Name:

Math 4567. Homework Set \# VII

April 23, 2010

Chapter 8, (page 201, problems 1,2,3), (page 209, problems 2,4), (page 215, problem 3), (page 221, problem 2), (page 228, problem 1), Chapter 6 (page 157, problem 2). (page 162, problem 1)

Chapter 8 page 201, Problem 1 (a) Consider the Sturm - Liouville problem

$$
\begin{gathered}
{\left[x X^{\prime}(x)\right]^{\prime}+\frac{\lambda}{x} X(x)=0, \quad 1<x<b,} \\
X(1)=0, X(b)=0,
\end{gathered}
$$

and use the substitution $x=\exp s$ to convert the problem to

$$
\begin{gathered}
\frac{d^{2} X}{d s^{2}}+\lambda X=0, \quad 0<s<\ln b \\
\left.X\right|_{s=0}=0,\left.\quad X\right|_{s=\ln b}=0
\end{gathered}
$$

Show that the eigenvalues and eigenfunctions of the original problem are

$$
\lambda_{n}=\alpha_{n}^{2}, \quad X_{n}(x)=\sin \left(\alpha_{n} \ln x\right), \quad n=1,2, \cdots,
$$

where $\alpha_{n}=n \pi / \ln b$.
(b) By making the substitution

$$
s=\pi \frac{\ln x}{\ln b}
$$

give a direct verification that the eigenfunctions $X_{n}(x)$ of part (a) are orthogonal on the interval $1<x<b$, with weight function $p(x)=1 / x$.

Solution:

(a) We have $\frac{d}{d s}=\frac{d x}{d s} \frac{d}{d x}=x \frac{d}{d x}$, so

$$
x\left[x X^{\prime}(x)\right]^{\prime}+\lambda X(x)=0 \leftrightarrow \frac{d^{2} X}{d s^{2}}+\lambda X=0, \quad o<s<\ln b,
$$

since $s=\ln x$. Thus, in the new coordinates the boundary conditions are

$$
\left.X\right|_{s=0}=0,\left.X\right|_{s=\ln b}=0
$$

For the original problem we solve the eigenvalue problem.
Case 1: $\lambda=\alpha^{2}, \alpha>0$. The solution of the differential equation is

$$
X=A \cos \alpha s+B \sin \alpha s=A \cos (\alpha \ln x)+B \sin (\alpha \ln x) .
$$

Then $X(1)=0=A$, and $X(b)=0=B \sin (\alpha \ln b)$, so we can have a nonzero solution only for $\alpha \ln b=n \pi$, or $\alpha=\alpha_{n}=n \pi / \ln b$, with $X_{n}(x)=\sin \left(\frac{n \pi \ln x}{\ln b}\right), n=1,2, \cdots$.
(b) Since $s=\pi \frac{\ln x}{\ln b}$, it follows that $d s=\pi d x / x \ln b$. We have for $m \neq n$,

$$
\begin{gathered}
\int_{1}^{b} X_{n}(x) X_{m}(x) \frac{d x}{x}=\int_{1}^{b} \sin \left(\frac{n \pi \ln x}{\ln b}\right) \sin \left(\frac{m \pi \ln x}{\ln b}\right) \frac{d x}{x} \\
=\frac{\ln b}{\pi} \int_{0}^{\pi} \sin n s \sin m s d s \\
=0
\end{gathered}
$$

if $m \neq n$.
Chapter 8, page 201, Problem 2 Let

$$
\mathcal{L}[X]=\left(r X^{\prime}\right)^{\prime}+q X
$$

so that the Sturm-Liouville differential equation can be written as

$$
\mathcal{L}[X]+\lambda p X=0 .
$$

Derive Lagrange's identity

$$
X \mathcal{L}[Y]-Y \mathcal{L}[X]=\frac{d}{d x}\left[r\left(X Y^{\prime}-Y X^{\prime}\right)\right]
$$

Solution:

$$
\begin{gathered}
X \mathcal{L}[Y]-Y \mathcal{L}[X]=X\left(r Y^{\prime}\right)^{\prime}+q X Y-Y\left(r X^{\prime}\right)^{\prime}-q Y X \\
=X r^{\prime} Y^{\prime}+X r Y^{\prime \prime}-Y r^{\prime} X^{\prime}-Y X^{\prime \prime}=r^{\prime}\left(X Y^{\prime}-Y X^{\prime}\right)+r\left(X Y^{\prime \prime}-Y X^{\prime \prime}\right) .
\end{gathered}
$$

Since

$$
\frac{d}{d x}\left[r\left(X Y^{\prime}-Y X^{\prime}\right)\right]=r^{\prime}\left(X Y^{\prime}-Y X^{\prime}\right)+r\left(X Y^{\prime \prime}-Y X^{\prime \prime}\right)
$$

this establishes the identity.
Chapter 8, page 201, Problem 3 (a) Let \mathcal{L} be the operator of the previous problem, defined on a space of functions on $a<x<b$, satisfying the conditions

$$
a_{1} X(a)+a_{2} X^{\prime}(a)=0, b_{1} X(b)+b_{2} X^{\prime}(b)=0, \quad\left|a_{1}\right|+\left|a_{2}\right|>0,\left|b_{1}\right|+\left|b_{2}\right|>0,
$$

and with inner product with weight function $p(x)=1$. Show that

$$
(X, \mathcal{L}[Y])=(\mathcal{L}[X], Y)
$$

(b) Let $\lambda_{m} \neq \lambda_{n}$ be eigenvalues of the problem $\mathcal{L}[X]+\lambda p X=0$ with boundary conditions

$$
a_{1} X(a)+a_{2} X^{\prime}(a)=0, b_{1} X(b)+b_{2} X^{\prime}(b)=0, \quad\left|a_{1}\right|+\left|a_{2}\right|>0,\left|b_{1}\right|+\left|b_{2}\right|>0 .
$$

Show that if X_{m}, X_{n} are the corresponding eigenfunctions, then

$$
\left(p X_{m}, X_{n}\right)=0
$$

Solution:

(a)

$$
\begin{gathered}
(X, \mathcal{L}[Y])-(\mathcal{L}[X], Y)=\int_{a}^{b} \frac{d}{d x}\left[r\left(X Y^{\prime}-Y X^{\prime}\right)\right] d x=\left[r\left(X Y^{\prime}-Y X^{\prime}\right)\right]_{a}^{b}= \\
r(b)\left(X(b) Y^{\prime}(b)-Y(b) X^{\prime}(b)\right)-r(a)\left(X(a) Y^{\prime}(a)-Y(a) X^{\prime}(a)\right) .
\end{gathered}
$$

Now suppose $a_{1} \neq 0$. Then

$$
\begin{gathered}
X(a)=-\frac{a_{2} X^{\prime}(a)}{a_{1}}, Y(a)=-\frac{a_{2} Y^{\prime}(a)}{a_{1}} \\
\longrightarrow X(a) Y^{\prime}(a)-Y(a) X^{\prime}(a)=-\frac{a_{2} X^{\prime}(a) Y^{\prime}(a)}{a_{1}}+\frac{a_{2} X^{\prime}(a) Y^{\prime}(a)}{a_{1}}=0 .
\end{gathered}
$$

If $a_{2} \neq 0$ then

$$
\begin{gathered}
X^{\prime}(a)=-\frac{a_{1} X(a)}{a_{2}}, Y^{\prime}(a)=-\frac{a_{1} Y(a)}{a_{2}} \\
\longrightarrow X(a) Y^{\prime}(a)-Y(a) X^{\prime}(a)=-\frac{a_{1} X(a) Y(a)}{a_{2}}+\frac{a_{1} X(a) Y(a)}{a_{2}}=0 .
\end{gathered}
$$

Thus always $X(a) Y^{\prime}(a)-Y(a) X^{\prime}(a)=0$. A similar argument applied to the endpoint b gives $X(b) Y^{\prime}(b)-Y(b) X^{\prime}(b)=0$. Thus, $(X, \mathcal{L}[Y])-$ $(\mathcal{L}[X], Y)=0$.
(b) We have

$$
\mathcal{L}\left[X_{m}\right]+\lambda_{m} p X_{m}=0, \quad \mathcal{L}\left[X_{n}\right]+\lambda_{n} p X_{n}=0 .
$$

Thus

$$
\left(X_{m}, \mathcal{L}\left[X_{n}\right]\right)-\left(\mathcal{L}\left[X_{m}\right], X_{n}\right)=-\left(X_{m}, \lambda_{n} p X_{n}\right)+\left(\lambda_{m} p X_{m}, X_{n}\right)=\left[\lambda_{m}-\lambda_{n}\right]\left(p X_{m}, X_{n}\right)
$$

However, from part (a) we have $\left(X_{m}, \mathcal{L}\left[X_{n}\right]\right)-\left(\mathcal{L}\left[X_{m}\right], X_{n}\right)=0$, so $\left[\lambda_{m}-\lambda_{n}\right]\left(p X_{m}, X_{n}\right)=0$. Since $\lambda_{m} \neq \lambda_{n}$ it follows that $\left(p X_{m}, X_{n}\right)=0$.

Chapter 8, page 209, Problem 2 Find the eigenvalues and eigenfunctions:

$$
X^{\prime \prime}+\lambda X=0, X(0)=0, h X(1)+X^{\prime}(1)=0, h>0 .
$$

Solution: If $\lambda=0$ then $X(x)=A x+B$ and $X^{\prime}(x)=A$. Thus the boundary conditions are $B=0, A(h+1)=0$, so $A=0$ and $\lambda=0$ is not an eigenvalue.
If $\lambda=-\alpha^{2}, \alpha>0$ then $X(x)=A e^{\alpha x}+B e^{-\alpha x}, X^{\prime}(x)=\alpha\left(A e^{\alpha x}-\right.$ $\left.B e^{-\alpha x}\right)$. Thus the boundary conditions are $A+B=0$ and $h\left(A e^{\alpha}+\right.$ $\left.B e^{-\alpha}\right)+\alpha\left(A e^{\alpha}-B e^{-\alpha}\right)=0$, or

$$
A[h \sinh \alpha+\alpha \cosh \alpha]=0 .
$$

Since $h \sinh \alpha+\alpha \cosh \alpha>0$, we have $A=B=0$ and $\lambda=-\alpha^{2}$ is not an eigenvalue.
If $\lambda=\alpha^{2}, \alpha>0$ then $X(x)=A \cos \alpha x+B \sin \alpha x, X^{\prime}(x)=\alpha(-A \sin \alpha x+$ $B \cos \alpha x$), and the boundary conditions can be read as

$$
A=0, \quad h B \sin \alpha+\alpha B \cos \alpha=0
$$

or $h \sin \alpha+\alpha \cos \alpha=0$, so $\lambda_{n}=\alpha_{n}^{2}$ where

$$
\tan \alpha_{n}=\frac{-\alpha_{n}}{h}, X_{n}(x)=\sin \alpha_{n} x \quad n=1,2, \cdots .
$$

As follows from the text and simple geometry, there is exactly one solution α_{n} in the interval

$$
\frac{\pi}{2}(2 n-1)<\alpha_{n}<\pi n
$$

Since

$$
\begin{gathered}
\int_{0}^{1} X_{n}^{2}(x) d x=\frac{1}{2} \int_{0}^{1}\left(1-\cos 2 \alpha_{n} x\right) d x=\frac{1}{2}-\frac{\sin 2 \alpha_{n}}{4 \alpha_{n}}=\frac{1}{2}-\frac{\tan \alpha_{n}}{2 \alpha_{n}} \cos ^{2} \alpha_{n} \\
=\frac{1}{2}+\frac{\cos ^{2} \alpha_{n}}{h}=\frac{h+\cos ^{2} \alpha_{n}}{2 h},
\end{gathered}
$$

the normalized eigenfunctions are

$$
\phi_{n}(x)=\sqrt{\frac{2 h}{h+\cos ^{2} \alpha_{n}}} \sin \alpha_{n} x .
$$

Chapter 8, page 209, Problem 4 Solve the S-L problem

$$
X^{\prime \prime}+\lambda X=0, X(0)=0, X(1)-X^{\prime}(1)=0 .
$$

Solution:

Case 1: $\lambda=\alpha^{2}>0, \alpha>0$. Then

$$
X(x)=A \cos \alpha x)+B \sin \alpha x X^{\prime}(x)=-\alpha A \sin \alpha x+\alpha B \cos \alpha x .
$$

The conditions

$$
X(0)=0=A, X(1)-X^{\prime}(1)=0=B \sin \alpha-\alpha B \cos \alpha,
$$

imply $\alpha=\tan \alpha$. Similar to what is shown in the book, the solutions are $\alpha_{n}, n=1,2, \cdots$ such that $(n-1) \pi<\alpha_{n}<(2 n-1) \frac{\pi}{2}$. The eigenvalues are $\lambda_{n}=\alpha_{n}^{2}$ Here $X_{n}(x)=\sin \alpha_{n} x$, so

$$
\begin{gathered}
\left\|X_{n}\right\|^{2}=\left(X_{n}, X_{n}\right)=\int_{0}^{1} \sin ^{2}\left(\alpha_{n} x\right) d x=\frac{1}{2} \int_{0}^{1}\left(1-\cos 2 \alpha_{n} x\right) d x \\
=\frac{1}{2}\left(1-\frac{1}{2 \alpha_{n}} \sin 2 \alpha_{n}\right)=\frac{1}{2}\left(1-\cos ^{2} \alpha_{n}\right)
\end{gathered}
$$

$\operatorname{since} \sin \alpha_{n}=\alpha \cos \alpha_{n}$. But

$$
\cos ^{2} \alpha_{n}=\frac{1}{1+\tan ^{2} \alpha_{n}}=\frac{1}{1+\alpha_{n}^{2}},
$$

so

$$
\left\|X_{n}\right\|^{2}=\frac{1}{2}\left(1-\frac{1}{1+\alpha_{n}^{2}}\right)=\frac{1}{2} \frac{\alpha_{n}^{2}}{1+\alpha_{n}^{2}}
$$

and the normalized eigenfunctions are

$$
\phi_{n}(x)=\frac{\sqrt{2\left(\alpha_{n}^{2}+1\right)}}{\alpha_{n}} \sin \alpha_{n} x .
$$

Case 2: $\lambda=0$. Then $X(x)=A x+B$. The conditions

$$
X(0)=0=B, X(1)-X^{\prime}(1)=0=A-A
$$

imply $\lambda_{0}=0, X_{0}(x)=x$. We have

$$
\left\|X_{0}\right\|^{2}=\left(X_{0}, X_{0}\right)=\int_{0}^{1} x^{2} d x=\frac{1}{3},
$$

so the normalized eigenfunction is $\phi_{0}(x)=\sqrt{3} x$.
Case 3: $\lambda=-\alpha^{2}<0, \alpha>0$. From the left hand boundary condition, we must have $X(x)=\sinh \alpha x$. The remaining boundary condition is then $\sinh \alpha-\alpha \cosh \alpha=0$ or $\alpha=\tanh \alpha$. The issue is then the points
of intersection of the curves $y=\alpha$ and $y=\tanh \alpha$. These curves clearly intersect at $\alpha=0$. If they intersect again at some $\alpha_{0}>0$ then the function $g(x)=\alpha-\tanh \alpha$ is continuous on the closed interval $0 \leq \alpha \leq \alpha_{0}$ and differentiable on the open interval ($0, \alpha_{0}$). Furthermore $g(0)=g\left(\alpha_{0}\right)=0$. By the Mean Value Theorem of calculus, there must be a value $c \in\left(0, \alpha_{0}\right)$ such that $g^{\prime}(c)=0$ But $g^{\prime}(\alpha)=\tanh ^{2} \alpha>0$ for all $\alpha>0$. Thus no such c can exist, so there is no negative eigenvalue $-\alpha_{0}^{2}$.

Chapter 8, page 215, Problem 3 Use the normalized eigenfunctions of Problem 2, page 209, namely

$$
\begin{gathered}
X^{\prime \prime}+\lambda X=0, X(0)=0, h X(1)+X^{\prime}(1)=0, h>0, \\
\lambda_{n}=\alpha_{n}^{2}, \tan \alpha_{n}=\frac{-\alpha_{n}}{h}, \phi_{n}(x)=\sqrt{\frac{2 h}{h+\cos ^{2} \alpha_{n}}} \sin \alpha_{n} x . \quad n=1,2, \cdots,
\end{gathered}
$$

to derive

$$
1=2 h \sum_{n=1}^{\infty} \frac{1-\cos \alpha_{n}}{\alpha_{n}\left(h+\cos ^{2} \alpha_{n}\right)} \sin \alpha_{n}, \quad 0<x<1 .
$$

Solution: We have

$$
1=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x), c_{n}=\int_{0}^{1} 1 \cdot \phi_{n}(s) d s, \quad 0<x<1 .
$$

Now

$$
c_{n}=\sqrt{\frac{2 h}{h+\cos ^{2} \alpha_{n}}} \int_{0}^{1} \sin \alpha_{n} s d s=-\sqrt{\frac{2 h}{h+\cos ^{2} \alpha_{n}}} \frac{\cos \alpha_{n}-1}{\alpha_{n}} .
$$

Thus

$$
1=\sum_{n=1}^{\infty} \frac{2 h}{\alpha_{n}\left(h+\cos ^{2} \alpha_{n}\right)}\left(1-\cos \alpha_{n}\right) .
$$

Chapter 8, page 221, Problem 2 Use the normalized eigenfunctions of the S-L problem

$$
X^{\prime \prime}+\lambda X=0, \quad X(0)=0, \quad X^{\prime}(\pi)=0
$$

to solve the boundary value problem

$$
\begin{aligned}
& u_{t}(x, t)=k u_{x x}(x, t), \quad 0<x<\pi, t>0 \\
& u(0, t)=0, u_{x}(\pi, t)=0, u(x, 0)=f(x)
\end{aligned}
$$

Solution: The normalized eigenfunctions are a renormalization of those in the previous problem:

$$
\phi_{n}(x)=\sqrt{\frac{2}{\pi}} \sin \alpha_{n} x, \alpha_{n}=\frac{(2 n-1)}{2}, \quad n=1,2, \cdots .
$$

The corresponding separated functions $T_{n}(t)$ satisfy $T^{\prime}+\alpha_{n}^{2} k T=0$, so $T_{n}(t)=\exp \left(-\alpha_{n}^{2} k t\right)$. Thus $u(x, t)=\sum_{n=1}^{\infty} B_{2 n-1} \exp \left(-\alpha_{n}^{2} k t\right) \phi_{n}(x), B_{2 n-1} \exp \left(-\alpha_{n}^{2} k t\right)=\int_{0}^{\pi} u(x, t) \phi_{n}(x) d x$.

Since $u(x, 0)=f(x)$, we have

$$
B_{2 n-1}=\int_{0}^{\pi} f(x) \phi_{n}(x) d x=\sqrt{\frac{2}{\pi}} \int_{0}^{\pi} f(x) \sin \frac{(2 n-1) x}{2} d x
$$

for $n=1,2, \cdots$.
Chapter 8, page 228, Problem 1 Use the expansion of x,

$$
x=\frac{2}{c} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\alpha_{n}^{2}} \sin \alpha_{n} x, \quad 0<x<c
$$

in terms of the eigenfunctions of the S-L problem

$$
\begin{gathered}
X^{\prime \prime}+\lambda X=0, \quad X(0)=0, \quad X^{\prime}(c)=0, \\
\lambda_{n}=\alpha_{n}^{2}, \quad \phi_{n}(x)=\sqrt{\frac{2}{c}} \sin \alpha_{n}, \quad n=1,2, \cdots,
\end{gathered}
$$

where

$$
\alpha_{n}=\frac{(2 n-1) \pi}{2 c},
$$

to show that the temperature function
$u(x, t)=\frac{A}{K}\left[x+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\alpha_{n}^{2}} \exp \left(-\alpha_{n}^{2} k t\right) \sin \alpha_{n} x\right], \quad 0<x<1, t>0$
with $\alpha_{n}=\frac{(2 n-1) \pi}{2}$, can be written as

$$
u(x, t)=\frac{2 A}{K} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\alpha_{n}^{2}}\left[1-\exp \left(-\alpha_{n}^{2} k t\right)\right] \sin \alpha_{n} x, \quad 0<x<1, t>0 .
$$

Solution: Set $c=1$ in the expansion for x, substitute this in the expansion for $u(x, t)$ and write the sum of two infinite series as a single series to get

$$
\begin{gathered}
\quad u(x, t)=\frac{A}{K}\left[x+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\alpha_{n}^{2}} \exp \left(-\alpha_{n}^{2} k t\right) \sin \alpha_{n} x\right]= \\
\\
\frac{2 A}{K}\left[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\alpha_{n}^{2}} \sin \alpha_{n} x+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\alpha_{n}^{2}} \exp \left(-\alpha_{n}^{2} k t\right) \sin \alpha_{n} x\right] \\
= \\
\frac{2 A}{K} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\alpha_{n}^{2}}\left[1-\exp \left(-\alpha_{n}^{2} k t\right)\right] \sin \alpha_{n} x, \quad 0<x<1, t>0 .
\end{gathered}
$$

Chapter 6, page 157, Problem 2 Show that the function

$$
f(x)= \begin{cases}1 & \text { when }|x|<1 \\ 0 & \text { when }|x|>1 \\ \frac{1}{2} & \text { when } x= \pm 1\end{cases}
$$

satisfies the conditions of the Fourier integral pointwise convergence theorem. Establish

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin \alpha(1+x)+\sin \alpha(1-x)}{\alpha} d \alpha=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \alpha \cos \alpha x}{\alpha} d \alpha .
$$

Solution: f is piecewise continuous on every bounded interval and

$$
\int_{-\infty}^{\infty} \mid f\left(x \mid d x=\int_{-1}^{1} 1 d x=2<\infty,\right.
$$

SO

$$
\frac{f(x+)+f(x-)}{2}=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(s) \cos \alpha(s-x) d s d \alpha
$$

at each x such that $f_{R}^{\prime}(x)$ and $f_{L}^{\prime}(x)$ exist, and these derivatives exist at all x. Further, this function satisfies

$$
\frac{f(x+)+f(x-)}{2}=f(x)
$$

for all x. Now

$$
\begin{gathered}
\int_{-\infty}^{\infty} f(s) \cos \alpha(s-x) d s=\int_{-1}^{1} \cos \alpha(s-x) d s=\left[\frac{\sin \alpha(s-x)}{\alpha}\right]_{-1}^{1} \\
=\frac{\sin \alpha(1-x)+\sin \alpha(1+x)}{\alpha}
\end{gathered}
$$

so

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin \alpha(1-x)+\sin \alpha(1+x)}{\alpha} d \alpha .
$$

From the addition formulas for $\sin x$ we have
$\sin \alpha(1-x)+\sin \alpha(1+x)=\sin \alpha \cos \alpha x-\cos \alpha \sin \alpha x+\sin \alpha \cos \alpha x+\cos \alpha \sin \alpha x$

$$
=2 \sin \alpha \cos \alpha x,
$$

so

$$
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \alpha \cos \alpha x}{\alpha} d \alpha .
$$

Chapter 6, page 162, Problem 1 Show that the function

$$
f(x)= \begin{cases}1 & \text { when } 0<x<b \\ 0 & \text { when } x>b, \\ \frac{1}{2} & \text { when } x=b\end{cases}
$$

satisfies the conditions of the Fourier sine integral pointwise convergence theorem. Establish

$$
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \frac{1-\cos b \alpha}{\alpha} \sin \alpha x d \alpha, \quad x>0
$$

Solution: f is piecewise smooth on every bounded interval over the positive x axis and is absolutely integrable. For every $x>0 f$ satisfies

$$
\frac{f(x+)+f(x-)}{2}=f(x)
$$

Thus

$$
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \sin \alpha x \int_{0}^{\infty} f(s) \sin \alpha s d s d \alpha, \quad x>0
$$

Now

$$
\int_{0}^{\infty} f(s) \sin \alpha s d s=\int_{0}^{b} \sin \alpha s d s=-\left.\frac{\cos \alpha s}{\alpha}\right|_{0} ^{b}=\frac{1-\cos \alpha b}{\alpha}
$$

so

$$
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \sin \alpha x \frac{1-\cos \alpha b}{\alpha} d \alpha, \quad x>0 .
$$

