
Name:

Math 4567. Homework Set # 5

March 12, 2010

Chapter 3 (page 79, problems 1,2), (page 82, problems 1,2), (page 86, prob-
lems 2,3), Chapter 4 (page 93, problems 2,3), (page 98, problems 1,2), (page
102, problems 1,2,3).

Chapter 3, page 79, Problem 1 a. Let z(ρ) be the static transverse dis-
placements in a membrane, streched between circles ρ = 1 and
ρ = ρ0 > 1, the first circle in the plane z = 0 and the second in
the plane z = z0.

a. Show that the boundary problem can be written as

d

dρ

(
ρ
dz

dρ

)
= 0, 1 < ρ < ρ0,

z(1) = 0, z(ρ0) = z0.

b. Obtain the solution

z(ρ) = z0
ln ρ

ln ρ0

, 1 ≤ ρ ≤ ρ0.

Solution:

a. The wave equation for the vibrating membrane is ztt = a2(zxx+zyy).
In polar coordinates x = ρ cosφ, y = sinφ this equation reads

ztt = a2(
d

dρ

(
ρ
dz

dρ

)
+
zφφ
ρ2

. Steady state means that zt = 0 and the rotational symmetry
of the problem means that zφ = 0. Thus the equation for z(ρ)

reduces to d
dρ

(
ρdz
dρ

)
= 0, 1 < ρ < ρ0, with boundary conditions

z(1) = 0, z(ρ0) = z0.
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b. Since d
dρ

(
ρdz
dρ

)
= 0, we must have ρdz

dρ
= c1 where c1 is a constant.

Thus dz
dρ

= c1/ρ. Integrating again we have z(ρ) = c1 ln ρ + c2.

Since z(1) = 0 we have c2 = 0. Since z(ρ0) = z0 we have z0 =
c1 ln ρ0. Thus c1 = z0/ ln ρ0 and

z(ρ) = z0
ln ρ

ln ρ0

, 1 ≤ ρ ≤ ρ0.

Chapter 3, page 79, Problem 2 Show that the steady-state temperatures
u(ρ) in an infinitely long hollow cylinder 1 ≤ ρ ≤ ρ0, −∞ < z <∞ also
satisfy the boundary value Problem 1 if u = 0 on the inner cylindrical
surface and u = z0 on the outer one.

Solution: Here the heat equation is ut = k(uxx + uyy). In polar
coordinates x = ρ cosφ, y = sinφ this is

ut = k(
d

dρ

(
ρ
du

dρ

)
+
uφφ
ρ2
.

Steady state means that ut = 0, and axial symmetry means that uφ = 0.

Thus the equation for u(ρ) reduces to d
dρ

(
ρdu
dρ

)
= 0, 1 < ρ < ρ0, with

boundary conditions u(1) = 0, u(ρ0) = z0.

Chapter 3, page 82, Problem 1 Use the general solution of the wave equa-
tion to solve the boundary value problem

ytt = a2yxx, −∞ < x <∞, t > 0,

y(x, 0) = 0, yt(x, 0) = g(x), −∞ < x <∞.

Solution: The general solution of the wave equation is

y(x, t) = φ(x+ at) + ψ(x− at)

for arbitrary twice differentiable functions φ, ψ. We impose the bound-
ary conditions on this general solution:

y(x, 0) = 0 = φ(x) + ψ(x),
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yt(x, 0) = g(x) = a (φ′(x)− ψ′(x)) .

Thus ψ(x) = −φ(x) and φ′(x) = 1
2a
g(x). Integrating, we have

φ(x) = C +
∫ x

0
φ′(s) ds = C +

1

2a

∫ x

0
g(s) ds,

ψ(x) = −φ(x) = −C − 1

2a

∫ x

0
g(s) ds = −C +

1

2a

∫ 0

x
g(s) ds.

Thus

y(x, t) = φ(x+ at) + ψ(x− at) =
1

2a

∫ x+at

x−at
g(s) ds.

Chapter 3, page 82, Problem 2 Let Y (x, t) be d’Alembert’s solution

Y (x, t) =
1

2
(f(x+ at) + f(x− at))

of the boundary value problem solved in Section 27 and let Z(x, t)
denote the solution found in Problem 1. Verify that y(x, t) = Y (x, t) +
Z(x, t) solves the problem

ytt = a2yxx, −∞ < x <∞, t > 0,

y(x, 0) = f(x), yt(x, 0) = g(x), −∞ < x <∞.

Solution: We have that Z(x, t) = 1
2a

∫ x+at
x−at g(s) ds. solves the problem

ytt = a2yxx, −∞ < x <∞, t > 0,

y(x, 0) = 0, yt(x, 0) = g(x), −∞ < x <∞.
whereas Y (x, t) solves the problem

ytt = a2yxx, −∞ < x <∞, t > 0,

y(x, 0) = f(x), yt(x, 0) = 0, −∞ < x <∞.
Thus by linearity, y(x, t) = Y (x, t) +Z(x, t) solves the full initial value
problem and yields the solution

y(x, t) =
1

2
(f(x+ at) + f(x− at)) +

1

2a

∫ x+at

x−at
g(s) ds.
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Chapter 3, page 86, Problem 2 Consider the equation

Ayxx +Byxt + Cytt = 0, B2 − 4AC > 0, AC 6= 0,

where A,B,C are constants.

1. Use the transformation u = x + αt, v = x + βt, α 6= β, to derive
the equation

(A+Bα+Cα2)yuu+[2A+B(α+β)+2Cαβ]yuv+(A+Bβ+Cβ2)yvv = 0.

2. Show that yuv = 0 if α, β have the values

α0 =
−B +

√
B2 − 4AC

2C
, β0 =

−B −
√
B2 − 4AC

2C
.

3. Conclude from the last result that the general solution of the orig-
inal equation is y = φ(x+ α0t) + ψ(x+ β0t) where φ, ψ are twice
differentiable. Then verify that the solution of the wave equation
ytt − a2yxx = 0 follows as a special case.

Solution:

1. We have
∂t = α∂u + β∂v, ∂x = ∂u + ∂v.

thus
yxx = (∂u + ∂v)(yu + yv) = yuu + 2yuv + yvv

yxt = (∂u + ∂v)(αyu + βyv) = α(yuu + (α + β)yuv + βyvv,

ytt = (α∂u + β∂v)(αyu + βyv) = α2yuu + 2αβyuv + β2yvv.

Substituting into equation

Ayxx +Byxt + Cytt = 0

we obtain the desired result

(A+Bα+Cα2)yuu+[2A+B(α+β)+2Cαβ]yuv+(A+Bβ+Cβ2)yvv = 0.
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2. The roots of the quadratic equation A + Bα + Cα2 = 0 are α =
−B±

√
B2−4AC
2C

. Thus α = α0 is a root. The roots of the quadratic

equation A + Bβ + Cβ2 = 0 are again β = −B±
√
B2−4AC
2C

. Thus
β = β0 is a root. With these substituions the equation becomes

[2A+B(α0 + β0) + 2Cα0β0]yuv = 0

or

(2A+
−B2

C
+ 2C

B2 −B2 + 4AC

4C2
)yuv =

4AC −B2

C
yuv = 0,

so yuv = 0.

3. Since yuv = 0, the general solution of this eauation is y = φ(u) +
ψ(v). Passing to the original variables x, t we have

y(x, t) = φ(x+ α0t) + ψ(x+ β0t)

as the general solution. In the special case of the equation ytt −
a2yxx = 0 we have A = −a2, B = 0 and C = 1, so B2− 4AC > 0,
AC 6= 0 and α0 = a, β0 = −a. Thus we recover the solution

y(x, t) = φ(x+ at) + ψ(x− at).

Chapter 3, page 86, problem 3 Show that with the transformation u =
x, v = αx+ βt for β 6= 0, the equation of Problem 2 becomes

Ayuu + (2Aα +Bβ)yuv + (Aα2 +Bαβ + Cβ2)yvv = 0.

Then show that the new equation reduces to (a) yuu + yvv = 0 when
B2 − 4AC < 0 and

α =
−B√

4AC −B2
, β =

2A√
4AC −B2

;

(b) yuu = 0 when B2 − 4AC = 0 and α = −B, β = 2A.

Solution:
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1. We have
∂t = β∂v, ∂x = ∂u + α∂v,

so
yxx = (∂u + α∂v)(yu + αyv) = yuu + 2αyuv + α2yvv,

yxt = (∂u + α∂v)(βyv) = βyuv + αβyvv,

ytt = (β∂v)βyv = β2yvv.

Thus the original equation transforms to

Ayuu + (2Aα +Bβ)yuv + (Aα2 +Bαβ + Cβ2)yvv = 0.

2. Suppose B2 − 4AC < 0 and

α =
−B√

4AC −B2
, β =

2A√
4AC −B2

.

Then 2Aα +Bβ = −2AB+2AB√
4AC−B2 = 0 and

Aα2 +Bαβ + Cβ2 =
AB2 − 2AB2 + 4A2C

4AC −B2

=
−AB2 + 4A2C

4AC −B2
= A 6= 0,

because 4AC > B2 ≥ 0. Thus we can divide by A to get yuu +
yvv = 0.

3. Suppose B2 − 4AC = 0 and α = −B, β = 2A. Then

2Aα +Bβ = −2AB + 2AB = 0,

Aα2 +Bαβ + Cβ2 = AB2 − 2AB2 + 4A2C = A(4AC −B2) = 0.

Thus the equation reduces to Ayuu = 0 or yuu = 0 unless the
equation is vacuous.

Chapter 4, page 93, Problem 2 Use the operators L = x and M = ∂x
to illustrate that LM and ML are not always the same.
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Solution: Let u(x) be a continuously differentiable function. Then
Lu = xu(x) and

M(Lu) = M(xu(x) = ∂x(xu(x)) = u(x) + xu′(x).

But
LMu = L(Mu) = L(u′(x)) = xu′(x).

so ML 6= LM .

Chapter 4, page 93, Problem 3 Verify that each of the functions

u0 = y, un = sinhny cosnx, n = 1, 2, · · ·

satisfies Laplace’s equation

uxx(x, y) + uyy(x, y) = 0, 0 < x < π, 0 < y < 2,

and the three boundary conditions

ux(0, y) = ux(π, y) = 0, u(x, 0) = 0.

Then use the superposition pronciple to show, formally, that the series

u(x, y) = A0y +
∞∑
n=1

An sinhny cosnx

satisfies the differential equation and boundary conditions.

Solution:

1.
(∂xx + ∂yy)u0 = (∂xx + ∂yy)y = 0,

∂xu0(0, y) = ∂xy = 0, ∂x(u0(π, y) = ∂xy = 0, u0(x, 0) = 0,

(∂xx + ∂yy)un = −n2 sinhny cosnx+ n2 sinhny cosnx = 0,

∂xun(0, y) = −n sinhny sin 0 = 0,

∂xun(π, y) = −n sinhny sinnπ = 0, un(x, 0) = sinh 0 cosnx = 0.
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2. Since the equation is linear and the boundary conditions are hom-
geneous, an arbitray linear combination of these special solutions
also satisfies the equation and boundary conditions, formally, Thus

u(x, y) = A0y +
∞∑
n=1

An sinhny cosnx

satisfies the differential equation and boundary conditions.

Chapter 4, page 98, Problem 1 Consider the boundary value problem

uxx(x, y) + uyy(x, y) = 0, 0 < x < π, 0 < y < 2,

with homogeneous boundary conditions

ux(0, y) = ux(π, y) = 0, u(x, 0) = 0.

Use separation of variables u = X(x)Y (y) and the results of Section 31
to show how the functions

u0 = y, un = sinhny cosnx, n = 1, 2, · · ·

can be discovered. Proceed formally to derive the solution of the prob-
lem with nonhomogenous condition u(x, 2) = f(x) as

u(x, y) = A0y +
∞∑
n=1

An sinhny cosnx,

where

A0 =
1

2π

∫ π

0
f(x)dx, An =

2

π sinh 2n

∫ π

0
f(x) cosnx dx, n = 1, 2, · · · .

Solution:

1. Set u = X(x)Y (y), Substituting into the differential equation and
separating variables, we have

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= −λ.
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Thus the Sturm-Liouville problems are

(a) X ′′ + λX = 0, X ′(0) = X ′(π) = 0,

(b) Y ′′ − λY = 0, Y (0) = 0.

Working on (a), we see that if λ = −a2 < 0 then X(x) = Aeax +
Be−ax, so X ′(x) = a(Aeax −Be−ax). Thus X ′(0) = a(A−B) = 0
implies A = B, so X ′(π) = aB(eaπ + e−aπ) which implies B = 0.
Thus we can’t satisfy the boundary conditions if λ < 0.

If λ0 = 0 then X(x) = Ax+ b. X ′(0) = X ′(π) = 0 implies A = 0.
Thus λ0 = 0 is an eigenvalue and we can take the eigenfunction
as X0(x) = 1.

If λ = a2 > 0 with a > 0 then X(x) = A cos ax + B sin ax. Since
X ′(x) = −Aa sin ax+Ba cos ax we have the requirement X ′(0) =
Ba = 0 so B = 0. The requirement X ′(π) = −Aa sin aπ = 0
means that a = n. Thus the eigenvalues are λn = n2, n = 1, 2, · · ·
with eigenfunctions Xn(x) = cosnx.

For (b) we need consider only λ ≥ 0. For λ0 = 0 we have Y (t) =
Ay + B and the boundary condition Y (0) = 0 implies B = 0.
Thus we have Y0(y) = y.

For λn = n2 we have Y (y) = A sinhny + B coshny. The bound-
ary condition Y (0) = B = 0 implies that the eigenfunctions are
Yn(y) = sinhny.

We conclude that the special solutions are

u0 = y, un = cosnx sinhny, n = 1, 2, · · · .

2. Taking, formally, a linear combination of the special solutions
u0, un we get

u(x, y) = A0y +
∞∑
n=1

An sinhny cosnx.

The inhomogeneous condtion u(x, 2) = f(x) imposes the require-
ment

f(x) = 2A0 +
∞∑
n=1

An sinh 2n cosnx.
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This is a Fourier Cosine series on the interval [0, π], so we must
have

4A0 =
2

π

∫ π

0
f(x)dx, An sinh 2n =

2

π

∫ π

0
f(x) cosnx dx, n = 1, 2, · · ·

from which we can obtain A0, An.

Chapter 4, page 98, Problem 2 Show that if in Section 31 we had writ-
ten

T ′(t)

T (t)
= k

X ′′(x)

X(x)
= −λ

to separate variables, we would still have obtained the same results.

Solution: Here u(x, t) = X(x)T (t) and the boundary conditions are

ux(0, t) = 0, ux(c, c) = 0, t > 0.

Thus the Sturm-Liouville problem is

X ′′ +
λ

k
X = 0, X ′(0) = X ′(c) = 0,

and there is the additional equation

T ′ + λT = 0.

If λ/k = 0 then X(x) = Ax + B, and the conditions X ′(0) = X ′(c) =
0 = A imply A = 0. Thus λ0 = 0 is an eigenvalue with eigenfunction
X0(x) = 1. The corresponding solution for T is T0(t) = 1.

If λ/k = α2 > 0 where α > 0 then X(x) = A sinαx + B cosαx. The
condition X ′(0) = 0 = Aα implies A = 0. The condition X ′(c) = 0 =
−Bα sinαc implies αc = nπ, n = 1, 2, · · ·. Thus there are eigenvalues
λn = kn2π2/c2 with corresponding eigenfunctions

Xn(x) = cos
nπx

c
, Tn(t) = exp (−kn

2π2t

c2
).

If λ/k = −α2 < 0 where α > 0 then X(x) = Aeαx + Be−αx. The
condition X ′(0) = 0 = α(A − B) implies B = A. The condition
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X ′(c) = 0 = A(eαc− e−αc) implies A = 0 Thus there are no eigenvalues
for this case.

We conclude that the separated solutions are

u0 = 1, un = cos(
nπx

c
) exp (−kn

2π2t

c2
), n = 1, 2, · · · ,

just as before.

Chapter 4, page 102, Problem 1 By assuming a product solution obtain
conditions

X ′′ + λX = 0, X(0) = X(c) = 0,

T ′′ + λa2T = 0, T ′(0) = 0,

from the homogeneous conditions

ytt = a2yxx, 0 < x < c, t > 0,

yt(0, t) = 0, y(c, t) = 0, yt(x, 0) = 0.

Solution: Assume y(x, t) = X(x)T (t) satisfies the wave equation.
Then XT ′′ = a2X ′′T so we have

X ′′

X
=

T ′′

a2T
= −λ.

Thus
X ′′ + λX = 0, T ′′ + λa2T = 0.

The boundary condition yt(0.t) = 0 = T ′(t)X(0) implies X(0) = 0
since we never have T ′(t) ≡ 0 even for λ = 0.. The boundary condi-
tion y(c, t) = 0 = X(c)T (t) implies X(c) = 0. The initial condition
y1(x, 0) = 0 = T ′(0)X(x) implies T ′(0) = 0.

Chapter 4, page 102, Problem 2 Derive the eigenvalues and eigenfunc-
tions of the Sturm-Liouville problem

X ′′ + λX = 0, X(0) = X(c) = 0.

Solution: If λ = 0 then X(x) = Ax + B. Since X(0) = 0 = B we
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have B = 0. Since X(c) = 0 = Ac we have A = 0, so λ = 0 is not an
eigenvalue.

If λ = −a2 with a > 0 we have X(x) = Aeax + Be−ax. The condition
X(0) = 0 = A + B implies B = −A. The condition X(c) = 0 =
A(eac − e−ac) implies A = 0. Thus no such λ < 0 is an eigenvalue.

If λ = a2 with a > 0 we have X(x) = A sin ax+B cos ax. The condition
X(0) = 0 = B implies B = 0. The condition X(c) = 0 = A sin ac
implies a = nπ/c, n = 1, 2, · · ·. Thus the possible eigenvalues are
λn = n2π2/c2 with eigenfunctions Xn(x) = sin(nπx

c
), n = 1, 2, · · ·.

Chapter 4, page 102, Problem 3 Point out how it follows from expres-
sion

y(x, t) =
∞∑
n=1

Bn sin
nπx

c
cos

nπat

c
,

that for each fixed x, the displacement function y(x, t) is periodic in t
with period T0 = 2c

a
.

Solution: From the expansion above, if you replace t by t+ 2c
a

then

cos(
nπa(t+ 2c

a
)

c
) = cos(

nπat

c
+ 2πn) = cos

nπat

c
,

so y(x, t+ T0) = y(x, t). Thus y is periodic in t with period T0.
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