Name: _____

Math 4567. Homework Set # 4 Solutions

February 26, 2010

Chapter 2 (page 42, problem 8), (page 54, problems 1,5,6,7), Chapter 3 (page 63, problem 3), (page 71, problems 1,2,8), (page 76, problem 1).

Chapter 2, page 42, Problem 8 From the Fourier series

$$f(x) = \frac{a_0}{2} + \lim_{N \to \infty} \sum_{n=1}^{N} (a_n \cos \frac{n\pi x}{c} + b_n \sin \frac{n\pi n}{c})$$

derive the complex series

$$f(x) = \lim_{n \to \infty} \sum_{n=-N}^{N} A_n \exp(i\frac{n\pi x}{c}),$$

where $A_0 = \frac{a_0}{2}$, $A_n = \frac{a_n - ib_n}{2}$, $A_{-n} = \frac{a_n + ib_n}{2}$ for $n = 1, 2, \cdots$. Derive the formula

$$A_k = \frac{1}{2c} \int_{-c}^{c} f(t) \exp(-i\frac{k\pi t}{c}) dt, \quad k = 0, \pm 1, \pm 2, \cdots.$$

Solution:

$$\sum_{n=-N}^{N} A_N \exp(i\frac{n\pi x}{c}) = A_0 + \sum_{n=1}^{N} \left(A_n \exp(i\frac{n\pi x}{c}) + A_{-n} \exp(-i\frac{n\pi x}{c}) \right) = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{N} \left[(a_n - ib_n)(\cos\frac{n\pi x}{c} + i\sin\frac{n\pi x}{c}) + (a_n + ib_n)(\cos\frac{n\pi x}{c} - i\sin\frac{n\pi x}{c}) \right] \\ = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(\frac{n\pi x}{c}) + b_n \sin(\frac{n\pi x}{c}) \right],$$

because the cross terms cancel out in the last expansion. Furthermore,

$$A_0 = \frac{a_0}{2} = \frac{1}{2c} \int_{-c}^{c} f(t) dt,$$

for k > 0,

$$A_{k} = \frac{a_{k} - ib_{k}}{2} = \frac{1}{2c} \int_{-c}^{c} f(t) \left(\cos \frac{k\pi t}{c} - i\sin \frac{k\pi t}{c} \right) dt = \frac{1}{2c} \int_{-c}^{c} f(t) \exp(-i\frac{k\pi t}{c}) dt,$$

and for k < 0,

$$A_{k} = \frac{a_{-k} + ib_{-k}}{2} = \frac{1}{2c} \int_{-c}^{c} f(t) \left(\cos \frac{k\pi t}{c} + i\sin(-\frac{k\pi t}{c}) \right) dt = \frac{1}{2c} \int_{-c}^{c} f(t) \exp(-i\frac{k\pi t}{c}) dt.$$

Chapter 2, page 54, Problem 1 a. Show that the function

$$f(x) = \begin{cases} 0 & \text{when } -\pi \le x \le 0, \\ \sin x & \text{when } 0 < x \le \pi, \end{cases}$$

satisfies all conditions for uniform convergence on $[-\pi,\pi]$.

b. Verify that the Fourier series

$$f \sim \frac{1}{\pi} + \frac{1}{2}\sin x - \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}, \quad -\pi < x < \pi$$

converges pointwise uniformly to f on $[-\pi, \pi]$.

c. State why the series can be differentiated on $(-\pi,\pi)$ and describe the function that is represented by the differentiated series for all x.

Solution:

- **a.** f is continuously differentiable on the open intervals $0 < x < \pi$ and $-\pi < x < 0$. We have $f(-\pi) = f(0) = f(\pi) = 0$, so it is continuous on $[-\pi, \pi]$. f'(0+0) = 1, f'(0-0) = 0, $f'(\pi-0) = -1$, $f'(-\pi+0) = 0$ so f is piecewise smooth.
- **b.** By part [a.] the series for f converges poinwise uniformly to f on $[-\pi, \pi]$.

- c. Since f satisfies the conditions for uniform convergence and since f''(x) is piecewise continuous on $(-\pi, \pi)$ the Fourier series can be differentiated term-by-term. The differentiated series converges to 0 for $-\pi < x < 0$, to $\cos x$ for $0 < x < \pi$, to $\frac{1}{2}$ for x = 0 and to $-\frac{1}{2}$ for $x = \pm \pi$.
- Chapter 2, page 54, Problem 5 Integrate from s = 0 to s = x, $(-\pi \le x \le \pi)$ the Fourier series

$$s = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin ns$$

and the Fourier series

$$f(s) = 2\sum_{n=1}^{\infty} \frac{\sin(2n-1)s}{2n-1}$$

for

$$f(s) = \begin{cases} -\pi/2 & \text{when } -\pi < s < 0, \\ \pi/2 & \text{when } 0 < s < \pi \end{cases}$$

In each case describe graphically the function represented by the series.

Solution:

a. Integrating both sides of the Fourier series term-by term from 0 to x we get

$$\frac{x^2}{2} = 2\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} (\cos nx - 1), \quad -\pi \le x \le \pi.$$

The series is representing the parabola $F(x) = x^2/2$ in the interval $[-\pi, \pi]$.

b. Integrating both sides of the Fourier series term-by term from 0 to x we get

$$F(x) = \int_0^x f(s)ds = 2\sum_{n=1}^\infty \frac{(-1)}{(2n-1)^2} (\cos(2n-1)x-1), \quad -\pi \le x \le \pi,$$

where

$$F(x) = \begin{cases} \frac{\pi x}{2} & \text{when } 0 \le x \le \pi \\ -\frac{\pi x}{2} & \text{when } -\pi \le x < 0. \end{cases}$$

Thus $F(x) = \frac{\pi |x|}{2}$ for $-\pi \le x \le \pi$.

Chapter 2, page 54, Problem 6 Let $p_n, q_n n = 1, \dots, N$ be real numbers where at least one of the p_n is nonzero. By considering the quadratic equation

$$\sum_{n=1}^{N} (p_n x + q_n)^2 = 0,$$

derive the Cauchy inequality

$$\left(\sum_{n=1}^{N} p_n q_n\right)^2 \le \left(\sum_{n=1}^{N} p_n^2\right) \left(\sum_{n=1}^{N} q_n^2\right).$$

Solution: Write the quadratic equation as

$$(P, P)x^{2} + 2(P, Q)x + (Q, Q) = 0,$$

where

$$(P,P) = \sum_{n=1}^{N} p_n^2, \ (P,Q) = \sum_{n=1}^{N} p_n q_n, \ (Q,Q) = \sum_{n=1}^{N} q_n^2.$$

By assumption, (P, P) > 0. Since the original form of the quadratic equation is as a sum of squares, this equation has at most one real solution x, which would be such that $p_n x + q_n = 0$ for all n. The discriminant of the quadratic equation $ax^2 + bx + c = 0$ is $D = b^2 - 4ac$ and it has the property that D > 0 for the case that there are 2 distinct real roots, D = 0 if there is exactly one real root, and D < 0 when there are no real roots. In this case $D = 4(P,Q)^2 - 4(P,P)(Q,Q)$ and there is at most one real root. Hence we must have $D \leq 0$ or $(P,Q)^2 \leq (P,P)(Q,Q)$.

Chapter 2, page 54, Problem 7 Let $S_N(x)$ be the Nth partial sum of the Fourier series

$$f(x) = 2\sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1}$$

for

$$f(x) = \begin{cases} -\pi/2 & \text{when } -\pi < x < 0, \\ \pi/2 & \text{when } 0 < x < \pi \end{cases}$$

1. By writing A = x, B = (2n - 1)x in the identity, 2.

 $2\sin A\cos B = \sin(A+B) + \sin(A-B)$

and then summing from n = 1 to n = N derive

$$2\sum_{n=1}^{N}\cos(2n-1)x = \frac{\sin 2Nx}{\sin x}, \quad x \neq 0, \pm \pi, \pm 2\pi, \cdots.$$

Verify that

$$S'_N(x) = \frac{\sin 2Nx}{\sin x}, \quad 0 < x < \pi.$$

- 3. Show that the first extremum of $S_N(x)$ in $0 < x < \pi$ is a relative maximum occuring when $x = \pi/(2N)$.
- 4. Show that

$$S_N(\frac{\pi}{2N}) = I_1 + I_2, \quad I_1 = \int_0^{\pi/(2N)} \frac{x - \sin x}{x \sin x} \sin 2Nx \, dx,$$
$$I_2 = \int_0^{\pi/(2N)} \frac{\sin 2Nx}{x} dx.$$

Verify that the integrands are piecewise continuous on $0 < x < \pi/(2N)$. so that the integrals converge.

5. Show that $I_1 \to 0$ as $N \to \infty$ so that

$$\lim_{N \to \infty} S_N(\frac{\pi}{2N}) = \int_0^\pi \frac{\sin t}{t} dt.$$

Solution:

1. We have

$$2\sin x \cos(2n-1)x = \sin 2nx - \sin 2(n-1)x$$

Thus by truncation

$$2\sin x \sum_{n=1}^{N} \cos(2n-1) = \sum_{n=1}^{N} (\sin 2nx - \sin 2(n-1)x) = \sin 2Nx,$$

so, dividing by $\sin x$ we have

$$2\sum_{n=1}^{N}\cos(2n-1)x = \frac{\sin 2Nx}{\sin x}, \quad x \neq 0, \pm \pi, \pm 2\pi, \cdots.$$

 $S'_N(x) = \frac{d}{dx} \left(2\sum_{n=1}^N \frac{\sin(2n-1)x}{2n-1} \right) = 2\sum_{n=1}^N \cos(2n-1)x$ $= \frac{\sin 2Nx}{\sin x}, \quad 0 < x < \pi.$

3. $S'_N(0) = 2\sum_{n=1}^N \cos(2n-1)0 = 2N > 0$ so $S_N(x)$ is initially increasing from $S_N(0) = 0$ for x increasing from 0. The first maximum of $S_N(x)$ is at the first positive x_N such that $S'_N(x_N) = 0$. Thus $x_N = \pi/(2N)$.

4.

$$S_N(\frac{\pi}{2N}) = S_N(0) + \int_0^{\pi/(2N)} \frac{\sin 2Nx}{\sin x} dx = \int_0^{\pi/(2N)} \frac{\sin 2Nx}{\sin x} dx$$
$$\int_0^{\pi/(2N)} \left[\frac{x - \sin x}{x \sin x} \sin 2Nx + \frac{\sin 2Nx}{x} \right] dx$$
$$= I_1 + I_2,$$

where

$$I_1 = \int_0^{\pi/(2N)} \frac{x - \sin x}{x \sin x} \sin 2Nx \ dx, \ I_2 = \int_0^{\pi/(2N)} \frac{\sin 2Nx}{x} dx.$$

The integrand of I_1 is piecewise continuous over $[0, \pi/(2N)]$ except perhaps at x = 0. However, by the l'Hôpital rules

$$\lim_{x \to 0+} \frac{x - \sin x}{x \sin x} \stackrel{l'H}{=} \lim_{x \to 0+} \frac{1 - \cos x}{\sin x + x \cos x} \stackrel{l'H}{=} \lim_{x \to 0+} \frac{\sin x}{2 \cos x - x \sin x} = 0$$

so the integrand goes to 0 as $x \to 0+$. Thus the integrand of I_1 is continuous over $[0, \pi/(2N)]$, hence bounded above in absolute value by a positive constant M. Similarly the integrand of I_2 is piecewise continuous over $[0, \pi/(2N)]$ except perhaps at x = 0. However, by the l'Hôpital rule

$$\lim_{x \to 0+} \frac{\sin 2Nx}{x} \stackrel{l'H}{=} \lim_{x \to 0+} \frac{2N\cos 2Nx}{1} = 2N$$

so the integrand is piecewise continuous on $[0, \pi/(2N)]$.

2.

5. We have

$$|I_1| \le \int_0^{\pi/(2N)} M \, dx = \frac{M\pi}{2N} \to 0$$

as $N \to \infty$. Thus

$$\lim_{N \to \infty} S_N(\frac{\pi}{2N}) = \lim_{N \to \infty} I_2 = \lim_{N \to \infty} \int_0^{\pi/(2N)} \frac{\sin 2Nx}{x} dx$$
$$\lim_{N \to \infty} \int_0^{\pi} \frac{\sin u}{u} du = \int_0^{\pi} \frac{\sin u}{u} du = \sigma = 1.85 \cdots$$

Since $\pi/2 = 1.57 \cdots$, this shows that the partial sums overshoot the function values $f(x_N)$ for $x_N \to 0+$ by the difference $\sigma - \pi/2$.

Chapter 3, page 63, problem 3 Show that the substitution $\tau = kt$ can be used to write the equation

$$u_t = k(u_{xx} + u_{yy}),$$

in the form

$$u_{\tau} = u_{xx} + u_{yy}.$$

Solution: Since $\tau = kt$ we have

$$\partial_t u = \frac{\partial \tau}{\partial t} \ u_\tau = k u_\tau.$$

Thus we can cancel the common factor k from both sides of the first equation to obtain the desired result.

Chapter 3, page 71, Problem 1 Let u(x) be the steady-state temperature in a slab bounded by planes x = 0 x = c when those faces are kept at fixed temperatures u = 0, $u = u_0$, respectively. Solve the boundary value problem for u(x) to show that

$$u(x) = \frac{u_0}{c}x, \quad \Phi_0 = K\frac{u_0}{c},$$

where Φ_0 is the flux of heat to the left across each plane. $x = x_0$.

Solution: The boundary value problem for this system is u = u(x) where u is continuous on [0, c] and 2 times differentiable on (0, c), with

$$u_{xx} = 0, \ 0 < x < c \quad \text{where } u(0) = 0, \ u(c) = u_0.$$

The general solution of the differential equation is u(x) = ax + b. The boundary conditions give u(0) = b = 0 and $u(c) = ac = u_0$ so the unique solution is $u(x) = \frac{u_0}{c}x$. The flux of heat to the left across each plane $x = x_0$ is $\Phi_0 = K \frac{du(x)}{dx} = \frac{Ku_0}{c}$.

Chapter 3, page 71, Problem 2 A slab occupies the region $0 \le x \le c$. There is a constant flux of heat Φ_0 into the slab through the face x = 0. The face x = c is kept at temperature u = 0. Solve the boundary value problem for the steady-state temperatures u(x) in the slab.

Solution: The boundary value problem for this system is u = u(x) with u continuous on [0, c], left differentiable at x = 0 and 2 times differentiable on (0, c), with

$$u_{xx} = 0, \ 0 < x < c, \text{ where } \Phi_0 = -Ku_x(0), \ u(c) = u_0.$$

The general solution of the differential equation is u(x) = ax + b. The boundary conditions give $\Phi_0 = -Ka$ and $u(c) = ac + b = u_0$ so the unique solution is $a = -\Phi_0/K$, $b = u_0 + c\Phi_0/K$ or

$$u(x) = -\frac{\Phi_0}{K}(x-c) + u_0.$$

Chapter 3, page 71, Problem 8 Derive expressions for $\frac{\partial u}{\partial y}$ and $\frac{\partial^2 u}{\partial y^2}$ in cylindrical coordinates.

Solution: Cylindrical coordinates are defined by relations

$$x = \rho \cos \phi, \quad y = \rho \sin \phi, \quad z = z$$

or

$$\rho = \sqrt{x^2 + y^2}, \quad \tan \phi = \frac{y}{x}, \quad z = z.$$

Thus,

$$\rho_y = \frac{y}{\sqrt{x^2 + y^2}} = \sin \phi, \ \sec^2 \phi \ \phi_y = \frac{1}{x}, \quad z_y = 0.$$

Since $\sec^2 \phi = \tan^2 \phi + 1 = \frac{y^2}{x^2} + 1$ we have

$$\phi_y = \frac{x}{x^2 + y^2} = \frac{\cos\phi}{\rho}.$$

By the chain rule:

$$\partial_y = \rho_y \partial_\rho + \phi_y \partial_\phi + z_y \partial_z = \sin \phi \partial_\rho + \frac{\cos \phi}{\rho} \partial_\phi.$$

Thus

$$u_y = \sin \phi u_\rho + \frac{\cos \phi}{\rho} u_\phi.$$

and

$$u_{yy} = \left(\sin\phi\partial_{\rho} + \frac{\cos\phi}{\rho}\partial_{\phi}\right) \left(\sin\phi u_{\rho} + \frac{\cos\phi}{\rho}u_{\phi}\right)$$
$$= \sin^{2}\phi u_{\rho\rho} - \frac{\sin\phi\cos\phi}{\rho^{2}}u_{\phi} + \frac{\sin\phi\cos\phi}{\rho}u_{\phi\rho} + \frac{\cos^{2}\phi}{\rho}u_{\rho}$$
$$+ \frac{\sin\phi\cos\phi}{\rho}u_{\phi\rho} - \frac{\sin\phi\cos\phi}{\rho^{2}}u_{\phi} + \frac{\cos^{2}\phi}{\rho^{2}}u_{\phi\phi}$$
$$= \sin^{2}\phi u_{\rho\rho} + 2\frac{\sin\phi\cos\phi}{\rho}u_{\phi\rho} - 2\frac{\sin\phi\cos\phi}{\rho^{2}}u_{\phi} + \frac{\cos^{2}\phi}{\rho}u_{\rho} + \frac{\cos^{2}\phi}{\rho^{2}}u_{\phi\phi}$$

Chapter 3, page 76, Problem 1 A stretched string with ends fixed at x = 0, x = 2c hangs at rest under its own weight. Show how it follows from equation

$$y_{tt}(x,t) = a^2 y_{xx} - g$$

that the static y(x) must satisfy the equation $a^2y''(x) = g$, where $a^2 = H/\delta$.

Solution: If the solution y is static then $y_t \equiv 0$, hence $y_{tt} = 0$ for all t and $y_x(x) = y'(x)$. The general solution of equation $a^2y''(x) = g$ is $y(x) = \frac{gx^2}{2a^2} + Ax + B$ where A, B are constants. Since y(0) = 0, we have B = 0. Since y(2c) = 0 we have $A = -\frac{gc}{a^2}$. Thus

$$y(x) = \frac{gx}{2a^2}(x-2c),$$
 and $(x-c)^2 = \frac{2a^2}{g}(y+\frac{gc^2}{2a^2}).$

This is an inverted parabola with vertex at x = c and depth $|y(c)| = \frac{gc^2}{2a^2} = \frac{g\delta c^2}{2H}$.