Name:

Math 4567. Homework Set \# 5

March 12, 2010

Chapter 3 (page 79, problems 1,2), (page 82, problems 1,2), (page 86, problems 2,3), Chapter 4 (page 93, problems 2,3), (page 98, problems 1,2), (page 102, problems 1,2,3).

Chapter 3, page 79, Problem 1 a. Let $z(\rho)$ be the static transverse displacements in a membrane, streched between circles $\rho=1$ and $\rho=\rho_{0}>1$, the first circle in the plane $z=0$ and the second in the plane $z=z_{0}$.
a. Show that the boundary problem can be written as

$$
\begin{gathered}
\frac{d}{d \rho}\left(\rho \frac{d z}{d \rho}\right)=0, \quad 1<\rho<\rho_{0} \\
z(1)=0, \quad z\left(\rho_{0}\right)=z_{0} .
\end{gathered}
$$

b. Obtain the solution

$$
z(\rho)=z_{0} \frac{\ln \rho}{\ln \rho_{0}}, \quad 1 \leq \rho \leq \rho_{0} .
$$

Solution:

a. The wave equation for the vibrating membrane is $z_{t t}=a^{2}\left(z_{x x}+z_{y y}\right)$.

In polar coordinates $x=\rho \cos \phi, y=\sin \phi$ this equation reads

$$
z_{t t}=a^{2}\left(\frac{d}{d \rho}\left(\rho \frac{d z}{d \rho}\right)+\frac{z_{\phi \phi}}{\rho^{2}}\right.
$$

. Steady state means that $z_{t}=0$ and the rotational symmetry of the problem means that $z_{\phi}=0$. Thus the equation for $z(\rho)$ reduces to $\frac{d}{d \rho}\left(\rho \frac{d z}{d \rho}\right)=0,1<\rho<\rho_{0}$, with boundary conditions $z(1)=0, z\left(\rho_{0}\right)=z_{0}$.
b. Since $\frac{d}{d \rho}\left(\rho \frac{d z}{d \rho}\right)=0$, we must have $\rho \frac{d z}{d \rho}=c_{1}$ where c_{1} is a constant. Thus $\frac{d z}{d \rho}=c_{1} / \rho$. Integrating again we have $z(\rho)=c_{1} \ln \rho+c_{2}$. Since $z(1)=0$ we have $c_{2}=0$. Since $z\left(\rho_{0}\right)=z_{0}$ we have $z_{0}=$ $c_{1} \ln \rho_{0}$. Thus $c_{1}=z_{0} / \ln \rho_{0}$ and

$$
z(\rho)=z_{0} \frac{\ln \rho}{\ln \rho_{0}}, \quad 1 \leq \rho \leq \rho_{0} .
$$

Chapter 3, page 79, Problem 2 Show that the steady-state temperatures $u(\rho)$ in an infinitely long hollow cylinder $1 \leq \rho \leq \rho_{0},-\infty<z<\infty$ also satisfy the boundary value Problem 1 if $u=0$ on the inner cylindrical surface and $u=z_{0}$ on the outer one.

Solution: Here the heat equation is $u_{t}=k\left(u_{x x}+u_{y y}\right)$. In polar coordinates $x=\rho \cos \phi, y=\sin \phi$ this is

$$
u_{t}=k\left(\frac{d}{d \rho}\left(\rho \frac{d u}{d \rho}\right)+\frac{u_{\phi \phi}}{\rho^{2}} .\right.
$$

Steady state means that $u_{t}=0$, and axial symmetry means that $u_{\phi}=0$. Thus the equation for $u(\rho)$ reduces to $\frac{d}{d \rho}\left(\rho \frac{d u}{d \rho}\right)=0,1<\rho<\rho_{0}$, with boundary conditions $u(1)=0, u\left(\rho_{0}\right)=z_{0}$.

Chapter 3, page 82, Problem 1 Use the general solution of the wave equation to solve the boundary value problem

$$
\begin{gathered}
y_{t t}=a^{2} y_{x x}, \quad-\infty<x<\infty, t>0 \\
y(x, 0)=0, y_{t}(x, 0)=g(x), \quad-\infty<x<\infty .
\end{gathered}
$$

Solution: The general solution of the wave equation is

$$
y(x, t)=\phi(x+a t)+\psi(x-a t)
$$

for arbitrary twice differentiable functions ϕ, ψ. We impose the boundary conditions on this general solution:

$$
y(x, 0)=0=\phi(x)+\psi(x)
$$

$$
y_{t}(x, 0)=g(x)=a\left(\phi^{\prime}(x)-\psi^{\prime}(x)\right) .
$$

Thus $\psi(x)=-\phi(x)$ and $\phi^{\prime}(x)=\frac{1}{2 a} g(x)$. Integrating, we have

$$
\begin{gathered}
\phi(x)=C+\int_{0}^{x} \phi^{\prime}(s) d s=C+\frac{1}{2 a} \int_{0}^{x} g(s) d s \\
\psi(x)=-\phi(x)=-C-\frac{1}{2 a} \int_{0}^{x} g(s) d s=-C+\frac{1}{2 a} \int_{x}^{0} g(s) d s
\end{gathered}
$$

Thus

$$
y(x, t)=\phi(x+a t)+\psi(x-a t)=\frac{1}{2 a} \int_{x-a t}^{x+a t} g(s) d s .
$$

Chapter 3, page 82, Problem 2 Let $Y(x, t)$ be d'Alembert's solution

$$
Y(x, t)=\frac{1}{2}(f(x+a t)+f(x-a t))
$$

of the boundary value problem solved in Section 27 and let $Z(x, t)$ denote the solution found in Problem 1. Verify that $y(x, t)=Y(x, t)+$ $Z(x, t)$ solves the problem

$$
\begin{gathered}
y_{t t}=a^{2} y_{x x}, \quad-\infty<x<\infty, t>0 \\
y(x, 0)=f(x), y_{t}(x, 0)=g(x), \quad-\infty<x<\infty
\end{gathered}
$$

Solution: We have that $Z(x, t)=\frac{1}{2 a} \int_{x-a t}^{x+a t} g(s) d s$. solves the problem

$$
\begin{gathered}
y_{t t}=a^{2} y_{x x}, \quad-\infty<x<\infty, t>0, \\
y(x, 0)=0, y_{t}(x, 0)=g(x), \quad-\infty<x<\infty .
\end{gathered}
$$

whereas $Y(x, t)$ solves the problem

$$
\begin{gathered}
y_{t t}=a^{2} y_{x x}, \quad-\infty<x<\infty, t>0, \\
y(x, 0)=f(x), y_{t}(x, 0)=0, \quad-\infty<x<\infty .
\end{gathered}
$$

Thus by linearity, $y(x, t)=Y(x, t)+Z(x, t)$ solves the full initial value problem and yields the solution

$$
y(x, t)=\frac{1}{2}(f(x+a t)+f(x-a t))+\frac{1}{2 a} \int_{x-a t}^{x+a t} g(s) d s .
$$

Chapter 3, page 86, Problem 2 Consider the equation

$$
A y_{x x}+B y_{x t}+C y_{t t}=0, B^{2}-4 A C>0, \quad A C \neq 0
$$

where A, B, C are constants.

1. Use the transformation $u=x+\alpha t, v=x+\beta t, \alpha \neq \beta$, to derive the equation

$$
\left(A+B \alpha+C \alpha^{2}\right) y_{u u}+[2 A+B(\alpha+\beta)+2 C \alpha \beta] y_{u v}+\left(A+B \beta+C \beta^{2}\right) y_{v v}=0 .
$$

2. Show that $y_{u v}=0$ if α, β have the values

$$
\alpha_{0}=\frac{-B+\sqrt{B^{2}-4 A C}}{2 C}, \quad \beta_{0}=\frac{-B-\sqrt{B^{2}-4 A C}}{2 C} .
$$

3. Conclude from the last result that the general solution of the original equation is $y=\phi\left(x+\alpha_{0} t\right)+\psi\left(x+\beta_{0} t\right)$ where ϕ, ψ are twice differentiable. Then verify that the solution of the wave equation $y_{t t}-a^{2} y_{x x}=0$ follows as a special case.

Solution:

1. We have

$$
\partial_{t}=\alpha \partial_{u}+\beta \partial_{v}, \quad \partial_{x}=\partial_{u}+\partial_{v} .
$$

thus

$$
\begin{gathered}
y_{x x}=\left(\partial_{u}+\partial_{v}\right)\left(y_{u}+y_{v}\right)=y_{u u}+2 y_{u v}+y_{v v} \\
y_{x t}=\left(\partial_{u}+\partial_{v}\right)\left(\alpha y_{u}+\beta y_{v}\right)=\alpha\left(y_{u u}+(\alpha+\beta) y_{u v}+\beta y_{v v},\right. \\
y_{t t}=\left(\alpha \partial_{u}+\beta \partial_{v}\right)\left(\alpha y_{u}+\beta y_{v}\right)=\alpha^{2} y_{u u}+2 \alpha \beta y_{u v}+\beta^{2} y_{v v} .
\end{gathered}
$$

Substituting into equation

$$
A y_{x x}+B y_{x t}+C y_{t t}=0
$$

we obtain the desired result

$$
\left(A+B \alpha+C \alpha^{2}\right) y_{u u}+[2 A+B(\alpha+\beta)+2 C \alpha \beta] y_{u v}+\left(A+B \beta+C \beta^{2}\right) y_{v v}=0 .
$$

2. The roots of the quadratic equation $A+B \alpha+C \alpha^{2}=0$ are $\alpha=$ $\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 C}$. Thus $\alpha=\alpha_{0}$ is a root. The roots of the quadratic equation $A+B \beta+C \beta^{2}=0$ are again $\beta=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 C}$. Thus $\beta=\beta_{0}$ is a root. With these substituions the equation becomes

$$
\left[2 A+B\left(\alpha_{0}+\beta_{0}\right)+2 C \alpha_{0} \beta_{0}\right] y_{u v}=0
$$

or

$$
\left(2 A+\frac{-B^{2}}{C}+2 C \frac{B^{2}-B^{2}+4 A C}{4 C^{2}}\right) y_{u v}=\frac{4 A C-B^{2}}{C} y_{u v}=0
$$

so $y_{u v}=0$.
3. Since $y_{u v}=0$, the general solution of this eauation is $y=\phi(u)+$ $\psi(v)$. Passing to the original variables x, t we have

$$
y(x, t)=\phi\left(x+\alpha_{0} t\right)+\psi\left(x+\beta_{0} t\right)
$$

as the general solution. In the special case of the equation $y_{t t}-$ $a^{2} y_{x x}=0$ we have $A=-a^{2}, B=0$ and $C=1$, so $B^{2}-4 A C>0$, $A C \neq 0$ and $\alpha_{0}=a, \beta_{0}=-a$. Thus we recover the solution

$$
y(x, t)=\phi(x+a t)+\psi(x-a t) .
$$

Chapter 3, page 86, problem 3 Show that with the transformation $u=$ $x, v=\alpha x+\beta t$ for $\beta \neq 0$, the equation of Problem 2 becomes

$$
A y_{u u}+(2 A \alpha+B \beta) y_{u v}+\left(A \alpha^{2}+B \alpha \beta+C \beta^{2}\right) y_{v v}=0
$$

Then show that the new equation reduces to (a) $y_{u u}+y_{v v}=0$ when $B^{2}-4 A C<0$ and

$$
\alpha=\frac{-B}{\sqrt{4 A C-B^{2}}}, \quad \beta=\frac{2 A}{\sqrt{4 A C-B^{2}}} ;
$$

(b) $y_{u u}=0$ when $B^{2}-4 A C=0$ and $\alpha=-B, \beta=2 A$.

Solution:

1. We have

$$
\partial_{t}=\beta \partial_{v}, \quad \partial_{x}=\partial_{u}+\alpha \partial_{v},
$$

so

$$
\begin{gathered}
y_{x x}=\left(\partial_{u}+\alpha \partial_{v}\right)\left(y_{u}+\alpha y_{v}\right)=y_{u u}+2 \alpha y_{u v}+\alpha^{2} y_{v v} \\
y_{x t}=\left(\partial_{u}+\alpha \partial_{v}\right)\left(\beta y_{v}\right)=\beta y_{u v}+\alpha \beta y_{v v}, \\
y_{t t}=\left(\beta \partial_{v}\right) \beta y_{v}=\beta^{2} y_{v v} .
\end{gathered}
$$

Thus the original equation transforms to

$$
A y_{u u}+(2 A \alpha+B \beta) y_{u v}+\left(A \alpha^{2}+B \alpha \beta+C \beta^{2}\right) y_{v v}=0
$$

2. Suppose $B^{2}-4 A C<0$ and

$$
\alpha=\frac{-B}{\sqrt{4 A C-B^{2}}}, \quad \beta=\frac{2 A}{\sqrt{4 A C-B^{2}}} .
$$

Then $2 A \alpha+B \beta=\frac{-2 A B+2 A B}{\sqrt{4 A C-B^{2}}}=0$ and

$$
\begin{gathered}
A \alpha^{2}+B \alpha \beta+C \beta^{2}=\frac{A B^{2}-2 A B^{2}+4 A^{2} C}{4 A C-B^{2}} \\
=\frac{-A B^{2}+4 A^{2} C}{4 A C-B^{2}}=A \neq 0
\end{gathered}
$$

because $4 A C>B^{2} \geq 0$. Thus we can divide by A to get $y_{u u}+$ $y_{v v}=0$.
3. Suppose $B^{2}-4 A C=0$ and $\alpha=-B, \beta=2 A$. Then

$$
\begin{gathered}
2 A \alpha+B \beta=-2 A B+2 A B=0 \\
A \alpha^{2}+B \alpha \beta+C \beta^{2}=A B^{2}-2 A B^{2}+4 A^{2} C=A\left(4 A C-B^{2}\right)=0 .
\end{gathered}
$$

Thus the equation reduces to $A y_{u u}=0$ or $y_{u u}=0$ unless the equation is vacuous.

Chapter 4, page 93, Problem 2 Use the operators $L=x$ and $M=\partial_{x}$ to illustrate that $L M$ and $M L$ are not always the same.

Solution: Let $u(x)$ be a continuously differentiable function. Then $L u=x u(x)$ and

$$
M(L u)=M\left(x u(x)=\partial_{x}(x u(x))=u(x)+x u^{\prime}(x) .\right.
$$

But

$$
L M u=L(M u)=L\left(u^{\prime}(x)\right)=x u^{\prime}(x) .
$$

so $M L \neq L M$.
Chapter 4, page 93, Problem 3 Verify that each of the functions

$$
u_{0}=y, u_{n}=\sinh n y \cos n x, \quad n=1,2, \cdots
$$

satisfies Laplace's equation

$$
u_{x x}(x, y)+u_{y y}(x, y)=0, \quad 0<x<\pi, \quad 0<y<2,
$$

and the three boundary conditions

$$
u_{x}(0, y)=u_{x}(\pi, y)=0, u(x, 0)=0 .
$$

Then use the superposition pronciple to show, formally, that the series

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \sinh n y \cos n x
$$

satisfies the differential equation and boundary conditions.

Solution:

1.

$$
\begin{gathered}
\left(\partial_{x x}+\partial_{y y}\right) u_{0}=\left(\partial_{x x}+\partial_{y y}\right) y=0, \\
\partial_{x} u_{0}(0, y)=\partial_{x} y=0, \partial_{x}\left(u_{0}(\pi, y)=\partial_{x} y=0, u_{0}(x, 0)=0,\right. \\
\left(\partial_{x x}+\partial_{y y}\right) u_{n}=-n^{2} \sinh n y \cos n x+n^{2} \sinh n y \cos n x=0, \\
\partial_{x} u_{n}(0, y)=-n \sinh n y \sin 0=0, \\
\partial_{x} u_{n}(\pi, y)=-n \sinh n y \sin n \pi=0, u_{n}(x, 0)=\sinh 0 \cos n x=0 .
\end{gathered}
$$

2. Since the equation is linear and the boundary conditions are homgeneous, an arbitray linear combination of these special solutions also satisfies the equation and boundary conditions, formally, Thus

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \sinh n y \cos n x
$$

satisfies the differential equation and boundary conditions.
Chapter 4, page 98, Problem 1 Consider the boundary value problem

$$
u_{x x}(x, y)+u_{y y}(x, y)=0, \quad 0<x<\pi, \quad 0<y<2,
$$

with homogeneous boundary conditions

$$
u_{x}(0, y)=u_{x}(\pi, y)=0, u(x, 0)=0 .
$$

Use separation of variables $u=X(x) Y(y)$ and the results of Section 31 to show how the functions

$$
u_{0}=y, u_{n}=\sinh n y \cos n x, \quad n=1,2, \cdots
$$

can be discovered. Proceed formally to derive the solution of the problem with nonhomogenous condition $u(x, 2)=f(x)$ as

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \sinh n y \cos n x,
$$

where
$A_{0}=\frac{1}{2 \pi} \int_{0}^{\pi} f(x) d x, A_{n}=\frac{2}{\pi \sinh 2 n} \int_{0}^{\pi} f(x) \cos n x d x, \quad n=1,2, \cdots$.

Solution

1. Set $u=X(x) Y(y)$, Substituting into the differential equation and separating variables, we have

$$
\frac{X^{\prime \prime}(x)}{X(x)}=-\frac{Y^{\prime \prime}(y)}{Y(y)}=-\lambda .
$$

Thus the Sturm-Liouville problems are

$$
\begin{gathered}
\text { (a) } X^{\prime \prime}+\lambda X=0, X^{\prime}(0)=X^{\prime}(\pi)=0, \\
\text { (b) } Y^{\prime \prime}-\lambda Y=0, Y(0)=0
\end{gathered}
$$

Working on (a), we see that if $\lambda=-a^{2}<0$ then $X(x)=A e^{a x}+$ $B e^{-a x}$, so $X^{\prime}(x)=a\left(A e^{a x}-B e^{-a x}\right)$. Thus $X^{\prime}(0)=a(A-B)=0$ implies $A=B$, so $X^{\prime}(\pi)=a B\left(e^{a \pi}+e^{-a \pi}\right)$ which implies $B=0$. Thus we can't satisfy the boundary conditions if $\lambda<0$. If $\lambda_{0}=0$ then $X(x)=A x+b . X^{\prime}(0)=X^{\prime}(\pi)=0$ implies $A=0$. Thus $\lambda_{0}=0$ is an eigenvalue and we can take the eigenfunction as $X_{0}(x)=1$.
If $\lambda=a^{2}>0$ with $a>0$ then $X(x)=A \cos a x+B \sin a x$. Since $X^{\prime}(x)=-A a \sin a x+B a \cos a x$ we have the requirement $X^{\prime}(0)=$ $B a=0$ so $B=0$. The requirement $X^{\prime}(\pi)=-A a \sin a \pi=0$ means that $a=n$. Thus the eigenvalues are $\lambda_{n}=n^{2}, n=1,2, \cdots$ with eigenfunctions $X_{n}(x)=\cos n x$.
For (b) we need consider only $\lambda \geq 0$. For $\lambda_{0}=0$ we have $Y(t)=$ $A y+B$ and the boundary condition $Y(0)=0$ implies $B=0$. Thus we have $Y_{0}(y)=y$.
For $\lambda_{n}=n^{2}$ we have $Y(y)=A \sinh n y+B \cosh n y$. The boundary condition $Y(0)=B=0$ implies that the eigenfunctions are $Y_{n}(y)=\sinh n y$.
We conclude that the special solutions are

$$
u_{0}=y, \quad u_{n}=\cos n x \sinh n y, \quad n=1,2, \cdots .
$$

2. Taking, formally, a linear combination of the special solutions u_{0}, u_{n} we get

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \sinh n y \cos n x .
$$

The inhomogeneous condtion $u(x, 2)=f(x)$ imposes the requirement

$$
f(x)=2 A_{0}+\sum_{n=1}^{\infty} A_{n} \sinh 2 n \cos n x .
$$

This is a Fourier Cosine series on the interval $[0, \pi]$, so we must have

$$
4 A_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x, A_{n} \sinh 2 n=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x, n=1,2, \cdots
$$

from which we can obtain A_{0}, A_{n}.
Chapter 4, page 98, Problem 2 Show that if in Section 31 we had written

$$
\frac{T^{\prime}(t)}{T(t)}=k \frac{X^{\prime \prime}(x)}{X(x)}=-\lambda
$$

to separate variables, we would still have obtained the same results.
Solution: Here $u(x, t)=X(x) T(t)$ and the boundary conditions are

$$
u_{x}(0, t)=0, u_{x}(c, c)=0, \quad t>0 .
$$

Thus the Sturm-Liouville problem is

$$
X^{\prime \prime}+\frac{\lambda}{k} X=0, \quad X^{\prime}(0)=X^{\prime}(c)=0
$$

and there is the additional equation

$$
T^{\prime}+\lambda T=0 .
$$

If $\lambda / k=0$ then $X(x)=A x+B$, and the conditions $X^{\prime}(0)=X^{\prime}(c)=$ $0=A$ imply $A=0$. Thus $\lambda_{0}=0$ is an eigenvalue with eigenfunction $X_{0}(x)=1$. The corresponding solution for T is $T_{0}(t)=1$.

If $\lambda / k=\alpha^{2}>0$ where $\alpha>0$ then $X(x)=A \sin \alpha x+B \cos \alpha x$. The condition $X^{\prime}(0)=0=A \alpha$ implies $A=0$. The condition $X^{\prime}(c)=0=$ $-B \alpha \sin \alpha c$ implies $\alpha c=n \pi, n=1,2, \cdots$. Thus there are eigenvalues $\lambda_{n}=k n^{2} \pi^{2} / c^{2}$ with corresponding eigenfunctions

$$
X_{n}(x)=\cos \frac{n \pi x}{c}, \quad T_{n}(t)=\exp \left(-\frac{k n^{2} \pi^{2} t}{c^{2}}\right)
$$

If $\lambda / k=-\alpha^{2}<0$ where $\alpha>0$ then $X(x)=A e^{\alpha x}+B e^{-\alpha x}$. The condition $X^{\prime}(0)=0=\alpha(A-B)$ implies $B=A$. The condition
$X^{\prime}(c)=0=A\left(e^{\alpha c}-e^{-\alpha c}\right)$ implies $A=0$ Thus there are no eigenvalues for this case.

We conclude that the separated solutions are

$$
u_{0}=1, u_{n}=\cos \left(\frac{n \pi x}{c}\right) \exp \left(-\frac{k n^{2} \pi^{2} t}{c^{2}}\right), \quad n=1,2, \cdots,
$$

just as before.
Chapter 4, page 102, Problem 1 By assuming a product solution obtain conditions

$$
\begin{gathered}
X^{\prime \prime}+\lambda X=0, \quad X(0)=X(c)=0, \\
T^{\prime \prime}+\lambda a^{2} T=0, T^{\prime}(0)=0,
\end{gathered}
$$

from the homogeneous conditions

$$
\begin{gathered}
y_{t t}=a^{2} y_{x x}, \quad 0<x<c, t>0 \\
y_{t}(0, t)=0, y(c, t)=0, y_{t}(x, 0)=0
\end{gathered}
$$

Solution: Assume $y(x, t)=X(x) T(t)$ satisfies the wave equation. Then $X T^{\prime \prime}=a^{2} X^{\prime \prime} T$ so we have

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{a^{2} T}=-\lambda .
$$

Thus

$$
X^{\prime \prime}+\lambda X=0, T^{\prime \prime}+\lambda a^{2} T=0
$$

The boundary condition $y_{t}(0 . t)=0=T^{\prime}(t) X(0)$ implies $X(0)=0$ since we never have $T^{\prime}(t) \equiv 0$ even for $\lambda=0$.. The boundary condition $y(c, t)=0=X(c) T(t)$ implies $X(c)=0$. The initial condition $y_{1}(x, 0)=0=T^{\prime}(0) X(x)$ implies $T^{\prime}(0)=0$.

Chapter 4, page 102, Problem 2 Derive the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$
X^{\prime \prime}+\lambda X=0, X(0)=X(c)=0
$$

Solution: If $\lambda=0$ then $X(x)=A x+B$. Since $X(0)=0=B$ we
have $B=0$. Since $X(c)=0=A c$ we have $A=0$, so $\lambda=0$ is not an eigenvalue.
If $\lambda=-a^{2}$ with $a>0$ we have $X(x)=A e^{a x}+B e^{-a x}$. The condition $X(0)=0=A+B$ implies $B=-A$. The condition $X(c)=0=$ $A\left(e^{a c}-e^{-a c}\right)$ implies $A=0$. Thus no such $\lambda<0$ is an eigenvalue.
If $\lambda=a^{2}$ with $a>0$ we have $X(x)=A \sin a x+B \cos a x$. The condition $X(0)=0=B$ implies $B=0$. The condition $X(c)=0=A \sin a c$ implies $a=n \pi / c, n=1,2, \cdots$. Thus the possible eigenvalues are $\lambda_{n}=n^{2} \pi^{2} / c^{2}$ with eigenfunctions $X_{n}(x)=\sin \left(\frac{n \pi x}{c}\right), n=1,2, \cdots$.

Chapter 4, page 102, Problem 3 Point out how it follows from expression

$$
y(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{c} \cos \frac{n \pi a t}{c},
$$

that for each fixed x, the displacement function $y(x, t)$ is periodic in t with period $T_{0}=\frac{2 c}{a}$.

Solution: From the expansion above, if you replace t by $t+\frac{2 c}{a}$ then

$$
\cos \left(\frac{n \pi a\left(t+\frac{2 c}{a}\right)}{c}\right)=\cos \left(\frac{n \pi a t}{c}+2 \pi n\right)=\cos \frac{n \pi a t}{c}
$$

so $y\left(x, t+T_{0}\right)=y(x, t)$. Thus y is periodic in t with period T_{0}.

