partial_{R} - \frac{E}{4} + \frac{1}{2R}k\mu(1 - k\mu) \right\} \mathcal{Y}_{m}^{k\mu}$$

$$= -\omega(m + 1)(m + k\mu)\mathcal{Y}_{m+1}^{k\mu-2}.$$
We construct the two operators

\[ \Xi_+ = K^+_{k\mu+2(p-1),m-(p-1)} \cdots K^+_{k\mu,m} J^+_{n+q-1} \cdots J^+_{n} \]

\[ \Xi_- = K^-_{k\mu-2(p-1),m+p-1} \cdots K^-_{k\mu,m} J^-_{n-q+1} \cdots J^-_{n}. \]

For fixed \( u = m + kn \), we have

\[ \Xi_+ \Psi_n = 2^q (-1)^p \omega^p (n + 1)_q (n + a + b + 1)_q \Psi_{n+q}, \]

\[ \Xi_- \Psi_n = 2^q \omega^p (-n - a)_q (-n - b)_q (u - kn + 1)_p \]

\[ (-u - k[n + a + b + 1])_p \Psi_{n-q}. \]
These are basis dependent operators. However, under the transformation $n \to -n - a - b - 1$, i.e., $\mu \to -\mu$, we have $\Xi_+ \to \Xi_- \text{ and } \Xi_- \to \Xi_+$. Thus $\Xi = \Xi_+ + \Xi_-$ is a polynomial in $\mu^2$ and $u$ is unchanged under this transformation. Therefore we can replace $(2n + a + b + 1)^2 = \mu^2$ by $L_2/k^2$ and $E$ by $H$ everywhere they occur, and express $\Xi$ as a pure differential symmetry operator.
Note that under the transformation $n \rightarrow -n - a - b - 1$, i.e., $\mu \rightarrow -\mu$ the operator $\Xi_+ - \Xi_-$ changes sign, hence

$$\tilde{\Xi} = \frac{\Xi_+ - \Xi_-}{\mu}$$

is unchanged under this transformation.

This defines $\tilde{\Xi}$ as a symmetry operator. We set

$$L_3 = \Xi, \quad L_4 = \tilde{\Xi}.$$
Remark

We have shown that $L_3, L_4$ commute with $H$ on any formal eigenbasis.

In fact, we have constructed pure differential operators which commute with $H$, independent of basis.

This takes some proof and we have verified this in general using a canonical form for higher order differential operators.

Indeed, we can prove that operator relations verified on formal eigenbases of separated solutions must actually hold identically.
Applying a product of raising and lowering operators to a basis function we obtain

\[
\Xi_- \Xi_+ \Psi_n = (-1)^p 4^q \omega^{2p} (n+1)_q (n+a+1)_q (n+b+1)_q \\
\times (n+a+b+1)_q (-u+kn)_p (u+k[n+a+b+1]+1)_p \Psi_n \\
= \xi_n \Psi_n,
\]

\[
\Xi_+ \Xi_- \Psi_n = (-1)^p 4^q \omega^{2p} (-n)_q (-n-a)_q (-n-b)_q \\
\times (-n-a-b)_q (u-kn+1)_p (-u-k[n+a+b+1])_p \Psi_n \\
= \eta_n \Psi_n.
\]
Thus $\Xi(+) = \Xi_- \Xi_+ + \Xi_+ \Xi_-$ multiplies any basis function by $\xi_n + \eta_n$.

However, the transformation $n \rightarrow -n - a - b - 1$, i.e., $\mu \rightarrow -\mu$ maps $\Xi_- \Xi_+ \leftrightarrow \Xi_+ \Xi_-$ and $\xi_n \leftrightarrow \eta_n$.

Thus $\Xi(+) \text{ is an even polynomial operator in } \mu$, polynomial in $u$, and $\xi_n + \eta_n$ is an even polynomial function in $\mu$, polynomial in $u$. 
Furthermore, each of $\Xi_- \Xi_+$ and $\Xi_+ \Xi_-$ is unchanged under
\( u \rightarrow -u - (a + b + 1) - 1 \), hence a polynomial of order \( p \) in
\([2u + (a + b + 1)k + 1]^2\).

We conclude that

\[ \Xi^{(+)} = P^{(+)}(H^2, L_2, \omega^2, a, b). \]

Similarly

\[ \Xi^{(-)} = (\Xi_- \Xi_+ - \Xi_+ \Xi_-)/\mu \]

\[ = P^{(-)}(H^2, L_2, \omega^2, a, b) \]
Setting \( R = -4k^2qL_3 - 4k^2q^2L_4 \), we find the structure equations

\[
\begin{align*}
[L_2, L_4] &= R, \\
[L_2, R] &= -8k^2q^2\{L_2, L_4\} - 16k^4q^4L_4, \\
[L_4, R] &= 8k^2q^2L_4^2 - 8k^2qP^{(-)}(H^2, L_2, \omega^2, a, b), \\
\frac{3}{8k^2q^2}R^2 &= -22k^2q^2L_4^2 + \{L_2, L_4, L_4\} \\
+4k^2qP^{(-)}(H^2, L_2, \omega^2, a, b) + 12k^2P^{(+)}(H^2, L_2, \omega^2, a, b).
\end{align*}
\]

Thus \( H, L_2, L_4 \) generate a closed algebra.
A complication

Examples show that $L_4$ is not the lowest order generator. We look for a symmetry operator $L_5$ such that $[L_2, L_5] = L_4$. Applying this condition to a formal eigenbasis of functions $\Psi_n$ we obtain the general solution

$$L_5 = -\frac{1}{4qk^2} \left( \frac{\Xi_+}{(\mu + q)\mu} + \frac{\Xi_-}{(\mu - q)\mu} \right) + \frac{\beta_n}{\mu^2 - q^2}$$

where $\beta_n$ is a polynomial function of $H$ to be determined.
Simple algebra gives

\[ L_5(-\mu^2 + q^2) \equiv L_5\left(\frac{L_2}{k^2} + q^2\right) = \frac{1}{4qk^2}(L_4 - qL_3) - \beta_n. \]

To find \( \beta_n \) we take the limit as \( \mu \to -q \). There are 3 cases, depending on the relative parities of \( p \) and \( q \).
For $p, q$ both odd we have

$$\beta_n \equiv Q(H) =$$

$$- \frac{H(a^2 - b^2)}{4} \Pi_{\ell=1}^{(p-1)/2} \left[ (-\omega^2) \left( \frac{H}{4\omega} - \ell \right) \left( \frac{H}{4\omega} + \ell \right) \right] \times$$

$$\Pi_{s=1}^{(q-1)/2} \left[ \frac{1}{4} (-a - b + 2s)(a + b + 2s)(a - b + 2s) \times \right.$$

$$\left. (-a + b + 2s) \right]$$
The most interesting aspect of superintegrability theory is the symmetry algebra, its irreducible representations and their realization on function spaces. Many fascinating particular results are known, but there is no general representation theory for these algebras. It should be analogous to the representation theory of simple Lie algebras.

There are quantum superintegrable systems in which the separated eigenfunctions are not of hypergeometric type. How do we treat these systems?
The recurrence operator method works also for classical superintegrable systems, where one finds raising and lowering symmetries.

The TTW construction for polar coordinates extends in higher dimensions to polyspherical coordinates. In 3 dimensions there are only spherical coordinates, but for $n > 3$ there are multiple polyspherical coordinates, hence a multiplicity of higher order superintegrable systems that can be constructed.
In many cases in dimensions $n \geq 3$ the symmetry algebra closes rationally but not polynomially.

The TTW conjecture and its proof has opened the door to a generation of new results for higher order superintegrable systems.