Name: _____

Math 4567. Homework Set # 5

March 12, 2010

Chapter 3 (page 79, problems 1,2), (page 82, problems 1,2), (page 86, problems 2,3), Chapter 4 (page 93, problems 2,3), (page 98, problems 1,2), (page 102, problems 1,2,3).

- Chapter 3, page 79, Problem 1 a. Let $z(\rho)$ be the static transverse displacements in a membrane, streched between circles $\rho = 1$ and $\rho = \rho_0 > 1$, the first circle in the plane z = 0 and the second in the plane $z = z_0$.
 - a. Show that the boundary problem can be written as

$$\frac{d}{d\rho} \left(\rho \frac{dz}{d\rho} \right) = 0, \quad 1 < \rho < \rho_0,$$
$$z(1) = 0, \quad z(\rho_0) = z_0.$$

b. Obtain the solution

$$z(\rho) = z_0 \frac{\ln \rho}{\ln \rho_0}, \quad 1 \le \rho \le \rho_0.$$

Solution:

a. The wave equation for the vibrating membrane is $z_{tt} = a^2(z_{xx} + z_{yy})$. In polar coordinates $x = \rho \cos \phi$, $y = \sin \phi$ this equation reads

$$z_{tt} = a^2 \left(\frac{d}{d\rho} \left(\rho \frac{dz}{d\rho}\right) + \frac{z_{\phi\phi}}{\rho^2}\right)$$

. Steady state means that $z_t = 0$ and the rotational symmetry of the problem means that $z_{\phi} = 0$. Thus the equation for $z(\rho)$ reduces to $\frac{d}{d\rho} \left(\rho \frac{dz}{d\rho} \right) = 0$, $1 < \rho < \rho_0$, with boundary conditions z(1) = 0, $z(\rho_0) = z_0$. **b.** Since $\frac{d}{d\rho} \left(\rho \frac{dz}{d\rho} \right) = 0$, we must have $\rho \frac{dz}{d\rho} = c_1$ where c_1 is a constant. Thus $\frac{dz}{d\rho} = c_1/\rho$. Integrating again we have $z(\rho) = c_1 \ln \rho + c_2$. Since z(1) = 0 we have $c_2 = 0$. Since $z(\rho_0) = z_0$ we have $z_0 = c_1 \ln \rho_0$. Thus $c_1 = z_0/\ln \rho_0$ and

$$z(\rho) = z_0 \frac{\ln \rho}{\ln \rho_0}, \quad 1 \le \rho \le \rho_0$$

Chapter 3, page 79, Problem 2 Show that the steady-state temperatures $u(\rho)$ in an infinitely long hollow cylinder $1 \le \rho \le \rho_0, -\infty < z < \infty$ also satisfy the boundary value Problem 1 if u = 0 on the inner cylindrical surface and $u = z_0$ on the outer one.

Solution: Here the heat equation is $u_t = k(u_{xx} + u_{yy})$. In polar coordinates $x = \rho \cos \phi, y = \sin \phi$ this is

$$u_t = k \left(\frac{d}{d\rho} \left(\rho \frac{du}{d\rho}\right) + \frac{u_{\phi\phi}}{\rho^2}.$$

Steady state means that $u_t = 0$, and axial symmetry means that $u_{\phi} = 0$. Thus the equation for $u(\rho)$ reduces to $\frac{d}{d\rho} \left(\rho \frac{du}{d\rho} \right) = 0$, $1 < \rho < \rho_0$, with boundary conditions u(1) = 0, $u(\rho_0) = z_0$.

Chapter 3, page 82, Problem 1 Use the general solution of the wave equation to solve the boundary value problem

$$y_{tt} = a^2 y_{xx}, \quad -\infty < x < \infty, \ t > 0,$$

 $y(x,0) = 0, \ y_t(x,0) = g(x), \quad -\infty < x < \infty.$

Solution: The general solution of the wave equation is

$$y(x,t) = \phi(x+at) + \psi(x-at)$$

for arbitrary twice differentiable functions ϕ, ψ . We impose the boundary conditions on this general solution:

$$y(x,0) = 0 = \phi(x) + \psi(x),$$

 $y_t(x,0) = g(x) = a \left(\phi'(x) - \psi'(x) \right).$

Thus $\psi(x) = -\phi(x)$ and $\phi'(x) = \frac{1}{2a}g(x)$. Integrating, we have

$$\phi(x) = C + \int_0^x \phi'(s) \, ds = C + \frac{1}{2a} \int_0^x g(s) \, ds,$$

$$\psi(x) = -\phi(x) = -C - \frac{1}{2a} \int_0^x g(s) \, ds = -C + \frac{1}{2a} \int_x^0 g(s) \, ds$$

us

Thus

$$y(x,t) = \phi(x+at) + \psi(x-at) = \frac{1}{2a} \int_{x-at}^{x+at} g(s) \, ds.$$

Chapter 3, page 82, Problem 2 Let Y(x,t) be d'Alembert's solution

$$Y(x,t) = \frac{1}{2}(f(x+at) + f(x-at))$$

of the boundary value problem solved in Section 27 and let Z(x,t) denote the solution found in Problem 1. Verify that y(x,t) = Y(x,t) + Z(x,t) solves the problem

$$y_{tt} = a^2 y_{xx}, \quad -\infty < x < \infty, \ t > 0,$$

 $y(x,0) = f(x), \ y_t(x,0) = g(x), \quad -\infty < x < \infty.$

Solution: We have that $Z(x,t) = \frac{1}{2a} \int_{x-at}^{x+at} g(s) \, ds$. solves the problem

$$y_{tt} = a^2 y_{xx}, \quad -\infty < x < \infty, \ t > 0,$$

 $y(x,0) = 0, \ y_t(x,0) = g(x), \quad -\infty < x < \infty.$

whereas Y(x,t) solves the problem

$$y_{tt} = a^2 y_{xx}, \quad -\infty < x < \infty, \ t > 0,$$

 $y(x,0) = f(x), \ y_t(x,0) = 0, \quad -\infty < x < \infty$

Thus by linearity, y(x,t) = Y(x,t) + Z(x,t) solves the full initial value problem and yields the solution

$$y(x,t) = \frac{1}{2}(f(x+at) + f(x-at)) + \frac{1}{2a} \int_{x-at}^{x+at} g(s) \, ds.$$

Chapter 3, page 86, Problem 2 Consider the equation

$$Ay_{xx} + By_{xt} + Cy_{tt} = 0, \ B^2 - 4AC > 0, \quad AC \neq 0,$$

where A, B, C are constants.

1. Use the transformation $u = x + \alpha t$, $v = x + \beta t$, $\alpha \neq \beta$, to derive the equation

$$(A+B\alpha+C\alpha^2)y_{uu}+[2A+B(\alpha+\beta)+2C\alpha\beta]y_{uv}+(A+B\beta+C\beta^2)y_{vv}=0$$

2. Show that $y_{uv} = 0$ if α, β have the values

$$\alpha_0 = \frac{-B + \sqrt{B^2 - 4AC}}{2C}, \quad \beta_0 = \frac{-B - \sqrt{B^2 - 4AC}}{2C}.$$

3. Conclude from the last result that the general solution of the original equation is $y = \phi(x + \alpha_0 t) + \psi(x + \beta_0 t)$ where ϕ, ψ are twice differentiable. Then verify that the solution of the wave equation $y_{tt} - a^2 y_{xx} = 0$ follows as a special case.

Solution:

1. We have

$$\partial_t = \alpha \partial_u + \beta \partial_v, \quad \partial_x = \partial_u + \partial_v.$$

thus

$$y_{xx} = (\partial_u + \partial_v)(y_u + y_v) = y_{uu} + 2y_{uv} + y_{vv}$$
$$y_{xt} = (\partial_u + \partial_v)(\alpha y_u + \beta y_v) = \alpha(y_{uu} + (\alpha + \beta)y_{uv} + \beta y_{vv},$$
$$y_{tt} = (\alpha \partial_u + \beta \partial_v)(\alpha y_u + \beta y_v) = \alpha^2 y_{uu} + 2\alpha \beta y_{uv} + \beta^2 y_{vv}.$$

Substituting into equation

$$Ay_{xx} + By_{xt} + Cy_{tt} = 0$$

we obtain the desired result

$$(A+B\alpha+C\alpha^2)y_{uu}+[2A+B(\alpha+\beta)+2C\alpha\beta]y_{uv}+(A+B\beta+C\beta^2)y_{vv}=0.$$

2. The roots of the quadratic equation $A + B\alpha + C\alpha^2 = 0$ are $\alpha = \frac{-B \pm \sqrt{B^2 - 4AC}}{2C}$. Thus $\alpha = \alpha_0$ is a root. The roots of the quadratic equation $A + B\beta + C\beta^2 = 0$ are again $\beta = \frac{-B \pm \sqrt{B^2 - 4AC}}{2C}$. Thus $\beta = \beta_0$ is a root. With these substituions the equation becomes

$$[2A + B(\alpha_0 + \beta_0) + 2C\alpha_0\beta_0]y_{uv} = 0$$

or

$$(2A + \frac{-B^2}{C} + 2C\frac{B^2 - B^2 + 4AC}{4C^2})y_{uv} = \frac{4AC - B^2}{C}y_{uv} = 0,$$

so $y_{uv} = 0$.

3. Since $y_{uv} = 0$, the general solution of this equation is $y = \phi(u) + \psi(v)$. Passing to the original variables x, t we have

$$y(x,t) = \phi(x + \alpha_0 t) + \psi(x + \beta_0 t)$$

as the general solution. In the special case of the equation $y_{tt} - a^2 y_{xx} = 0$ we have $A = -a^2$, B = 0 and C = 1, so $B^2 - 4AC > 0$, $AC \neq 0$ and $\alpha_0 = a$, $\beta_0 = -a$. Thus we recover the solution

$$y(x,t) = \phi(x+at) + \psi(x-at).$$

Chapter 3, page 86, problem 3 Show that with the transformation u = x, $v = \alpha x + \beta t$ for $\beta \neq 0$, the equation of Problem 2 becomes

$$Ay_{uu} + (2A\alpha + B\beta)y_{uv} + (A\alpha^2 + B\alpha\beta + C\beta^2)y_{vv} = 0.$$

Then show that the new equation reduces to (a) $y_{uu} + y_{vv} = 0$ when $B^2 - 4AC < 0$ and

$$\alpha = \frac{-B}{\sqrt{4AC - B^2}}, \quad \beta = \frac{2A}{\sqrt{4AC - B^2}};$$

(b) $y_{uu} = 0$ when $B^2 - 4AC = 0$ and $\alpha = -B$, $\beta = 2A$.

Solution:

1. We have

$$\partial_t = \beta \partial_v, \quad \partial_x = \partial_u + \alpha \partial_v,$$

 \mathbf{SO}

$$y_{xx} = (\partial_u + \alpha \partial_v)(y_u + \alpha y_v) = y_{uu} + 2\alpha y_{uv} + \alpha^2 y_{vv},$$
$$y_{xt} = (\partial_u + \alpha \partial_v)(\beta y_v) = \beta y_{uv} + \alpha \beta y_{vv},$$
$$y_{tt} = (\beta \partial_v)\beta y_v = \beta^2 y_{vv}.$$

Thus the original equation transforms to

$$Ay_{uu} + (2A\alpha + B\beta)y_{uv} + (A\alpha^2 + B\alpha\beta + C\beta^2)y_{vv} = 0.$$

2. Suppose $B^2 - 4AC < 0$ and

$$\alpha = \frac{-B}{\sqrt{4AC - B^2}}, \quad \beta = \frac{2A}{\sqrt{4AC - B^2}}.$$

Then $2A\alpha + B\beta = \frac{-2AB + 2AB}{\sqrt{4AC - B^2}} = 0$ and

$$A\alpha^{2} + B\alpha\beta + C\beta^{2} = \frac{AB^{2} - 2AB^{2} + 4A^{2}C}{4AC - B^{2}}$$
$$= \frac{-AB^{2} + 4A^{2}C}{4AC - B^{2}} = A \neq 0,$$

because $4AC > B^2 \ge 0$. Thus we can divide by A to get $y_{uu} + y_{vv} = 0$.

3. Suppose $B^2 - 4AC = 0$ and $\alpha = -B$, $\beta = 2A$. Then

$$2A\alpha + B\beta = -2AB + 2AB = 0,$$

$$A\alpha^{2} + B\alpha\beta + C\beta^{2} = AB^{2} - 2AB^{2} + 4A^{2}C = A(4AC - B^{2}) = 0.$$

Thus the equation reduces to $Ay_{uu} = 0$ or $y_{uu} = 0$ unless the equation is vacuous.

Chapter 4, page 93, Problem 2 Use the operators L = x and $M = \partial_x$ to illustrate that LM and ML are not always the same.

Solution: Let u(x) be a continuously differentiable function. Then Lu = xu(x) and

$$M(Lu) = M(xu(x)) = \partial_x(xu(x)) = u(x) + xu'(x).$$

But

$$LMu = L(Mu) = L(u'(x)) = xu'(x).$$

so $ML \neq LM$.

Chapter 4, page 93, Problem 3 Verify that each of the functions

$$u_0 = y, \ u_n = \sinh ny \cos nx, \quad n = 1, 2, \cdots$$

satisfies Laplace's equation

$$u_{xx}(x,y) + u_{yy}(x,y) = 0, \quad 0 < x < \pi, \ 0 < y < 2,$$

and the three boundary conditions

$$u_x(0,y) = u_x(\pi,y) = 0, \ u(x,0) = 0.$$

Then use the superposition pronciple to show, formally, that the series

$$u(x,y) = A_0 y + \sum_{n=1}^{\infty} A_n \sinh ny \cos nx$$

satisfies the differential equation and boundary conditions.

Solution:

1.

$$(\partial_{xx} + \partial_{yy})u_0 = (\partial_{xx} + \partial_{yy})y = 0,$$

$$\partial_x u_0(0, y) = \partial_x y = 0, \ \partial_x (u_0(\pi, y) = \partial_x y = 0, \ u_0(x, 0) = 0,$$

$$(\partial_{xx} + \partial_{yy})u_n = -n^2 \sinh ny \cos nx + n^2 \sinh ny \cos nx = 0,$$

$$\partial_x u_n(0, y) = -n \sinh ny \sin 0 = 0,$$

$$\partial_x u_n(\pi, y) = -n \sinh ny \sin n\pi = 0, \ u_n(x, 0) = \sinh 0 \cos nx = 0.$$

2. Since the equation is linear and the boundary conditions are homgeneous, an arbitray linear combination of these special solutions also satisfies the equation and boundary conditions, formally, Thus

$$u(x,y) = A_0 y + \sum_{n=1}^{\infty} A_n \sinh ny \cos nx$$

satisfies the differential equation and boundary conditions.

Chapter 4, page 98, Problem 1 Consider the boundary value problem

$$u_{xx}(x,y) + u_{yy}(x,y) = 0, \quad 0 < x < \pi, \ 0 < y < 2,$$

with homogeneous boundary conditions

$$u_x(0,y) = u_x(\pi,y) = 0, \ u(x,0) = 0.$$

Use separation of variables u = X(x)Y(y) and the results of Section 31 to show how the functions

$$u_0 = y, \ u_n = \sinh ny \cos nx, \quad n = 1, 2, \cdots$$

can be discovered. Proceed formally to derive the solution of the problem with nonhomogenous condition u(x, 2) = f(x) as

$$u(x,y) = A_0 y + \sum_{n=1}^{\infty} A_n \sinh ny \cos nx,$$

where

$$A_0 = \frac{1}{2\pi} \int_0^{\pi} f(x) dx, \ A_n = \frac{2}{\pi \sinh 2n} \int_0^{\pi} f(x) \cos nx \ dx, \quad n = 1, 2, \cdots.$$

Solution:

1. Set u = X(x)Y(y), Substituting into the differential equation and separating variables, we have

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = -\lambda.$$

Thus the Sturm-Liouville problems are

(a)
$$X'' + \lambda X = 0, X'(0) = X'(\pi) = 0$$

(b) $Y'' - \lambda Y = 0, Y(0) = 0.$

Working on (a), we see that if $\lambda = -a^2 < 0$ then $X(x) = Ae^{ax} + Be^{-ax}$, so $X'(x) = a(Ae^{ax} - Be^{-ax})$. Thus X'(0) = a(A - B) = 0 implies A = B, so $X'(\pi) = aB(e^{a\pi} + e^{-a\pi})$ which implies B = 0. Thus we can't satisfy the boundary conditions if $\lambda < 0$.

If $\lambda_0 = 0$ then X(x) = Ax + b. $X'(0) = X'(\pi) = 0$ implies A = 0. Thus $\lambda_0 = 0$ is an eigenvalue and we can take the eigenfunction as $X_0(x) = 1$.

If $\lambda = a^2 > 0$ with a > 0 then $X(x) = A \cos ax + B \sin ax$. Since $X'(x) = -Aa \sin ax + Ba \cos ax$ we have the requirement X'(0) = Ba = 0 so B = 0. The requirement $X'(\pi) = -Aa \sin a\pi = 0$ means that a = n. Thus the eigenvalues are $\lambda_n = n^2$, $n = 1, 2, \cdots$ with eigenfunctions $X_n(x) = \cos nx$.

For (b) we need consider only $\lambda \ge 0$. For $\lambda_0 = 0$ we have Y(t) = Ay + B and the boundary condition Y(0) = 0 implies B = 0. Thus we have $Y_0(y) = y$.

For $\lambda_n = n^2$ we have $Y(y) = A \sinh ny + B \cosh ny$. The boundary condition Y(0) = B = 0 implies that the eigenfunctions are $Y_n(y) = \sinh ny$.

We conclude that the special solutions are

$$u_0 = y, \quad u_n = \cos nx \sinh ny, \quad n = 1, 2, \cdots$$

2. Taking, formally, a linear combination of the special solutions u_0, u_n we get

$$u(x,y) = A_0 y + \sum_{n=1}^{\infty} A_n \sinh ny \cos nx.$$

The inhomogeneous condition u(x, 2) = f(x) imposes the requirement

$$f(x) = 2A_0 + \sum_{n=1}^{\infty} A_n \sinh 2n \cos nx.$$

This is a Fourier Cosine series on the interval $[0, \pi]$, so we must have

$$4A_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx, \ A_n \sinh 2n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx, \ n = 1, 2, \cdots$$

from which we can obtain A_0, A_n .

Chapter 4, page 98, Problem 2 Show that if in Section 31 we had written

$$\frac{T'(t)}{T(t)} = k \frac{X''(x)}{X(x)} = -\lambda$$

to separate variables, we would still have obtained the same results.

Solution: Here u(x,t) = X(x)T(t) and the boundary conditions are

$$u_x(0,t) = 0, \ u_x(c,c) = 0, \ t > 0.$$

Thus the Sturm-Liouville problem is

$$X'' + \frac{\lambda}{k}X = 0, \ X'(0) = X'(c) = 0,$$

and there is the additional equation

$$T' + \lambda T = 0.$$

If $\lambda/k = 0$ then X(x) = Ax + B, and the conditions X'(0) = X'(c) = 0 = A imply A = 0. Thus $\lambda_0 = 0$ is an eigenvalue with eigenfunction $X_0(x) = 1$. The corresponding solution for T is $T_0(t) = 1$.

If $\lambda/k = \alpha^2 > 0$ where $\alpha > 0$ then $X(x) = A \sin \alpha x + B \cos \alpha x$. The condition $X'(0) = 0 = A\alpha$ implies A = 0. The condition $X'(c) = 0 = -B\alpha \sin \alpha c$ implies $\alpha c = n\pi$, $n = 1, 2, \cdots$. Thus there are eigenvalues $\lambda_n = kn^2\pi^2/c^2$ with corresponding eigenfunctions

$$X_n(x) = \cos \frac{n\pi x}{c}, \quad T_n(t) = \exp(-\frac{kn^2\pi^2 t}{c^2}).$$

If $\lambda/k = -\alpha^2 < 0$ where $\alpha > 0$ then $X(x) = Ae^{\alpha x} + Be^{-\alpha x}$. The condition $X'(0) = 0 = \alpha(A - B)$ implies B = A. The condition

 $X'(c) = 0 = A(e^{\alpha c} - e^{-\alpha c})$ implies A = 0 Thus there are no eigenvalues for this case.

We conclude that the separated solutions are

$$u_0 = 1, \ u_n = \cos(\frac{n\pi x}{c})\exp(-\frac{kn^2\pi^2 t}{c^2}), \ n = 1, 2, \cdots,$$

just as before.

Chapter 4, page 102, Problem 1 By assuming a product solution obtain conditions

$$X'' + \lambda X = 0, \ X(0) = X(c) = 0,$$

 $T'' + \lambda a^2 T = 0, \ T'(0) = 0,$

from the homogeneous conditions

$$y_{tt} = a^2 y_{xx}, \quad 0 < x < c, \ t > 0,$$

 $y_t(0,t) = 0, \ y(c,t) = 0, y_t(x,0) = 0.$

Solution: Assume y(x,t) = X(x)T(t) satisfies the wave equation. Then $XT'' = a^2 X''T$ so we have

$$\frac{X''}{X} = \frac{T''}{a^2T} = -\lambda.$$

Thus

$$X'' + \lambda X = 0, \ T'' + \lambda a^2 T = 0.$$

The boundary condition $y_t(0,t) = 0 = T'(t)X(0)$ implies X(0) = 0since we never have $T'(t) \equiv 0$ even for $\lambda = 0$. The boundary condition y(c,t) = 0 = X(c)T(t) implies X(c) = 0. The initial condition $y_1(x,0) = 0 = T'(0)X(x)$ implies T'(0) = 0.

Chapter 4, page 102, Problem 2 Derive the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$X'' + \lambda X = 0, \ X(0) = X(c) = 0.$$

Solution: If $\lambda = 0$ then X(x) = Ax + B. Since X(0) = 0 = B we

have B = 0. Since X(c) = 0 = Ac we have A = 0, so $\lambda = 0$ is not an eigenvalue.

If $\lambda = -a^2$ with a > 0 we have $X(x) = Ae^{ax} + Be^{-ax}$. The condition X(0) = 0 = A + B implies B = -A. The condition $X(c) = 0 = A(e^{ac} - e^{-ac})$ implies A = 0. Thus no such $\lambda < 0$ is an eigenvalue. If $\lambda = a^2$ with a > 0 we have $X(x) = A \sin ax + B \cos ax$. The condition X(0) = 0 = B implies B = 0. The condition $X(c) = 0 = A \sin ac$ implies $a = n\pi/c$, $n = 1, 2, \cdots$. Thus the possible eigenvalues are $\lambda_n = n^2 \pi^2/c^2$ with eigenfunctions $X_n(x) = \sin(\frac{n\pi x}{c}), n = 1, 2, \cdots$.

Chapter 4, page 102, Problem 3 Point out how it follows from expression

$$y(x,t) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{c} \cos \frac{n\pi at}{c},$$

that for each fixed x, the displacement function y(x,t) is periodic in t with period $T_0 = \frac{2c}{a}$.

Solution: From the expansion above, if you replace t by $t + \frac{2c}{a}$ then

$$\cos(\frac{n\pi a(t+\frac{2c}{a})}{c}) = \cos(\frac{n\pi at}{c} + 2\pi n) = \cos\frac{n\pi at}{c}$$

so $y(x, t + T_0) = y(x, t)$. Thus y is periodic in t with period T_0 .