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Math 4567. Homework Set # VI

April 2, 2010

Chapter 5, page 113, problem 1), (page 122, problem 1), (page 128, problem
2), (page 133, problem 4), (page 136, problem 1). (page 146, problem 1),
Chapter 8 (page 209, problem 1)

Chapter 5 page 113, Problem 1 The initial temperature of a slab 0 ≤
x ≤ π is everywhere 0 and the face x = 0 is kept at that temperature.
Heat is supplied through the face x = π at a constant rate kux(π, t) =
A > 0. Write u(x, t) = U(x, t) + Φ(x) and use the solution to the
problem

(∗) Ut = kUxx, 0 < x < π, t > 0,

U(0, t) = 0, Ux(π, t) = 0, 0 < x < π,

and U(x, 0) = F (x) where

F (x) =

{
f(x) when 0 < x < π
f(2π − x) when π < x < 2π,

which is

U(x, t) =
∞∑
n=1

Bn exp(−n
2k

4
t) sin

nx

2
,

Bn =
1− (−1)n

π

∫ π

0
f(x) sin

nx

2
dx.

to derive the final solution u(x, t)

Solution: We first find a function u = Φ(x) that satisfies the non-
homogeneous condition kux(π, t) = A and the homogeneous condition
u(0, t) = 0. The differential equation is Φ′′(x) = 0, so Φ(x) = Bx+ C.
The nonhomogeneous boundary condition says KB = A and the ho-
mogeneous condition says C = 0 thus Φ(x) = A

k
x. Then, setting
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u(x, t) = U(x, t) + Φ(x) we see that u(x, t) will be a solution of our
original problem, provided U(x, t) satisfies problem (∗) where U(x, 0) =
f(x) = −Φ(x) = −A

k
x for 0 < x < π. Thus

u(x, t) =
A

k
x+

∞∑
n=1

Bn exp(−n
2k

4
t) sin

nx

2
,

where

Bn = −A
k

(
1− (−1)n

π
)
∫ π

0
x sin

nx

2
dx.

Note that Bn = 0 unless n = 2m− 1 is odd. Since∫ π

0
x sin

nx

2
dx =

2

n

{
−x cos

nx

2
|π0 +

∫ π

0
cos

nx

2
dx
}

=
2

n
[−π cos

nπ

2
+

2

n
sin

nπ

2
]

= (
2

2m− 1
)2(−1)m+1,

we get the solution

u(x, t) =
A

k

{
x+

8

π

∞∑
m=1

(−1)m

(2m− 1)2
exp

[
−(2m− 1)2k

4
t

]
sin

(2m− 1)x

2

}
.

Chapter 5, page 122, Problem 1 The faces and edges x = 0 and x = π,
(0 < y < π) of a square plate 0 ≤ x ≤ π, 0 ≤ y ≤ π are insulated.
The edges y = 0 and y = π, (0 < x < π) are kept at temperatures
0 and f(x), respectively. Let u(x, y) be the steady state temperature
distribution in the plate. Show that

u(x, y) = A0y +
∞∑
n=1

An sinhny cosnx,

A0 =
1

π2

∫ π

0
f(x)dx, An =

2

π sinhnπ

∫ π

0
f(x) cosnx dx, n = 1, 2, · · · .

Find u(x, y) if f(x) = u0.

Solution: The problem is

uxx + uyy = 0, 0 < x < π, 0 < y < π,
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ux(0, y) = 0, ux(π, y) = 0, 0 < y < π,

u(x, 0) = 0, 0 < x < π

u(x, π) = f(x), 0 < x < π.

We use separation of variables u = X(x)Y (y) to find solutions sat-
isfying the homogeneous conditions. The Sturm-Liouville eigenvalue
problem is

X ′′(x) + λX(x) = 0, X ′(0) = X ′(π) = 0.

From past work we know that the eigenvalues are λn = n2, n = 1, 2, · · ·
with eigenfunctions Xn(x) = cosnx, and λ0 = 0 with eigenfunction
X0(x) = 1. The corresponding equations for Y (y) are

Y ′′(y)− λY (y) = 0, Y (0) = 0.

As has been shown earlier, for λn = n2 we have Yn(y) = sinhny and
for λ0 = 0 we have Y0(y) = y. Thus we can write

u(x, y) = A0y +
∞∑
n=1

An cosnx sinhny,

where

u(x, π) = f(x) = A0π +
∞∑
n=1

An cosnx sinhnπ.

Thus

An sinhnπ =
2

π

∫ π

0
f(x) cosnx dx, n = 1, 2, · · · ,

A0π =
1

π

∫ π

0
f(x)dx.

If f(x) = u0 then An = 0 A0π = u0, so the solution is u(x, y) = u0

π
y.

Chapter 5, page 128, Problem 2 Let the faces of a wedge shaped plate
0 ≤ ρ ≤ a, 0 ≤ φ ≤ α be insulated Find the steady temperature u(ρ, φ)
in the plate when u = 0 on the rays φ = 0, φ = α (0 < ρ < α) and
u = f(φ) on the arc ρ = a (0 < φ < α). Assume f is piecewise smooth
and u is bounded.
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Solution: Our problem in polar coordinates is to find a function u(ρ, φ)
for

ρ2uρρ + ρuρ + uφφ = 0, 0 < ρ < a, 0 < φ < α,

u(ρ, 0) = u(ρ, α) = 0, 0 < ρ < α,

u(a, φ) = f(φ), 0 < φ < α,

where f is piecewise smooth and |u| < M , i.e., u is bounded.

Separating variables, u = R(ρ)Φ(φ) satisfies the homogeneous condi-
tions if Φ satisfies the Sturm-Liouville problem

Φ′′ + λΦ = 0, Φ(0) = Φ(α) = 0,

and R satisfies
ρ2R′′ + ρR′ − λR = 0

and R is bounded. It is straightforward to show that the eigenvalues
are λn = n2π2

α2 with eigenfunctions Φn(φ) = sin nπφ
α

, n = 1, 2, · · · .. The
change of variable ρ = es gives the corresponding equation for R as
Rss − λnR = 0. The general solutions are

Rn(ρ) = Aρnπ/α +Bρ−nπ/α,

and the boundedness requirement yields Rn(ρ) = ρnπ/α. Thus

u(ρ, φ) =
∞∑
n=1

Bnρ
nπ/α sin

nπφ

α
,

and

u(a, φ) = f(φ) =
∞∑
n=1

Bna
nπ/α sin

nπφ

α
,

where

Bna
nπ/α =

2

α

∫ α

0
f(ψ) sin

nπψ

α
dψ.

Thus

u(ρ, φ) =
2

α

∞∑
n=1

(
ρ

a
)nπ/α sin

nπφ

α

∫ α

0
f(ψ) sin

nπψ

α
dψ.
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Chapter 5, page 133, Problem 4 A string is stretched between points 0
and π on x-axis and, initially at rest, is released from the position
y = f(x). The equation of motion is

ytt = yxx − 2βyt, 0 < x < π, t > 0,

where 0 < β < 1 and β is constant. Show that

y(x, t) = e−βt
∞∑
n=1

Bn

(
cosαnt+

β

αn
sinαnt

)
sinnx,

αn =
√
n2 − β2, Bn =

2

π

∫ π

0
f(x) sinnx dx, n = 1, 2, · · · .

Solution: Set z(x, t) = eβty(x, t). Then z(x, t) satisfies

ztt = zxx + β2z, 0 < π, t > 0,

z(0, t) = z(π, t) = 0, t > 0

zt(x, 0) = βf(x), z(x, 0) = f(x), 0 < x < π, .

where f(0) = f(π) = 0. We look for a solution of the form

z(x, t) =
∞∑
n=1

An(t) sinnx, An(t) =
2

π

∫ π

0
z(x, t) sinnx dx.

Then

A′′n(t) =
2

π

∫ π

0
ztt(x, t) sinnx dx =

2

π

∫ π

0
(zxx(x, t) + β2z(x, t)) sinnx dx

=
2

π

∫ π

0
zxx(x, t) sinnx dx+

2β2

π

∫ π

0
z(x, t) sinnx dx.

=
2

π
[zx(x, t) sinnx|π0 − n

∫ π

0
zx(x, t) cosnx dx] + β2An(t)

=
2

π
[−nz(x.t) cosnx|π0 − n2

∫ π

0
z(x, t) sinnx dx] + β2An(t)

= (−n2 + β2)An(t).
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Thus
A′′n(t) + (n2 − β2)An(t) = 0,

so
An(t) = Bn cosαnt+ Cn sinαnt

where αn =
√
n2 − β2, n = 1, 2, · · ·. The condition

z(x, 0) = f(x) =
∞∑
n=1

Bn sinnx

gives

Bn =
2

π

∫ π

0
f(x) sinnx dx, n = 1, 2, · · · .

The condition

zt(x, 0) = βf(x) =
∞∑
n=1

Cnαn sinx

gives Cn = βBn/αn. (Here we are assuming that it is permissible to
differentiate the sum term-by-term. This assumption could be avoided
by taking zt(x, t) =

∑∞
n=1E(t) sinnx and obtaining En(t) by integration

by parts, just as we did for An(t).) Thus we obtain the formal solution

y(x, t) = e−βtz(x, t) = e−βt
∞∑
n=1

Bn

(
cosαnt+

β

αn
sinαnt

)
sinnx,

Chapter 5, page 136, Problem 1 Solve the problem

ytt = a2yxx + Ax sinωt, 0 < x < c, t > 0,

y(0, t) = y(c, t) = 0, y(x, 0) = yt(x, 0) = 0.

Show that resonance occurs for ω = ωn, where

ωn =
nπa

c
, n = 1, 2, · · · .

Solution: We look for a solution in the form

y(x, t) =
∞∑
n=1

Bn(t) sin
nπx

c
,
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Bn(t) =
2

c

∫ c

0
y(x, t) sin

nπx

c
dx.

Then

B′′n(t) =
2

c

∫ c

0
ytt(x, t) sin

nπx

c
dx =

2

c

∫ c

0
[a2yxx(x, t)+Ax sinωt] sin

nπx

c
dx

=
2A(−1)n+1

nπ
sinωt− a2n2π2

c2
Bn(t),

Where we have integrated by parts several times and applied the bound-
ary conditions. Thus

(∗) B′′n(t) +
a2n2π2

c2
Bn(t) =

2A(−1)n+1

nπ
sinωt.

This is a nonhomogeneous equation. We need only find one solution
and then add to it the general solution Hn cos anπx

c
+ Kn sin anπx

c
of

the homogeneous equation to get the general solution. We look for a
solution of the form Bn(t) = Cn sinωt. Substituting this into equation
(∗) and setting ωn = anπ/c we find a solution if Cn = 2A(−1)n+1/(ω2

n−
ω2). Thus

Bn(t) =
2A(−1)n+1

ω2
n − ω2

sinωt,

and the general solution is

Bn(t) = An cos
anπt

c
+ Cn sin

anπt

c
+

2A(−1)n+1

ω2
n − ω2

sinωt.

The boundary conditions areBn(0) = B′n(0) = 0, and these are satisfied
for An = 0 and Cn = 2(−1)nω/[ωn(ω2

n − ω2)]. Thus the final solution
is

Bn(t) =
2(−1)nω

ωn(ω2
n − ω2)

sin
anπt

c
+

2A(−1)n+1

ω2
n − ω2

sinωt,

unless ω = ωn for some n. In that case we have resonance and the
solution becomes unbounded.

To see this, we look for a particular solution of (∗) in the case ω = ωn.
Take the trial solution Bn(t) = Dnt cosωnt. Then we find a solution
provided Dn = (−1)nA/nπωn:

(†) Bn(t) =
(−1)nA

nπωn
t cosωnt.
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To this solution we can add a general solution of the homogeneous
equation, but the resonant solution quickly dominates the bounded
solution of the wave equation as t gets large.

Chapter 5, page 146, Problem 1 Write λ = −α2, α > 0 and show that
the Sturm-Liouville problem

X ′′ + λX = 0, X(−π) = X(π), X ′(−π) = X ′(π),

has no solutions.

Solution: The general solution of the differential equation is

X(x) = Aeαx +Be−αx,

so
X ′(x) = α(Aeαx −Be−αx).

The conditions X(−π) = X(π), X ′(−π) = X ′(π) can be written as

A sinhαπ = B sinhαπ, A sinhαπ = −B sinhαπ,

respectively. Since sinhαπ 6= 0 for α 6= 0, we have A = −B = B, so
A = B = 0. Thus there are no negative eigenvalues.

Chapter 8, page 209, Problem 1 Find the eigenvalues and eigenfunc-
tions:

X ′′ + λX = 0, X(0) = 0, X ′(1) = 0.

Solution: If λ = 0 then X(x) = Ax + B and X ′(x) = A. Thus the

boundary conditions are B = 0, A = 0 and λ = 0 is not an eigenvalue.

If λ = −α2, α > 0 then X(x) = Aeαx + Be−αx, X ′(x) = α(Aeαx −
Be−αx). Thus the boundary conditions are A+B = 0 and Aeα − e−α,
or B = −A where A coshα = 0. Since coshα 6= 0 we have A = B = 0
and λ = −α2 is not an eigenvalue.

If λ = α2, α > 0 thenX(x) = A cosαx+B sinαx, X ′(x) = α(−A sinαx+
B cosαx), and the boundary conditions can be read as

A = 0, α(B cosα) = 0,
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or cosα = 0, so λn = α2
n where

αn = (2n− 1)
π

2
, Xn(x) = sinαnx n = 1, 2, · · · .

Since
∫ 1
0 X

2
n(x)dx = 1

2

∫ 1
0 (1 − cos π(2n − 1)x)dx = 1

2
the normalized

eigenfunctions are φn(x) =
√

2 sinαnx.
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