Name:

Math 4567. Homework Set # 5

March 12, 2010

Chapter 3 (page 79, problems 1,2), (page 82, problems 1,2), (page 86, prob-
lems 2,3), Chapter 4 (page 93, problems 2,3), (page 98, problems 1,2), (page
102, problems 1,2,3).

Chapter 3, page 79, Problem 1 a. Let z(p) be the static transverse dis-
placements in a membrane, streched between circles p = 1 and
p = po > 1, the first circle in the plane z = 0 and the second in
the plane z = z.

a. Show that the boundary problem can be written as

i % =0, 1<p<
dp pdp — Y 1Y P0,
2(1) =0, z(po) = 0.
b. Obtain the solution

Solution:

a. The wave equation for the vibrating membrane is z;; = a?(2,, +2yy)-
In polar coordinates x = pcos ¢,y = sin ¢ this equation reads

d dz z
— 22 ,% 2¢¢
Zip = @ (dp (pdp> + 2
. Steady state means that z; = 0 and the rotational symmetry
of the problem means that z4 = 0. Thus the equation for z(p)

reduces to d% (pﬁ—f)) =0,1 < p < pp, with boundary conditions
2(1) =0, z(po) = 0.



b. Since dip (pj—;) = 0, we must have pz—z = c¢; where ¢ is a constant.
Thus Z—Z = ¢1/p. Integrating again we have z(p) = ¢;Inp + co.
Since z(1) = 0 we have ¢ = 0. Since z(py) = 2o we have zg =
¢1In pg. Thus ¢; = 29/ In py and

Chapter 3, page 79, Problem 2 Show that the steady-state temperatures
u(p) in an infinitely long hollow cylinder 1 < p < py, —00 < z < 0o also
satisfy the boundary value Problem 1 if u = 0 on the inner cylindrical
surface and u© = 2y on the outer one.

Solution: Here the heat equation is u; = k(ugze + uy,). In polar
coordinates x = pcos ¢,y = sin ¢ this is

d du Upg
ug =k(— | p— | + —-
Steady state means that u; = 0, and axial symmetry means that u, = 0.

Thus the equation for u(p) reduces to dilp (p%) =0,1<p < po, with
boundary conditions u(1) = 0, u(pg) = 2o.

Chapter 3, page 82, Problem 1 Use the general solution of the wave equa-
tion to solve the boundary value problem

Yt = CLZ?Jma —00 < x < 00, t> 07

y(I, 0) = 07 yt(llf,O) = g(l’), —00 < T < 0.

Solution: The general solution of the wave equation is

y(a,t) = ¢(x + at) + ¢ (x — at)

for arbitrary twice differentiable functions ¢, . We impose the bound-
ary conditions on this general solution:

y(x,0) = 0= o) + ¥(x),



ye(2,0) = g(x) = a(¢'(x) — ¢'(x)).
Thus ¢(z) = —¢(z) and ¢'(z) = 5-g(z). Integrating, we have

o) =C+ [ () ds=Cr o [ gls) ds
va)= o) = ~C— 5 ["gls) ds=~C+ o [ g(s) ds.

1 x+at
y(a.t) = pla+at) +v(x —at) = 5= [ " g(s) d.

Chapter 3, page 82, Problem 2 Let Y (z,t) be d’Alembert’s solution

Y (z,t) = ;(f(x +at) + f(z — at)

of the boundary value problem solved in Section 27 and let Z(x,t)
denote the solution found in Problem 1. Verify that y(z,t) = Y (x,t) +
Z(x,t) solves the problem

Yt = @Y, —00 < T <00, t >0,

y(z,0) = f(z), y(z,0) = g(x), —o00 <z < 00.

Solution: We have that Z(z,t) = & [7%% g(s) ds. solves the problem

Yir = a2yx:p7 -0 < T <00, t > O,
y(.T,O):O, yt(an):g(iU), —x<r <o
whereas Y (x,t) solves the problem
Y = 02 gy, —00 < <00, L >0,

y(z,0) = f(z), y:(,0) =0, —o0 <z < 0.

Thus by linearity, y(z,t) = Y (z,t) + Z(x,t) solves the full initial value
problem and yields the solution

Wa1) = S(f(o+at) + fla—at) + 5 [ gts) s



Chapter 3, page 86, Problem 2 Consider the equation
AYsy + By + Cyu = 0, B> —4AC >0, AC #0,
where A, B, C' are constants.

1. Use the transformation v = x + at, v = x + (t, a # 3, to derive
the equation

(A—l—BoH—CaQ)yw—l—[2A+B(a+ﬁ)+20aﬁ]yuv—i—(A—i—Bﬁ—i-CW)yw —0.

2. Show that y,, = 0 if «, § have the values

_B+VBI—1AC _B - B2—4AC
@0 = 20 o o= 20 '

3. Conclude from the last result that the general solution of the orig-
inal equation is y = ¢(z + apt) + ¥ (x + Sot) where ¢, 1) are twice
differentiable. Then verify that the solution of the wave equation
Yy — a*y,, = 0 follows as a special case.

Solution:

1. We have
0y = a0y + B0,, 0Op = 0y + 0,.

thus
Yz = (au + av)(yu + yv) = Yuu T 2Yuv + Yoo

Yzt = (8u + av)(ayu + Byy) = O‘(yuu + (05 + ﬁ)yuv + BYo,
Yt = (0, + B0,)(ayu + Byw) = & Yuu + 208Yuv + 7Yoo

Substituting into equation
Ayx:c + Byzt + Cytt =0
we obtain the desired result

(A+Ba+Ca*)yuu+ 244 B(a+B)4+2CaB]yu+(A+BB+C 31y, = 0.



2. The roots of the quadratic equation A + Ba + Ca? = 0 are o =
—BLvB—4AC VQBCQ_“C. Thus a = «p is a root. The roots of the quadratic

equation A + B3 + C3? = 0 are again § = =BE£vB—44AC VQBCQ_‘LAC. Thus
B = [y is a root. With these substituions the equation becomes

[214 + B(Ozo + 50) + QCaoﬁO]yuv =0

or

B BB +4AC> | 4AC - B?
C 102 Yoo =70

(2A + Yuv = 07

SO Yuo = 0.

3. Since y,, = 0, the general solution of this eauation is y = ¢(u) +
Y (v). Passing to the original variables z, ¢ we have

y(x,t) = ¢(x + aot) + (x + Lot)

as the general solution. In the special case of the equation vy, —
a*yyy = 0 we have A = —a?, B=0and C =1, so B> —4AC > 0,
AC #£ 0 and ag = a, By = —a. Thus we recover the solution

y(z,t) = p(x + at) + P(z — at).

Chapter 3, page 86, problem 3 Show that with the transformation u =
x, v = ax + [t for B # 0, the equation of Problem 2 becomes

Ayuu + (240 + BB)yuy + (A + BaB + C )y, = 0.

Then show that the new equation reduces to (&) Yuy + Yoy = 0 when
B? —4AC < 0 and

-B 2A

“=ac-p T ymac—p
(b) Yuuw = 0 when B? —4AC =0 and o = —B, § = 2A.

Solution:



1. We have
at :581)7 8$ :au+aava

SO
Yoz = (00 + a0y) (Yu + OY) = Yuu + 20Yur, + Yo,

Yot = (au + Oéav)(ﬂyv) = 6yuv + aﬁyvm
Yee = (ﬁav)/gy'u = ﬁzyvv-

Thus the original equation transforms to
Ay + (2Aa + BB)Yuy + (Aa® + BaB + C3*)y,, = 0.

2. Suppose B? —4AC < 0 and

B 24
VAAC — B?’ f= V4AC — B2

Then 2Aa + B = % =0 and

AB? —2AB? + 4A%C
4AC — B2

Aa? + Bap + Cp* =

—AB? +4A%C
p— pr— A
4AC — B? 70,
because 4AC > B? > (0. Thus we can divide by A to get 4, +
Yoo = 0.

3. Suppose B? —4AC =0 and o = —B, 3 = 2A. Then

9Aa + BB = —2AB + 2AB = 0,

Ao’ + Bap + CB* = AB* — 2AB® + 4A%C = A(4AC — B?) = 0.

Thus the equation reduces to Ay,, = 0 or y,, = 0 unless the
equation is vacuous.

Chapter 4, page 93, Problem 2 Use the operators L = x and M = 0,
to illustrate that LM and M L are not always the same.



Solution: Let u(z) be a continuously differentiable function. Then
Lu = zu(x) and

M(Lu) = M(zu(x) = 0, (zu(z)) = u(x) + zu'(x).

But
LMu = L(Mu) = L(u'(z)) = zu'(x).

so ML # LM.

Chapter 4, page 93, Problem 3 Verify that each of the functions
up =9, U, = sinhnycosnr, n=12---
satisfies Laplace’s equation
Uz (T,Y) + Uyy(z,y) =0, O<z<m 0<y<2,
and the three boundary conditions
uz(0,y) = u.(m,y) =0, u(x,0) =0.

Then use the superposition pronciple to show, formally, that the series
oo
u(z,y) = Aoy + Z A,, sinh ny cos nx
n=1

satisfies the differential equation and boundary conditions.

Solution:

1.
(azx + ayy)uo = (a:m: + ayy)y = 07

axuo(07 y) = azy = 07 aiﬂ(“’(](ﬂ-vy) = al"y = 07 uo(x, 0) = O?
(Opa + Oy ), = —n?sinh ny cos nx + n? sinh ny cosnx = 0,
0,un(0,y) = —nsinhnysin 0 = 0,

Opun(m,y) = —nsinhny sinnr = 0, wu,(z,0) = sinh 0 cosnx = 0.



2. Since the equation is linear and the boundary conditions are hom-
geneous, an arbitray linear combination of these special solutions
also satisfies the equation and boundary conditions, formally, Thus

u(z,y) = Agy + > A, sinhny cos nx

n=1
satisfies the differential equation and boundary conditions.
Chapter 4, page 98, Problem 1 Consider the boundary value problem
Upe (2, Y) + uyy(z,y) =0, O<z<m, 0<y<2,
with homogeneous boundary conditions
uz(0,y) = uz(m,y) =0, u(z,0) =0.

Use separation of variables u = X ()Y (y) and the results of Section 31
to show how the functions

ug =y, U, = sinhnycosnr, n=12,---

can be discovered. Proceed formally to derive the solution of the prob-
lem with nonhomogenous condition u(z,2) = f(x) as

u(z,y) = Agy + >_ A, sinhny cos nz,

n=1
where
A= o [ @), Av= 2 [" faycosne da, n=1,2
" or o T, " rsinh2n Jo T)COBRT AL, =580
Solution:

1. Set u = X(2)Y (y), Substituting into the differential equation and
separating variables, we have

X'(x) _ Y"(y)

X))~ V() "




Thus the Sturm-Liouville problems are
(@) X"+ XX =0, X'(0) = X'(7) =0,

(b) Y =AY =0,Y(0) =0.

Working on (a), we see that if A = —a? < 0 then X (z) = Ae™ +
Be™ so X'(z) = a(Ae* — Be~*). Thus X'(0) =a(A—-B) =0
implies A = B, so X'(7) = aB(e*™ + e~ ") which implies B = 0.
Thus we can’t satisfy the boundary conditions if A < 0.

If Ao =0 then X (z) = Az +b. X'(0) = X'(7) = 0 implies A = 0.
Thus A\g = 0 is an eigenvalue and we can take the eigenfunction
as Xo(z) = 1.

If A =a? > 0 with @ > 0 then X(x) = Acosax + Bsinaz. Since
X'(z) = —Aasin ax + Ba cos ax we have the requirement X'(0) =
Ba = 0 so B = 0. The requirement X'(7) = —Aasinar = 0
means that a = n. Thus the eigenvalues are \,, =n?, n=1,2,---
with eigenfunctions X,,(x) = cosnz.

For (b) we need consider only A > 0. For A\g = 0 we have Y (t) =
Ay + B and the boundary condition Y (0) = 0 implies B = 0.
Thus we have Yy(y) = v.

For A\, = n? we have Y (y) = Asinhny + B coshny. The bound-
ary condition Y (0) = B = 0 implies that the eigenfunctions are
Y, (y) = sinh ny.

We conclude that the special solutions are

up =1y, U, =cosnrsinhny, n=12 -

. Taking, formally, a linear combination of the special solutions
Ug, U, We get

u(z,y) = Aoy + > A, sinhny cos na.

n=1
The inhomogeneous condtion u(x,2) = f(x) imposes the require-
ment

f(z) =240+ Y A, sinh2n cos nz.

n=1



This is a Fourier Cosine series on the interval [0, 7], so we must
have
2 , 2
4Ay = —/ f(z)dz, A, sinh2n = —/ f(z)cosnxdr, n=1,2,---
mJo

m™Jo

from which we can obtain Ay, A,,.

Chapter 4, page 98, Problem 2 Show that if in Section 31 we had writ-
ten

() X
w0 "X

to separate variables, we would still have obtained the same results.

= -\

Solution: Here u(x,t) = X (z)T'(t) and the boundary conditions are
u.(0,t) =0, uy(c,c) =0, t>0.

Thus the Sturm-Liouville problem is

X"+ 2X =0, X'(0) = X'(c) =0,

and there is the additional equation

T + \T = 0.

If A\/k =0 then X(z) = Az + B, and the conditions X'(0) = X'(¢) =
0 = A imply A = 0. Thus Ay = 0 is an eigenvalue with eigenfunction
Xo(x) = 1. The corresponding solution for 7" is Ty(t) = 1.

If \/k = a* > 0 where a > 0 then X(z) = Asinaz + Bcosax. The
condition X’(0) = 0 = A« implies A = 0. The condition X'(c) =0 =
—Basin ac implies ac = nw, n = 1,2, ---. Thus there are eigenvalues
A\, = kn?7?/c? with corresponding eigenfunctions

kn2m2t
X (x) = cos = To(t) = exp (————).
C C

If \/k = —a® < 0 where a > 0 then X(z) = Ae*® + Be . The
condition X’(0) = 0 = «(A — B) implies B = A. The condition

10



X'(c) = 0= A(e* —e ) implies A = 0 Thus there are no eigenvalues
for this case.

We conclude that the separated solutions are

kn?m?t
up =1, un:cos(?)exp(— n;r ), n=12--,

c

just as before.

Chapter 4, page 102, Problem 1 By assuming a product solution obtain

conditions
X"+ 22X =0, X(0)=X(c) =0,

T" + Xa®*T =0, T'(0) = 0,

from the homogeneous conditions
Y = @Ype, 0<a<c, t>0,

y:(0,2) = 0, y(c, t) = 0,y(x,0) = 0.

Solution: Assume y(z,t) = X(z)T'(t) satisfies the wave equation.
Then XT” = a®>X"T so we have
X// T//

- —
X a?T

Thus
X"+ AX =0, T" 4+ \a®T = 0.

The boundary condition y(0.t) = 0 = 7"(¢)X(0) implies X(0) = 0
since we never have T'(t) = 0 even for A = 0.. The boundary condi-
tion y(c,t) = 0 = X(¢)T'(t) implies X (c) = 0. The initial condition
y1(z,0) = 0=T"(0)X (x) implies 7"(0) = 0.

Chapter 4, page 102, Problem 2 Derive the eigenvalues and eigenfunc-
tions of the Sturm-Liouville problem

X"+ AX =0, X(0) = X(c) = 0.
Solution: If A = 0 then X (z) = Az + B. Since X(0) = 0 = B we

11



have B = 0. Since X(¢) = 0 = Ac we have A =0, so A = 0 is not an

eigenvalue.

If A = —a® with @ > 0 we have X (x) = Ae® + Be %®. The condition
X(0) = 0= A+ B implies B = —A. The condition X(c) = 0 =
A(e® — e~) implies A = 0. Thus no such A < 0 is an eigenvalue.

If A = a® with a > 0 we have X (z) = Asinax+ B cos ax. The condition
X(0) = 0 = B implies B = 0. The condition X(¢) = 0 = Asinac
implies a = nn/e, n = 1,2,---. Thus the possible eigenvalues are
An = n*m?/c* with eigenfunctions X, (z) = sin(222), n = 1,2, -.
Chapter 4, page 102, Problem 3 Point out how it follows from expres-
sion
nmwat

> nmwx
y(z,t) = > By,sin T cos :
c c

n=1

that for each fixed z, the displacement function y(z,t) is periodic in ¢
with period Ty = %

Solution: From the expansion above, if you replace t by t + % then

nra(t + % t t
M) = cos(mm + 27mn) = cos nre ,

cos( . . .

so y(x,t + Ty) = y(x,t). Thus y is periodic in ¢ with period Tj.

12



