Name:

Math 4567. Midterm Exam III (take home)
Due April 23, 2010

There are a total of 100 points and 6 problems on this take home exam.
Problem Score

1. \qquad
2. \qquad
3. \qquad
4.
5. \qquad
6. \qquad
Total: \qquad
7. Chapter 5, page 113, Problem 2. (20 points). A solid spherical body 40 cm in diameter, initially at $100^{\circ} \mathrm{C}$ throughout, is cooled by keeping its surface at $0^{\circ} \mathrm{C}$. Use the temperature formula derived in class and in the text,

$$
u(r, t)=\frac{1}{r} \sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{n^{2} \pi^{2} k}{a^{2}} t\right) \sin \frac{n \pi r}{a}, B_{n}=\frac{2}{a} \int_{0}^{a} r f(r) \sin \frac{n \pi r}{a} d r,
$$

to show formally that

$$
u(0+, t)=200 \sum_{n=1}^{\infty}(-1)^{n+1} \exp \left(-\frac{n^{2} \pi^{2} k}{400} t\right)
$$

Find the approximate temperature at the center of the sphere 10 min after cooling begins if (a) $k=0.15$ cgs unit ; and (b) $k=0.005 \mathrm{cgs}$ unit. Make sure that your answer is accurate to within $1 / 10$ th of a degree Celsius and justify your reasoning.
2. Chapter 5, page 117, Problem 1. (20 points) Solve the boundary value problem

$$
\begin{aligned}
& u_{t}=u_{x x}+x p(t), \quad 0<x<1, t>0 \\
& u(0, t)=0, u(1, t)=0, u(x, 0)=0
\end{aligned}
$$

where $p(t)$ is a continuous function for all $t \geq 0$ and nonzero only in the bounded interval $0 \leq t<M$. Verify that the solution is

$$
u(x, t)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n \pi x \int_{0}^{t} e^{-n^{2} \pi^{2}(t-\tau)} p(\tau) d \tau
$$

Why does this series converge?
3. Chapter 8, page 215, problem 6. (10 points) Use the normalized eigenfunctions in Problem 2, page 209 to derive

$$
x\left(\frac{2+h}{1+h}-x\right)=4 h \sum_{n=1}^{\infty} \frac{1-\cos \alpha_{n}}{\alpha_{n}^{3}\left(h+\cos ^{2} \alpha_{n}\right)} \sin \alpha_{n} x, \quad 0<x<1,
$$

where $\tan \alpha_{n}=-\alpha_{n} / h, \alpha>0$.
4. Chapter 8, page 215, problem 7. (10 points) Use the normalized eigenfunctions in Problem 1, page 209 to derive

$$
\sin \omega x=2 \omega \cos \omega \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\omega^{2}-\omega_{n}^{2}} \sin \omega_{n} x, \quad 0<x<1,
$$

where

$$
\omega_{n}=\frac{(2 n-1) \pi}{2}, \text { and } \omega \neq \omega_{n}, \text { for any } \mathrm{n} .
$$

5. Chapter 6, page 157, Problem 3. (20 points)
(a) Show that the function

$$
f(x)= \begin{cases}0 & \text { when } x<0 \\ \exp (-x) & \text { when } x>0 \\ \frac{1}{2} & \text { when } x=0\end{cases}
$$

satisfies the conditions of the Fourier integral pointwise convergence theorem. Establish

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \frac{\cos \alpha x+\alpha \sin \alpha x}{1+\alpha^{2}} d \alpha, \quad-\infty<x<\infty .
$$

(b) Verify this directly at the point $x=0$.
6. (20 points) Use the real form of the Fourier transform pair for the real-valued function $f(x)$,

$$
f(x)=\int_{0}^{\infty}[A(\alpha) \cos \alpha x+B(\alpha) \sin \alpha x] d \alpha
$$

where

$$
\begin{equation*}
A(\alpha)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos \alpha t d t, \quad B(\alpha)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \sin \alpha t d t \tag{1}
\end{equation*}
$$

with Parseval formula

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\infty}^{\infty} f^{2}(x) d x=\int_{0}^{\infty}\left(A^{2}(\alpha)+B^{2}(\alpha)\right) d \alpha \tag{2}
\end{equation*}
$$

to derive the complex form of the transform pair for $f(x)$:

$$
f(x)=\int_{-\infty}^{\infty} \hat{f}(\lambda) e^{i \lambda x} d \lambda
$$

where

$$
\begin{equation*}
\hat{f}(\lambda)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \lambda x} d x \tag{3}
\end{equation*}
$$

with Parseval formula

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} f^{2}(x) d x=\int_{-\infty}^{\infty}|\hat{f}(\lambda)|^{2} d \lambda \tag{4}
\end{equation*}
$$

The similar computation relating real and complex forms of the Fourier series in problem 8, Chapter 2, page 42 should prove helpful.

How would the formulas change if $f(x)$ was a complex valued function?

