Name:

Math 4567. Homework Set \# VI

April 2, 2010

Chapter 5, page 113, problem 1), (page 122, problem 1), (page 128, problem 2), (page 133, problem 4), (page 136, problem 1). (page 146, problem 1), Chapter 8 (page 209, problem 1)

Chapter 5 page 113, Problem 1 The initial temperature of a slab $0 \leq$ $x \leq \pi$ is everywhere 0 and the face $x=0$ is kept at that temperature. Heat is supplied through the face $x=\pi$ at a constant rate $k u_{x}(\pi, t)=$ $A>0$. Write $u(x, t)=U(x, t)+\Phi(x)$ and use the solution to the problem

$$
\begin{gathered}
(*) \quad U_{t}=k U_{x x}, \quad 0<x<\pi, t>0 \\
U(0, t)=0, U_{x}(\pi, t)=0, \quad 0<x<\pi
\end{gathered}
$$

and $U(x, 0)=F(x)$ where

$$
F(x)= \begin{cases}f(x) & \text { when } 0<x<\pi \\ f(2 \pi-x) & \text { when } \pi<x<2 \pi\end{cases}
$$

which is

$$
\begin{aligned}
& U(x, t)=\sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{n^{2} k}{4} t\right) \sin \frac{n x}{2} \\
& B_{n}=\frac{1-(-1)^{n}}{\pi} \int_{0}^{\pi} f(x) \sin \frac{n x}{2} d x
\end{aligned}
$$

to derive the final solution $u(x, t)$
Solution: We first find a function $u=\Phi(x)$ that satisfies the nonhomogeneous condition $k u_{x}(\pi, t)=A$ and the homogeneous condition $u(0, t)=0$. The differential equation is $\Phi^{\prime \prime}(x)=0$, so $\Phi(x)=B x+C$. The nonhomogeneous boundary condition says $K B=A$ and the homogeneous condition says $C=0$ thus $\Phi(x)=\frac{A}{k} x$. Then, setting
$u(x, t)=U(x, t)+\Phi(x)$ we see that $u(x, t)$ will be a solution of our original problem, provided $U(x, t)$ satisfies problem $(*)$ where $U(x, 0)=$ $f(x)=-\Phi(x)=-\frac{A}{k} x$ for $0<x<\pi$. Thus

$$
u(x, t)=\frac{A}{k} x+\sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{n^{2} k}{4} t\right) \sin \frac{n x}{2},
$$

where

$$
B_{n}=-\frac{A}{k}\left(\frac{1-(-1)^{n}}{\pi}\right) \int_{0}^{\pi} x \sin \frac{n x}{2} d x .
$$

Note that $B_{n}=0$ unless $n=2 m-1$ is odd. Since

$$
\begin{gathered}
\int_{0}^{\pi} x \sin \frac{n x}{2} d x=\frac{2}{n}\left\{-\left.x \cos \frac{n x}{2}\right|_{0} ^{\pi}+\int_{0}^{\pi} \cos \frac{n x}{2} d x\right\}=\frac{2}{n}\left[-\pi \cos \frac{n \pi}{2}+\frac{2}{n} \sin \frac{n \pi}{2}\right] \\
=\left(\frac{2}{2 m-1}\right)^{2}(-1)^{m+1}
\end{gathered}
$$

we get the solution

$$
u(x, t)=\frac{A}{k}\left\{x+\frac{8}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m}}{(2 m-1)^{2}} \exp \left[-\frac{(2 m-1)^{2} k}{4} t\right] \sin \frac{(2 m-1) x}{2}\right\} .
$$

Chapter 5, page 122, Problem 1 The faces and edges $x=0$ and $x=\pi$, ($0<y<\pi$) of a square plate $0 \leq x \leq \pi, 0 \leq y \leq \pi$ are insulated. The edges $y=0$ and $y=\pi,(0<x<\pi)$ are kept at temperatures 0 and $f(x)$, respectively. Let $u(x, y)$ be the steady state temperature distribution in the plate. Show that

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \sinh n y \cos n x
$$

$A_{0}=\frac{1}{\pi^{2}} \int_{0}^{\pi} f(x) d x, A_{n}=\frac{2}{\pi \sinh n \pi} \int_{0}^{\pi} f(x) \cos n x d x, \quad n=1,2, \cdots$.
Find $u(x, y)$ if $f(x)=u_{0}$.
Solution: The problem is

$$
u_{x x}+u_{y y}=0, \quad 0<x<\pi, \quad 0<y<\pi,
$$

$$
\begin{gathered}
u_{x}(0, y)=0, \quad u_{x}(\pi, y)=0, \quad 0<y<\pi, \\
u(x, 0)=0, \quad 0<x<\pi \\
u(x, \pi)=f(x), \quad 0<x<\pi .
\end{gathered}
$$

We use separation of variables $u=X(x) Y(y)$ to find solutions satisfying the homogeneous conditions. The Sturm-Liouville eigenvalue problem is

$$
X^{\prime \prime}(x)+\lambda X(x)=0, X^{\prime}(0)=X^{\prime}(\pi)=0
$$

From past work we know that the eigenvalues are $\lambda_{n}=n^{2}, n=1,2, \cdots$ with eigenfunctions $X_{n}(x)=\cos n x$, and $\lambda_{0}=0$ with eigenfunction $X_{0}(x)=1$. The corresponding equations for $Y(y)$ are

$$
Y^{\prime \prime}(y)-\lambda Y(y)=0, Y(0)=0
$$

As has been shown earlier, for $\lambda_{n}=n^{2}$ we have $Y_{n}(y)=\sinh n y$ and for $\lambda_{0}=0$ we have $Y_{0}(y)=y$. Thus we can write

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \cos n x \sinh n y
$$

where

$$
u(x, \pi)=f(x)=A_{0} \pi+\sum_{n=1}^{\infty} A_{n} \cos n x \sinh n \pi
$$

Thus

$$
\begin{gathered}
A_{n} \sinh n \pi=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x, \quad n=1,2, \cdots, \\
A_{0} \pi=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x
\end{gathered}
$$

If $f(x)=u_{0}$ then $A_{n}=0 A_{0} \pi=u_{0}$, so the solution is $u(x, y)=\frac{u_{0}}{\pi} y$.
Chapter 5, page 128, Problem 2 Let the faces of a wedge shaped plate $0 \leq \rho \leq a, 0 \leq \phi \leq \alpha$ be insulated Find the steady temperature $u(\rho, \phi)$ in the plate when $u=0$ on the rays $\phi=0, \phi=\alpha(0<\rho<\alpha)$ and $u=f(\phi)$ on the arc $\rho=a(0<\phi<\alpha)$. Assume f is piecewise smooth and u is bounded.

Solution: Our problem in polar coordinates is to find a function $u(\rho, \phi)$ for

$$
\begin{gathered}
\rho^{2} u_{\rho \rho}+\rho u_{\rho}+u_{\phi \phi}=0, \quad 0<\rho<a, 0<\phi<\alpha, \\
u(\rho, 0)=u(\rho, \alpha)=0, \quad 0<\rho<\alpha, \\
u(a, \phi)=f(\phi), \quad 0<\phi<\alpha,
\end{gathered}
$$

where f is piecewise smooth and $|u|<M$, i.e., u is bounded.
Separating variables, $u=R(\rho) \Phi(\phi)$ satisfies the homogeneous conditions if Φ satisfies the Sturm-Liouville problem

$$
\Phi^{\prime \prime}+\lambda \Phi=0, \Phi(0)=\Phi(\alpha)=0,
$$

and R satisfies

$$
\rho^{2} R^{\prime \prime}+\rho R^{\prime}-\lambda R=0
$$

and R is bounded. It is straightforward to show that the eigenvalues are $\lambda_{n}=\frac{n^{2} \pi^{2}}{\alpha^{2}}$ with eigenfunctions $\Phi_{n}(\phi)=\sin \frac{n \pi \phi}{\alpha}, n=1,2, \cdots$. The change of variable $\rho=e^{s}$ gives the corresponding equation for R as $R_{s s}-\lambda_{n} R=0$. The general solutions are

$$
R_{n}(\rho)=A \rho^{n \pi / \alpha}+B \rho^{-n \pi / \alpha},
$$

and the boundedness requirement yields $R_{n}(\rho)=\rho^{n \pi / \alpha}$. Thus

$$
u(\rho, \phi)=\sum_{n=1}^{\infty} B_{n} \rho^{n \pi / \alpha} \sin \frac{n \pi \phi}{\alpha}
$$

and

$$
u(a, \phi)=f(\phi)=\sum_{n=1}^{\infty} B_{n} a^{n \pi / \alpha} \sin \frac{n \pi \phi}{\alpha},
$$

where

$$
B_{n} a^{n \pi / \alpha}=\frac{2}{\alpha} \int_{0}^{\alpha} f(\psi) \sin \frac{n \pi \psi}{\alpha} d \psi
$$

Thus

$$
u(\rho, \phi)=\frac{2}{\alpha} \sum_{n=1}^{\infty}\left(\frac{\rho}{a}\right)^{n \pi / \alpha} \sin \frac{n \pi \phi}{\alpha} \int_{0}^{\alpha} f(\psi) \sin \frac{n \pi \psi}{\alpha} d \psi
$$

Chapter 5, page 133, Problem 4 A string is stretched between points 0 and π on x-axis and, initially at rest, is released from the position $y=f(x)$. The equation of motion is

$$
y_{t t}=y_{x x}-2 \beta y_{t}, \quad 0<x<\pi, t>0,
$$

where $0<\beta<1$ and β is constant. Show that

$$
\begin{gathered}
y(x, t)=e^{-\beta t} \sum_{n=1}^{\infty} B_{n}\left(\cos \alpha_{n} t+\frac{\beta}{\alpha_{n}} \sin \alpha_{n} t\right) \sin n x, \\
\alpha_{n}=\sqrt{n^{2}-\beta^{2}}, \quad B_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x, \quad n=1,2, \cdots .
\end{gathered}
$$

Solution: Set $z(x, t)=e^{\beta t} y(x, t)$. Then $z(x, t)$ satisfies

$$
\begin{gathered}
z_{t t}=z_{x x}+\beta^{2} z, \quad 0<\pi, t>0 \\
z(0, t)=z(\pi, t)=0, \quad t>0 \\
z_{t}(x, 0)=\beta f(x), \quad z(x, 0)=f(x), \quad 0<x<\pi,
\end{gathered}
$$

where $f(0)=f(\pi)=0$. We look for a solution of the form

$$
z(x, t)=\sum_{n=1}^{\infty} A_{n}(t) \sin n x, A_{n}(t)=\frac{2}{\pi} \int_{0}^{\pi} z(x, t) \sin n x d x .
$$

Then

$$
\begin{aligned}
& A_{n}^{\prime \prime}(t)= \frac{2}{\pi} \int_{0}^{\pi} z_{t t}(x, t) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi}\left(z_{x x}(x, t)+\beta^{2} z(x, t)\right) \sin n x d x \\
&=\frac{2}{\pi} \int_{0}^{\pi} z_{x x}(x, t) \sin n x d x+\frac{2 \beta^{2}}{\pi} \int_{0}^{\pi} z(x, t) \sin n x d x \\
&= \frac{2}{\pi}\left[\left.z_{x}(x, t) \sin n x\right|_{0} ^{\pi}-n \int_{0}^{\pi} z_{x}(x, t) \cos n x d x\right]+\beta^{2} A_{n}(t) \\
&= \frac{2}{\pi}\left[-\left.n z(x . t) \cos n x\right|_{0} ^{\pi}-n^{2} \int_{0}^{\pi} z(x, t) \sin n x d x\right]+\beta^{2} A_{n}(t) \\
&=\left(-n^{2}+\beta^{2}\right) A_{n}(t) .
\end{aligned}
$$

Thus

$$
A_{n}^{\prime \prime}(t)+\left(n^{2}-\beta^{2}\right) A_{n}(t)=0
$$

so

$$
A_{n}(t)=B_{n} \cos \alpha_{n} t+C_{n} \sin \alpha_{n} t
$$

where $\alpha_{n}=\sqrt{n^{2}-\beta^{2}}, n=1,2, \cdots$. The condition

$$
z(x, 0)=f(x)=\sum_{n=1}^{\infty} B_{n} \sin n x
$$

gives

$$
B_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x, \quad n=1,2, \cdots
$$

The condition

$$
z_{t}(x, 0)=\beta f(x)=\sum_{n=1}^{\infty} C_{n} \alpha_{n} \sin x
$$

gives $C_{n}=\beta B_{n} / \alpha_{n}$. (Here we are assuming that it is permissible to differentiate the sum term-by-term. This assumption could be avoided by taking $z_{t}(x, t)=\sum_{n=1}^{\infty} E(t) \sin n x$ and obtaining $E_{n}(t)$ by integration by parts, just as we did for $A_{n}(t)$.) Thus we obtain the formal solution

$$
y(x, t)=e^{-\beta t} z(x, t)=e^{-\beta t} \sum_{n=1}^{\infty} B_{n}\left(\cos \alpha_{n} t+\frac{\beta}{\alpha_{n}} \sin \alpha_{n} t\right) \sin n x,
$$

Chapter 5, page 136, Problem 1 Solve the problem

$$
\begin{aligned}
& y_{t t}=a^{2} y_{x x}+A x \sin \omega t, \quad 0<x<c, t>0 \\
& y(0, t)=y(c, t)=0, y(x, 0)=y_{t}(x, 0)=0
\end{aligned}
$$

Show that resonance occurs for $\omega=\omega_{n}$, where

$$
\omega_{n}=\frac{n \pi a}{c}, \quad n=1,2, \cdots .
$$

Solution: We look for a solution in the form

$$
y(x, t)=\sum_{n=1}^{\infty} B_{n}(t) \sin \frac{n \pi x}{c},
$$

$$
B_{n}(t)=\frac{2}{c} \int_{0}^{c} y(x, t) \sin \frac{n \pi x}{c} d x
$$

Then

$$
\begin{gathered}
B_{n}^{\prime \prime}(t)=\frac{2}{c} \int_{0}^{c} y_{t t}(x, t) \sin \frac{n \pi x}{c} d x=\frac{2}{c} \int_{0}^{c}\left[a^{2} y_{x x}(x, t)+A x \sin \omega t\right] \sin \frac{n \pi x}{c} d x \\
=\frac{2 A(-1)^{n+1}}{n \pi} \sin \omega t-\frac{a^{2} n^{2} \pi^{2}}{c^{2}} B_{n}(t)
\end{gathered}
$$

Where we have integrated by parts several times and applied the boundary conditions. Thus

$$
(*) B_{n}^{\prime \prime}(t)+\frac{a^{2} n^{2} \pi^{2}}{c^{2}} B_{n}(t)=\frac{2 A(-1)^{n+1}}{n \pi} \sin \omega t .
$$

This is a nonhomogeneous equation. We need only find one solution and then add to it the general solution $H_{n} \cos \frac{a n \pi x}{c}+K_{n} \sin \frac{a n \pi x}{c}$ of the homogeneous equation to get the general solution. We look for a solution of the form $B_{n}(t)=C_{n} \sin \omega t$. Substituting this into equation $(*)$ and setting $\omega_{n}=a n \pi / c$ we find a solution if $C_{n}=2 A(-1)^{n+1} /\left(\omega_{n}^{2}-\right.$ ω^{2}). Thus

$$
B_{n}(t)=\frac{2 A(-1)^{n+1}}{\omega_{n}^{2}-\omega^{2}} \sin \omega t
$$

and the general solution is

$$
B_{n}(t)=A_{n} \cos \frac{a n \pi t}{c}+C_{n} \sin \frac{a n \pi t}{c}+\frac{2 A(-1)^{n+1}}{\omega_{n}^{2}-\omega^{2}} \sin \omega t .
$$

The boundary conditions are $B_{n}(0)=B_{n}^{\prime}(0)=0$, and these are satisfied for $A_{n}=0$ and $C_{n}=2(-1)^{n} \omega /\left[\omega_{n}\left(\omega_{n}^{2}-\omega^{2}\right)\right]$. Thus the final solution is

$$
B_{n}(t)=\frac{2(-1)^{n} \omega}{\omega_{n}\left(\omega_{n}^{2}-\omega^{2}\right)} \sin \frac{a n \pi t}{c}+\frac{2 A(-1)^{n+1}}{\omega_{n}^{2}-\omega^{2}} \sin \omega t
$$

unless $\omega=\omega_{n}$ for some n. In that case we have resonance and the solution becomes unbounded.
To see this, we look for a particular solution of $(*)$ in the case $\omega=\omega_{n}$. Take the trial solution $B_{n}(t)=D_{n} t \cos \omega_{n} t$. Then we find a solution provided $D_{n}=(-1)^{n} A / n \pi \omega_{n}$:
(†) $\quad B_{n}(t)=\frac{(-1)^{n} A}{n \pi \omega_{n}} t \cos \omega_{n} t$.

To this solution we can add a general solution of the homogeneous equation, but the resonant solution quickly dominates the bounded solution of the wave equation as t gets large.

Chapter 5, page 146, Problem 1 Write $\lambda=-\alpha^{2}, \alpha>0$ and show that the Sturm-Liouville problem

$$
X^{\prime \prime}+\lambda X=0, X(-\pi)=X(\pi), X^{\prime}(-\pi)=X^{\prime}(\pi),
$$

has no solutions.
Solution: The general solution of the differential equation is

$$
X(x)=A e^{\alpha x}+B e^{-\alpha x}
$$

so

$$
X^{\prime}(x)=\alpha\left(A e^{\alpha x}-B e^{-\alpha x}\right)
$$

The conditions $X(-\pi)=X(\pi), X^{\prime}(-\pi)=X^{\prime}(\pi)$ can be written as

$$
A \sinh \alpha \pi=B \sinh \alpha \pi, A \sinh \alpha \pi=-B \sinh \alpha \pi,
$$

respectively. Since $\sinh \alpha \pi \neq 0$ for $\alpha \neq 0$, we have $A=-B=B$, so $A=B=0$. Thus there are no negative eigenvalues.

Chapter 8, page 209, Problem 1 Find the eigenvalues and eigenfunctions:

$$
X^{\prime \prime}+\lambda X=0, X(0)=0, X^{\prime}(1)=0 .
$$

Solution: If $\lambda=0$ then $X(x)=A x+B$ and $X^{\prime}(x)=A$. Thus the boundary conditions are $B=0, A=0$ and $\lambda=0$ is not an eigenvalue. If $\lambda=-\alpha^{2}, \alpha>0$ then $X(x)=A e^{\alpha x}+B e^{-\alpha x}, X^{\prime}(x)=\alpha\left(A e^{\alpha x}-\right.$ $\left.B e^{-\alpha x}\right)$. Thus the boundary conditions are $A+B=0$ and $A e^{\alpha}-e^{-\alpha}$, or $B=-A$ where $A \cosh \alpha=0$. Since $\cosh \alpha \neq 0$ we have $A=B=0$ and $\lambda=-\alpha^{2}$ is not an eigenvalue.
If $\lambda=\alpha^{2}, \alpha>0$ then $X(x)=A \cos \alpha x+B \sin \alpha x, X^{\prime}(x)=\alpha(-A \sin \alpha x+$ $B \cos \alpha x)$, and the boundary conditions can be read as

$$
A=0, \quad \alpha(B \cos \alpha)=0,
$$

or $\cos \alpha=0$, so $\lambda_{n}=\alpha_{n}^{2}$ where

$$
\alpha_{n}=(2 n-1) \frac{\pi}{2}, \quad X_{n}(x)=\sin \alpha_{n} x \quad n=1,2, \cdots
$$

Since $\int_{0}^{1} X_{n}^{2}(x) d x=\frac{1}{2} \int_{0}^{1}(1-\cos \pi(2 n-1) x) d x=\frac{1}{2}$ the normalized eigenfunctions are $\phi_{n}(x)=\sqrt{2} \sin \alpha_{n} x$.

