Name:

Math 4567. Midterm Exam I (Solutions)

February 19, 2010

There are a total of 100 points on this 55 minute exam. To get full credit for a problem you must show the details of your work. Answers unsupported by an argument will get little credit. A standard calculator and ONE 8.5×11 inch sheet of notes are allowed, but no books, other notes, cell phones or other electronic devices are allowed. Do all of your calculations on this test paper.

Problem	Score
1.	
2.	
3.	
Total:	

Problem 1 Let $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ be the Fourier series for the function

$$f(x) = \begin{cases} 0 & -\pi < x \le -\frac{\pi}{2} \\ 1 & -\frac{\pi}{2} < x \le \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < x \le \pi. \end{cases}$$

a) (10 points) State the precise numerical value of S(x) for each x in the interval $-\pi \le x \le \pi$.

Solution: f(x) is piecwise continuous on $(-\pi, \pi)$ with piecewise continuous derivative. The discontinuities are at $x = \pm \pi/2$ where the midpoints of the discontinuity are 1/2. Thus

$$S(x) = \begin{cases} 0 & \text{if } -\pi \le x < -\frac{\pi}{2} \\ \frac{1}{2} & \text{if } x = -\frac{\pi}{2} \\ 1 & \text{if } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \frac{1}{2} & \text{if } x = \frac{\pi}{2} \\ 0 & \text{if } \frac{\pi}{2} < x \le \pi. \end{cases}$$

b) (15 points) Compute the Fourier coefficients a_j , b_n for f(x).

Solution:

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} dt = 1,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos nt dt = \frac{1}{\pi} \frac{\sin nt}{n} \Big|_{-\pi/2}^{\pi/2}$$

$$= \frac{2\sin(n\pi/2)}{n\pi} = \begin{cases} \frac{2(-1)^{k+1}}{(2k-1)\pi} & n = 2k - 1 \text{ odd} \\ 0 & n \text{ even} \end{cases}$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt dt = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \sin nt dt = 0.$$

Thus,

$$S(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1} \cos(2k-1)x}{2k-1}, \quad -\pi < x < \pi.$$

c) (10 points) Using the fact that $\int_0^x f(t) dt = x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$ integrate the Fourier series for f(x) term - by - term to obtain the expansion

$$\frac{\pi x}{4} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2k-1)^2} \sin(2k-1)x, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}.$$

Why is this justified?

Solution: Since f and f' are piecewise continuous on $(-\pi/2, \pi/2)$ and extended by π -periodicity then term-by-term integration is OK. Integrating S(t) from 0 to x we get

$$x = \frac{x}{2} + \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{(2k-1)\pi} \int_0^x \cos(2k-1)t \, dt = \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{\pi (2k-1)^2} \sin(2k-1)t |_0^x$$
$$= \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{\pi (2k-1)^2} \sin(2k-1),$$

SO

$$\frac{\pi x}{4} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2k-1)^2} \sin(2k-1)x.$$

Problem 2 The Fourier cosine series for the function $f(x) = 1 - x^2$ on the domain $0 \le x \le 1$ is

$$f(x) \sim S(x) = \frac{2}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos(n\pi x).$$

a) (10 points) State the precise numerical value of S(x) for each x in the closed interval $0 \le x \le 1$. Justify your statement.

Solution: f(x) is continuous on $0 < x \le 1$ and since it is even, we can extend it to $-1 \le x \le 1$ with f(-1) = f(1) = 0 and make it 1 – periodic to get a function continuous everywhere, Obviously f' is piecewise continuous. Therefore $S(x) = 1 - x^2$ for $0 \le x \le 1$.

b) (20 points) Is it permissible the differentiate the series for f(x) term by - term to derive the Fourier sine series S'(x) for f'(x) = -2x on the interval 0 < x < 1? If so, do it and state the precise numerical value of S'(x) for each x in the closed interval $0 \le x \le 1$. **Solution:** Since the extended function f(x) is continuous everywhere and has a piecewise continuous derivative on (0,1) it is permissible to differentiate term - by- term. Thus we obtain

$$-2x \sim \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin(n\pi x), \quad 0 < x < 1$$

Since this is a Fourier sine series, it converges to the odd extension of -2x to the domain [-1,1] and made 2π -periodic. Since f'(1-) = -2 and f'(1+) = +2, the Fourier series converges to -2x for $0 \le x < 1$ and to 0 for x = 1.

Problem 3 The Fourier series for the triangular wave f(x) = |x|, $-\pi \le x \le \pi$, is

$$f(x) \sim S(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \cos(2k-1)x$$

a) (10 points) Does the series S(x) converge uniformly on the interval $-\pi \le x \le \pi$? Justfy your answer.

Solution: f(x) is continuous on $[-\pi,\pi]$ and $f(-\pi) = f(\pi) = \pi$ Also f'(x) is piecewise continuous on this interval. Hence the Fourier series of f converges uniformly on the interval.

b) (10 points) Without actually performing the operation, justify that term
 by -term differentiation of the series S(x) permitted. To what numerical value does S'(x) converge for each x in the closed interval -π ≤ x ≤ π?

Solution: Since the extended function f(x) is continuous everywhere and has a piecewise continuous derivative on $(-\pi, \pi)$ it is permissible the defferentiate term - by- term. The derivative is

$$f'(x) = \begin{cases} 1 & \text{if } 0 < x < \pi \\ -1 & \text{if } -\pi < x < 0. \end{cases}$$

This function is piecewise continuous with a piecewise continuous derivative on $(-\pi,\pi)$. The discontinuities are at $x = 0, \pm \pi$. and the midpoints of these dicontinuities is 0 Thus the differentiated series converges to 1 for $0 < x < \pi$, to -1 for $-\pi < x < 0$ and to 0 for $x = 0, \pm \pi$. c) (15 points) Evaluate the sum

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

of the Fourier coefficients from part a) with a minimum of computation. Justify your answer.

Solution: Since the series for f(x) converges uniformly, Parseval's theorem holds. Thus

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 \, dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$$

Evaluating the integral we have

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \, dx = \frac{2\pi^2}{3}.$$