
Name:

Math 4567. Homework Set # VII

April 23, 2010

Chapter 8, (page 201, problems 1,2,3), (page 209, problems 2,4), (page 215,
problem 3), (page 221, problem 2), (page 228, problem 1), Chapter 6 (page
157, problem 2). (page 162, problem 1)

Chapter 8 page 201, Problem 1 (a) Consider the Sturm - Liouville prob-
lem

[xX ′(x)]′ +
λ

x
X(x) = 0, 1 < x < b,

X(1) = 0, X(b) = 0,

and use the substitution x = exp s to convert the problem to

d2X

ds2
+ λX = 0, 0 < s < ln b,

X|s=0 = 0, X|s=ln b = 0.

Show that the eigenvalues and eigenfunctions of the original prob-
lem are

λn = α2
n, Xn(x) = sin(αn lnx), n = 1, 2, · · · ,

where αn = nπ/ ln b.

(b) By making the substitution

s = π
lnx

ln b

give a direct verification that the eigenfunctions Xn(x) of part (a)
are orthogonal on the interval 1 < x < b, with weight function
p(x) = 1/x.

Solution:
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(a) We have d
ds

= dx
ds

d
dx

= x d
dx

, so

x[xX ′(x)]′ + λX(x) = 0↔ d2X

ds2
+ λX = 0, o < s < ln b,

since s = ln x. Thus, in the new coordinates the boundary conditions
are

X|s=0 = 0, X|s=ln b = 0.

For the original problem we solve the eigenvalue problem.

Case 1: λ = α2, α > 0. The solution of the differential equation is

X = A cosαs+B sinαs = A cos(α lnx) +B sin(α lnx).

Then X(1) = 0 = A, and X(b) = 0 = B sin(α ln b), so we can have
a nonzero solution only for α ln b = nπ, or α = αn = nπ/ ln b, with
Xn(x) = sin(nπ lnx

ln b
), n = 1, 2, · · ·.

(b) Since s = π lnx
ln b

, it follows that ds = πdx/x ln b. We have for m 6= n,

∫ b

1
Xn(x)Xm(x)

dx

x
=

∫ b

1
sin(

nπ lnx

ln b
) sin(

mπ lnx

ln b
)
dx

x

=
ln b

π

∫ π

0
sinns sinms ds

= 0,

if m 6= n.

Chapter 8, page 201, Problem 2 Let

L[X] = (rX ′)′ + qX

so that the Sturm-Liouville differential equation can be written as

L[X] + λpX = 0.

Derive Lagrange’s identity

XL[Y ]− Y L[X] =
d

dx
[r(XY ′ − Y X ′)].
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Solution:

XL[Y ]− Y L[X] = X(rY ′)′ + qXY − Y (rX ′)′ − qY X

= Xr′Y ′+XrY ′′− Y r′X ′− Y X ′′ = r′(XY ′− Y X ′) + r(XY ′′− Y X ′′).

Since

d

dx
[r(XY ′ − Y X ′)] = r′(XY ′ − Y X ′) + r(XY ′′ − Y X ′′),

this establishes the identity.

Chapter 8, page 201, Problem 3 (a) Let L be the operator of the pre-
vious problem, defined on a space of functions on a < x < b,
satisfying the conditions

a1X(a)+a2X
′(a) = 0, b1X(b)+b2X

′(b) = 0, |a1|+|a2| > 0, |b1|+|b2| > 0,

and with inner product with weight function p(x) = 1. Show that

(X,L[Y ]) = (L[X], Y ).

(b) Let λm 6= λn be eigenvalues of the problem L[X] + λpX = 0 with
boundary conditions

a1X(a)+a2X
′(a) = 0, b1X(b)+b2X

′(b) = 0, |a1|+|a2| > 0, |b1|+|b2| > 0.

Show that if Xm, Xn are the corresponding eigenfunctions, then

(pXm, Xn) = 0.

Solution:

(a)

(X,L[Y ])−(L[X], Y ) =
∫ b

a

d

dx
[r(XY ′−Y X ′)] dx = [r(XY ′ − Y X ′)]ba =

r(b)(X(b)Y ′(b)− Y (b)X ′(b))− r(a)(X(a)Y ′(a)− Y (a)X ′(a)).

3



Now suppose a1 6= 0. Then

X(a) = −a2X
′(a)

a1

, Y (a) = −a2Y
′(a)

a1

−→ X(a)Y ′(a)− Y (a)X ′(a) = −a2X
′(a)Y ′(a)

a1

+
a2X

′(a)Y ′(a)

a1

= 0.

If a2 6= 0 then

X ′(a) = −a1X(a)

a2

, Y ′(a) = −a1Y (a)

a2

−→ X(a)Y ′(a)− Y (a)X ′(a) = −a1X(a)Y (a)

a2

+
a1X(a)Y (a)

a2

= 0.

Thus always X(a)Y ′(a)− Y (a)X ′(a) = 0. A similar argument applied
to the endpoint b gives X(b)Y ′(b)− Y (b)X ′(b) = 0. Thus, (X,L[Y ])−
(L[X], Y ) = 0.

(b) We have
L[Xm] + λmpXm = 0, L[Xn] + λnpXn = 0.

Thus

(Xm,L[Xn])−(L[Xm], Xn) = −(Xm, λnpXn)+(λmpXm, Xn) = [λm−λn](pXm, Xn)

However, from part (a) we have (Xm,L[Xn]) − (L[Xm], Xn) = 0, so
[λm−λn](pXm, Xn) = 0. Since λm 6= λn it follows that (pXm, Xn) = 0.

Chapter 8, page 209, Problem 2 Find the eigenvalues and eigenfunctions:

X ′′ + λX = 0, X(0) = 0, hX(1) +X ′(1) = 0, h > 0.

Solution: If λ = 0 then X(x) = Ax + B and X ′(x) = A. Thus the
boundary conditions are B = 0, A(h + 1) = 0, so A = 0 and λ = 0 is
not an eigenvalue.

If λ = −α2, α > 0 then X(x) = Aeαx + Be−αx, X ′(x) = α(Aeαx −
Be−αx). Thus the boundary conditions are A + B = 0 and h(Aeα +
Be−α) + α(Aeα −Be−α) = 0, or

A[h sinhα + α coshα] = 0.
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Since h sinhα + α coshα > 0, we have A = B = 0 and λ = −α2 is not
an eigenvalue.

If λ = α2, α > 0 thenX(x) = A cosαx+B sinαx, X ′(x) = α(−A sinαx+
B cosαx), and the boundary conditions can be read as

A = 0, hB sinα + αB cosα = 0,

or h sinα + α cosα = 0, so λn = α2
n where

tanαn =
−αn
h

, Xn(x) = sinαnx n = 1, 2, · · · .

As follows from the text and simple geometry, there is exactly one
solution αn in the interval

π

2
(2n− 1) < αn < πn.

Since∫ 1

0
X2
n(x)dx =

1

2

∫ 1

0
(1−cos 2αnx)dx =

1

2
− sin 2αn

4αn
=

1

2
− tanαn

2αn
cos2 αn

=
1

2
+

cos2 αn
h

=
h+ cos2 αn

2h
,

the normalized eigenfunctions are

φn(x) =

√
2h

h+ cos2 αn
sinαnx.

Chapter 8, page 209, Problem 4 Solve the S-L problem

X ′′ + λX = 0, X(0) = 0, X(1)−X ′(1) = 0.

Solution:

Case 1: λ = α2 > 0, α > 0. Then

X(x) = A cosαx) +B sinαx X ′(x) = −αA sinαx+ αB cosαx.
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The conditions

X(0) = 0 = A, X(1)−X ′(1) = 0 = B sinα− αB cosα,

imply α = tanα. Similar to what is shown in the book, the solutions
are αn, n = 1, 2, · · · such that (n − 1)π < αn < (2n − 1)π

2
. The

eigenvalues are λn = α2
n Here Xn(x) = sinαnx, so

||Xn||2 = (Xn, Xn) =
∫ 1

0
sin2(αnx)dx =

1

2

∫ 1

0
(1− cos 2αnx)dx

=
1

2
(1− 1

2αn
sin 2αn) =

1

2
(1− cos2 αn),

since sinαn = α cosαn. But

cos2 αn =
1

1 + tan2 αn
=

1

1 + α2
n

,

so

||Xn||2 =
1

2
(1− 1

1 + α2
n

) =
1

2

α2
n

1 + α2
n

and the normalized eigenfunctions are

φn(x) =

√
2(α2

n + 1)

αn
sinαnx.

Case 2: λ = 0. Then X(x) = Ax+B. The conditions

X(0) = 0 = B, X(1)−X ′(1) = 0 = A− A

imply λ0 = 0, X0(x) = x. We have

||X0||2 = (X0, X0) =
∫ 1

0
x2dx =

1

3
,

so the normalized eigenfunction is φ0(x) =
√

3x.

Case 3: λ = −α2 < 0, α > 0. From the left hand boundary condition,
we must have X(x) = sinhαx. The remaining boundary condition is
then sinhα− α coshα = 0 or α = tanhα. The issue is then the points
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of intersection of the curves y = α and y = tanhα. These curves
clearly intersect at α = 0. If they intersect again at some α0 > 0 then
the function g(x) = α − tanhα is continuous on the closed interval
0 ≤ α ≤ α0 and differentiable on the open interval (0, α0). Furthermore
g(0) = g(α0) = 0. By the Mean Value Theorem of calculus, there must
be a value c ∈ (0, α0) such that g′(c) = 0 But g′(α) = tanh2 α > 0 for
all α > 0. Thus no such c can exist, so there is no negative eigenvalue
−α2

0.

Chapter 8, page 215, Problem 3 Use the normalized eigenfunctions of
Problem 2, page 209, namely

X ′′ + λX = 0, X(0) = 0, hX(1) +X ′(1) = 0, h > 0,

λn = α2
n, tanαn =

−αn
h

, φn(x) =

√
2h

h+ cos2 αn
sinαnx. n = 1, 2, · · · ,

to derive

1 = 2h
∞∑
n=1

1− cosαn
αn(h+ cos2 αn)

sinαn, 0 < x < 1.

Solution: We have

1 =
∞∑
n=1

cnφn(x), cn =
∫ 1

0
1 · φn(s)ds, 0 < x < 1.

Now

cn =

√
2h

h+ cos2 αn

∫ 1

0
sinαns ds = −

√
2h

h+ cos2 αn

cosαn − 1

αn
.

Thus

1 =
∞∑
n=1

2h

αn(h+ cos2 αn)
(1− cosαn).

Chapter 8, page 221, Problem 2 Use the normalized eigenfunctions of
the S-L problem

X ′′ + λX = 0, X(0) = 0, X ′(π) = 0
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to solve the boundary value problem

ut(x, t) = kuxx(x, t), 0 < x < π, t > 0,

u(0, t) = 0, ux(π, t) = 0, u(x, 0) = f(x).

Solution: The normalized eigenfunctions are a renormalization of
those in the previous problem:

φn(x) =

√
2

π
sinαnx, αn =

(2n− 1)

2
, n = 1, 2, · · · .

The corresponding separated functions Tn(t) satisfy T ′+α2
nkT = 0, so

Tn(t) = exp (−α2
nkt). Thus

u(x, t) =
∞∑
n=1

B2n−1 exp(−α2
nkt)φn(x), B2n−1 exp(−α2

nkt) =
∫ π

0
u(x, t)φn(x)dx.

Since u(x, 0) = f(x), we have

B2n−1 =
∫ π

0
f(x)φn(x)dx =

√
2

π

∫ π

0
f(x) sin

(2n− 1)x

2
dx

for n = 1, 2, · · ·.

Chapter 8, page 228, Problem 1 Use the expansion of x,

x =
2

c

∞∑
n=1

(−1)n+1

α2
n

sinαnx, 0 < x < c

in terms of the eigenfunctions of the S-L problem

X ′′ + λX = 0, X(0) = 0, X ′(c) = 0,

λn = α2
n, φn(x) =

√
2

c
sinαn, n = 1, 2, · · · ,

where

αn =
(2n− 1)π

2c
,
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to show that the temperature function

u(x, t) =
A

K

[
x+ 2

∞∑
n=1

(−1)n

α2
n

exp(−α2
nkt) sinαnx

]
, 0 < x < 1, t > 0

with αn = (2n−1)π
2

, can be written as

u(x, t) =
2A

K

∞∑
n=1

(−1)n+1

α2
n

[1− exp(−α2
nkt)] sinαnx, 0 < x < 1, t > 0.

Solution: Set c = 1 in the expansion for x, substitute this in the
expansion for u(x, t) and write the sum of two infinite series as a single
series to get

u(x, t) =
A

K

[
x+ 2

∞∑
n=1

(−1)n

α2
n

exp(−α2
nkt) sinαnx

]
=

2A

K

[ ∞∑
n=1

(−1)n+1

α2
n

sinαnx+
∞∑
n=1

(−1)n

α2
n

exp(−α2
nkt) sinαnx

]

=
2A

K

∞∑
n=1

(−1)n+1

α2
n

[1− exp(−α2
nkt)] sinαnx, 0 < x < 1, t > 0.

Chapter 6, page 157, Problem 2 Show that the function

f(x) =


1 when |x| < 1,
0 when |x| > 1,
1
2

when x = ±1,

satisfies the conditions of the Fourier integral pointwise convergence
theorem. Establish

f(x) =
1

π

∫ ∞
0

sinα(1 + x) + sinα(1− x)

α
dα =

2

π

∫ ∞
0

sinα cosαx

α
dα.

Solution: f is piecewise continuous on every bounded interval and∫ ∞
−∞
|f(x| dx =

∫ 1

−1
1 dx = 2 <∞,
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so
f(x+) + f(x−)

2
=

1

π

∫ ∞
0

∫ ∞
−∞

f(s) cosα(s− x) ds dα,

at each x such that f ′R(x) and f ′L(x) exist, and these derivatives exist
at all x. Further, this function satisfies

f(x+) + f(x−)

2
= f(x)

for all x. Now

∫ ∞
−∞

f(s) cosα(s− x) ds =
∫ 1

−1
cosα(s− x) ds =

[
sinα(s− x)

α

]1

−1

=
sinα(1− x) + sinα(1 + x)

α
,

so

f(x) =
1

π

∫ ∞
0

sinα(1− x) + sinα(1 + x)

α
dα.

From the addition formulas for sinx we have

sinα(1−x)+sinα(1+x) = sinα cosαx−cosα sinαx+sinα cosαx+cosα sinαx

= 2 sinα cosαx,

so

f(x) =
2

π

∫ ∞
0

sinα cosαx

α
dα.

Chapter 6, page 162, Problem 1 Show that the function

f(x) =


1 when 0 < x < b,
0 when x > b,
1
2

when x = b,

satisfies the conditions of the Fourier sine integral pointwise conver-
gence theorem. Establish

f(x) =
2

π

∫ ∞
0

1− cos bα

α
sinαx dα, x > 0.
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Solution: f is piecewise smooth on every bounded interval over the
positive x axis and is absolutely integrable. For every x > 0 f satisfies

f(x+) + f(x−)

2
= f(x)

Thus

f(x) =
2

π

∫ ∞
0

sinαx
∫ ∞
0

f(s) sinαs ds dα, x > 0.

Now ∫ ∞
0

f(s) sinαs ds =
∫ b

0
sinαs ds = −cosαs

α
|b0 =

1− cosαb

α
,

so

f(x) =
2

π

∫ ∞
0

sinαx
1− cosαb

α
dα, x > 0.
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