Name:

Math 4567. Homework Set \# 4 Solutions

February 26, 2010

Chapter 2 (page 42, problem 8), (page 54, problems 1,5,6,7), Chapter 3 (page 63 , problem 3), (page 71, problems 1,2,8), (page 76, problem 1).

Chapter 2, page 42, Problem 8 From the Fourier series

$$
f(x)=\frac{a_{0}}{2}+\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(a_{n} \cos \frac{n \pi x}{c}+b_{n} \sin \frac{n \pi n}{c}\right)
$$

derive the complex series

$$
f(x)=\lim _{n \rightarrow \infty} \sum_{n=-N}^{N} A_{n} \exp \left(i \frac{n \pi x}{c}\right),
$$

where $A_{0}=\frac{a_{0}}{2}, A_{n}=\frac{a_{n}-i b_{n}}{2}, A_{-n}=\frac{a_{n}+i b_{n}}{2}$ for $n=1,2, \cdots$. Derive the formula

$$
A_{k}=\frac{1}{2 c} \int_{-c}^{c} f(t) \exp \left(-i \frac{k \pi t}{c}\right) d t, \quad k=0, \pm 1, \pm 2, \cdots .
$$

Solution:

$$
\begin{gathered}
\sum_{n=-N}^{N} A_{N} \exp \left(i \frac{n \pi x}{c}\right)=A_{0}+\sum_{n=1}^{N}\left(A_{n} \exp \left(i \frac{n \pi x}{c}\right)+A_{-n} \exp \left(-i \frac{n \pi x}{c}\right)\right)=\frac{a_{0}}{2}+ \\
\frac{1}{2} \sum_{n=1}^{N}\left[\left(a_{n}-i b_{n}\right)\left(\cos \frac{n \pi x}{c}+i \sin \frac{n \pi x}{c}\right)+\left(a_{n}+i b_{n}\right)\left(\cos \frac{n \pi x}{c}-i \sin \frac{n \pi x}{c}\right)\right] \\
=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{c}\right)+b_{n} \sin \left(\frac{n \pi x}{c}\right)\right]
\end{gathered}
$$

because the cross terms cancel out in the last expansion. Furthermore,

$$
A_{0}=\frac{a_{0}}{2}=\frac{1}{2 c} \int_{-c}^{c} f(t) d t,
$$

for $k>0$,

$$
A_{k}=\frac{a_{k}-i b_{k}}{2}=\frac{1}{2 c} \int_{-c}^{c} f(t)\left(\cos \frac{k \pi t}{c}-i \sin \frac{k \pi t}{c}\right) d t=\frac{1}{2 c} \int_{-c}^{c} f(t) \exp \left(-i \frac{k \pi t}{c}\right) d t
$$

and for $k<0$,

$$
A_{k}=\frac{a_{-k}+i b_{-k}}{2}=\frac{1}{2 c} \int_{-c}^{c} f(t)\left(\cos \frac{k \pi t}{c}+i \sin \left(-\frac{k \pi t}{c}\right)\right) d t=\frac{1}{2 c} \int_{-c}^{c} f(t) \exp \left(-i \frac{k \pi t}{c}\right) d t .
$$

Chapter 2, page 54, Problem 1 a. Show that the function

$$
f(x)= \begin{cases}0 & \text { when }-\pi \leq x \leq 0, \\ \sin x & \text { when } 0<x \leq \pi\end{cases}
$$

satisfies all conditions for uniform convergence on $[-\pi, \pi]$.
b. Verify that the Fourier series

$$
f \sim \frac{1}{\pi}+\frac{1}{2} \sin x-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2 n x}{4 n^{2}-1}, \quad-\pi<x<\pi
$$

converges pointwise uniformly to f on $[-\pi, \pi]$.
c. State why the series can be differentiated on $(-\pi, \pi)$ and describe the function that is represented by the differentiated series for all x.

Solution:

a. f is continuously differentiable on the open intervals $0<x<\pi$ and $-\pi<x<0$. We have $f(-\pi)=f(0)=f(\pi)=0$, so it is continuous on $[-\pi, \pi] . f^{\prime}(0+0)=1, f^{\prime}(0-0)=0, f^{\prime}(\pi-0)=-1$, $f^{\prime}(-\pi+0)=0$ so f is piecewise smooth.
b. By part [a.] the series for f converges poinwise uniformly to f on $[-\pi, \pi]$.
c. Since f satisfies the conditions for uniform convergence and since $f^{\prime \prime}(x)$ is piecewise continuous on $(-\pi, \pi)$ the Fourier series can be differentiated term-by-term. The differentiated series converges to 0 for $-\pi<x<0$, to $\cos x$ for $0<x<\pi$, to $\frac{1}{2}$ for $x=0$ and to $-\frac{1}{2}$ for $x= \pm \pi$.

Chapter 2, page 54, Problem 5 Integrate from $s=0$ to $s=x,(-\pi \leq$ $x \leq \pi$) the Fourier series

$$
s=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n s
$$

and the Fourier series

$$
f(s)=2 \sum_{n=1}^{\infty} \frac{\sin (2 n-1) s}{2 n-1}
$$

for

$$
f(s)= \begin{cases}-\pi / 2 & \text { when }-\pi<s<0 \\ \pi / 2 & \text { when } 0<s<\pi\end{cases}
$$

In each case describe graphically the function represented by the series.

Solution:

a. Integrating both sides of the Fourier series term-by term from 0 to x we get

$$
\frac{x^{2}}{2}=2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}(\cos n x-1), \quad-\pi \leq x \leq \pi .
$$

The series is representing the parabola $F(x)=x^{2} / 2$ in the interval $[-\pi, \pi]$.
b. Integrating both sides of the Fourier series term-by term from 0 to x we get
$F(x)=\int_{0}^{x} f(s) d s=2 \sum_{n=1}^{\infty} \frac{(-1)}{(2 n-1)^{2}}(\cos (2 n-1) x-1), \quad-\pi \leq x \leq \pi$,
where

$$
F(x)= \begin{cases}\frac{\pi x}{2} & \text { when } 0 \leq x \leq \pi \\ -\frac{\pi x}{2} & \text { when }-\pi \leq x<0 .\end{cases}
$$

Thus $F(x)=\frac{\pi|x|}{2}$ for $-\pi \leq x \leq \pi$.

Chapter 2, page 54, Problem 6 Let $p_{n}, q_{n} n=1, \cdots, N$ be real numbers where at least one of the p_{n} is nonzero. By considering the quadratic equation

$$
\sum_{n=1}^{N}\left(p_{n} x+q_{n}\right)^{2}=0
$$

derive the Cauchy inequality

$$
\left(\sum_{n=1}^{N} p_{n} q_{n}\right)^{2} \leq\left(\sum_{n=1}^{N} p_{n}^{2}\right)\left(\sum_{n=1}^{N} q_{n}^{2}\right) .
$$

Solution: Write the quadratic equation as

$$
(P, P) x^{2}+2(P, Q) x+(Q, Q)=0
$$

where

$$
(P, P)=\sum_{n=1}^{N} p_{n}^{2},(P, Q)=\sum_{n=1}^{N} p_{n} q_{n},(Q, Q)=\sum_{n=1}^{N} q_{n}^{2} .
$$

By assumption, $(P, P)>0$. Since the original form of the quadratic equation is as a sum of squares, this equation has at most one real solution x, which would be such that $p_{n} x+q_{n}=0$ for all n. The discriminant of the quadratic equation $a x^{2}+b x+c=0$ is $D=b^{2}-4 a c$ and it has the property that $D>0$ for the case that there are 2 distinct real roots, $D=0$ if there is exactly one real root, and $D<0$ when there are no real roots. In this case $D=4(P, Q)^{2}-4(P, P)(Q, Q)$ and there is at most one real root. Hence we must have $D \leq 0$ or $(P, Q)^{2} \leq(P, P)(Q, Q)$.

Chapter 2, page 54, Problem 7 Let $S_{N}(x)$ be the N th partial sum of the Fourier series

$$
f(x)=2 \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{2 n-1}
$$

for

$$
f(x)= \begin{cases}-\pi / 2 & \text { when }-\pi<x<0 \\ \pi / 2 & \text { when } 0<x<\pi\end{cases}
$$

1. By writing $A=x, B=(2 n-1) x$ in the identity,
2.

$$
2 \sin A \cos B=\sin (A+B)+\sin (A-B)
$$

and then summing from $n=1$ to $n=N$ derive

$$
2 \sum_{n=1}^{N} \cos (2 n-1) x=\frac{\sin 2 N x}{\sin x}, \quad x \neq 0, \pm \pi, \pm 2 \pi, \cdots .
$$

Verify that

$$
S_{N}^{\prime}(x)=\frac{\sin 2 N x}{\sin x}, \quad 0<x<\pi
$$

3. Show that the first extremum of $S_{N}(x)$ in $0<x<\pi$ is a relative maximum occuring when $x=\pi /(2 N)$.
4. Show that

$$
\begin{gathered}
S_{N}\left(\frac{\pi}{2 N}\right)=I_{1}+I_{2}, \quad I_{1}=\int_{0}^{\pi /(2 N)} \frac{x-\sin x}{x \sin x} \sin 2 N x d x, \\
I_{2}=\int_{0}^{\pi /(2 N)} \frac{\sin 2 N x}{x} d x .
\end{gathered}
$$

Verify that the integrands are piecewise continuous on $0<x<$ $\pi /(2 N)$. so that the integrals converge.
5. Show that $I_{1} \rightarrow 0$ as $N \rightarrow \infty$ so that

$$
\lim _{N \rightarrow \infty} S_{N}\left(\frac{\pi}{2 N}\right)=\int_{0}^{\pi} \frac{\sin t}{t} d t
$$

Solution:

1. We have

$$
2 \sin x \cos (2 n-1) x=\sin 2 n x-\sin 2(n-1) x .
$$

Thus by truncation

$$
2 \sin x \sum_{n=1}^{N} \cos (2 n-1)=\sum_{n=1}^{N}(\sin 2 n x-\sin 2(n-1) x)=\sin 2 N x,
$$

so, dividing by $\sin x$ we have

$$
2 \sum_{n=1}^{N} \cos (2 n-1) x=\frac{\sin 2 N x}{\sin x}, \quad x \neq 0, \pm \pi, \pm 2 \pi, \cdots .
$$

2.

$$
\begin{gathered}
S_{N}^{\prime}(x)=\frac{d}{d x}\left(2 \sum_{n=1}^{N} \frac{\sin (2 n-1) x}{2 n-1}\right)=2 \sum_{n=1}^{N} \cos (2 n-1) x \\
=\frac{\sin 2 N x}{\sin x}, \quad 0<x<\pi .
\end{gathered}
$$

3. $S_{N}^{\prime}(0)=2 \sum_{n=1}^{N} \cos (2 n-1) 0=2 N>0$ so $S_{N}(x)$ is initially increasing from $S_{N}(0)=0$ for x increasing from 0 . The first maximum of $S_{N}(x)$ is at the first positive x_{N} such that $S_{N}^{\prime}\left(x_{N}\right)=$ 0 . Thus $x_{N}=\pi /(2 N)$.
4.

$$
\begin{gathered}
S_{N}\left(\frac{\pi}{2 N}\right)=S_{N}(0)+\int_{0}^{\pi /(2 N)} \frac{\sin 2 N x}{\sin x} d x=\int_{0}^{\pi /(2 N)} \frac{\sin 2 N x}{\sin x} d x \\
\int_{0}^{\pi /(2 N)}\left[\frac{x-\sin x}{x \sin x} \sin 2 N x+\frac{\sin 2 N x}{x}\right] d x \\
=I_{1}+I_{2},
\end{gathered}
$$

where

$$
I_{1}=\int_{0}^{\pi /(2 N)} \frac{x-\sin x}{x \sin x} \sin 2 N x d x, I_{2}=\int_{0}^{\pi /(2 N)} \frac{\sin 2 N x}{x} d x .
$$

The integrand of I_{1} is piecewise continuous over $[0, \pi /(2 N)]$ except perhaps at $x=0$. However, by the l'Hôpital rules

$$
\lim _{x \rightarrow 0+} \frac{x-\sin x}{x \sin x} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow 0+} \frac{1-\cos x}{\sin x+x \cos x} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow 0+} \frac{\sin x}{2 \cos x-x \sin x}=0
$$

so the integrand goes to 0 as $x \rightarrow 0+$. Thus the integrand of I_{1} is continuous over $[0, \pi /(2 N)]$, hence bounded above in absolute value by a positive constant M. Similarly the integrand of I_{2} is piecewise continuous over $[0, \pi /(2 N)]$ except perhaps at $x=0$. However, by the l'Hôpital rule

$$
\lim _{x \rightarrow 0+} \frac{\sin 2 N x}{x} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow 0+} \frac{2 N \cos 2 N x}{1}=2 N
$$

so the integrand is piecewise continuous on $[0, \pi /(2 N)]$.
5. We have

$$
\left|I_{1}\right| \leq \int_{0}^{\pi /(2 N)} M d x=\frac{M \pi}{2 N} \rightarrow 0
$$

as $N \rightarrow \infty$. Thus

$$
\begin{gathered}
\lim _{N \rightarrow \infty} S_{N}\left(\frac{\pi}{2 N}\right)=\lim _{N \rightarrow \infty} I_{2}=\lim _{N \rightarrow \infty} \int_{0}^{\pi /(2 N)} \frac{\sin 2 N x}{x} d x \\
\lim _{N \rightarrow \infty} \int_{0}^{\pi} \frac{\sin u}{u} d u=\int_{0}^{\pi} \frac{\sin u}{u} d u=\sigma=1.85 \cdots
\end{gathered}
$$

Since $\pi / 2=1.57 \cdots$, this shows that the partial sums overshoot the function values $f\left(x_{N}\right)$ for $x_{N} \rightarrow 0+$ by the difference $\sigma-\pi / 2$.

Chapter 3, page 63, problem 3 Show that the substitution $\tau=k t$ can be used to write the equation

$$
u_{t}=k\left(u_{x x}+u_{y y}\right),
$$

in the form

$$
u_{\tau}=u_{x x}+u_{y y} .
$$

Solution: Since $\tau=k t$ we have

$$
\partial_{t} u=\frac{\partial \tau}{\partial t} u_{\tau}=k u_{\tau} .
$$

Thus we can cancel the common factor k from both sides of the first equation to obtain the desired result.

Chapter 3, page 71, Problem 1 Let $u(x)$ be the steady-state temperature in a slab bounded by planes $x=0 x=c$ when those faces are kept at fixed temperatures $u=0, u=u_{0}$, respectively. Solve the boundary value problem for $u(x)$ to show that

$$
u(x)=\frac{u_{0}}{c} x, \quad \Phi_{0}=K \frac{u_{0}}{c},
$$

where Φ_{0} is the flux of heat to the left across each plane. $x=x_{0}$.
Solution: The boundary value problem for this system is $u=u(x)$ where u is continuous on $[0, c]$ and 2 times differentiable on $(0, c)$, with

$$
u_{x x}=0,0<x<c \quad \text { where } u(0)=0, u(c)=u_{0} .
$$

The general solution of the differential equation is $u(x)=a x+b$. The boundary conditions give $u(0)=b=0$ and $u(c)=a c=u_{0}$ so the unique solution is $u(x)=\frac{u_{0}}{c} x$. The flux of heat to the left across each plane $x=x_{0}$ is $\Phi_{0}=K \frac{d u(x)}{d x}=\frac{K u_{0}}{c}$.

Chapter 3, page 71, Problem 2 A slab occupies the region $0 \leq x \leq c$. There is a constant flux of heat Φ_{0} into the slab through the face $x=0$. The face $x=c$ is kept at temperature $u=0$. Solve the boundary value problem for the steady-state temperatures $u(x)$ in the slab.

Solution: The boundary value problem for this system is $u=u(x)$ with u continuous on $[0, c]$, left differentiable at $x=0$ and 2 times differentiable on $(0, c)$, with

$$
u_{x x}=0,0<x<c, \quad \text { where } \Phi_{0}=-K u_{x}(0), u(c)=u_{0} .
$$

The general solution of the differential equation is $u(x)=a x+b$. The boundary conditions give $\Phi_{0}=-K a$ and $u(c)=a c+b=u_{0}$ so the unique solution is $a=-\Phi_{0} / K, b=u_{0}+c \Phi_{0} / K$ or

$$
u(x)=-\frac{\Phi_{0}}{K}(x-c)+u_{0} .
$$

Chapter 3, page 71, Problem 8 Derive expressions for $\frac{\partial u}{\partial y}$ and $\frac{\partial^{2} u}{\partial y^{2}}$ in cylindrical coordinates.

Solution: Cylindrical coordinates are defined by relations

$$
x=\rho \cos \phi, \quad y=\rho \sin \phi, \quad z=z .
$$

or

$$
\rho=\sqrt{x^{2}+y^{2}}, \quad \tan \phi=\frac{y}{x}, \quad z=z .
$$

Thus,

$$
\rho_{y}=\frac{y}{\sqrt{x^{2}+y^{2}}}=\sin \phi, \sec ^{2} \phi \phi_{y}=\frac{1}{x}, \quad z_{y}=0 .
$$

Since $\sec ^{2} \phi=\tan ^{2} \phi+1=\frac{y^{2}}{x^{2}}+1$ we have

$$
\phi_{y}=\frac{x}{x^{2}+y^{2}}=\frac{\cos \phi}{\rho} .
$$

By the chain rule:

$$
\partial_{y}=\rho_{y} \partial_{\rho}+\phi_{y} \partial_{\phi}+z_{y} \partial_{z}=\sin \phi \partial_{\rho}+\frac{\cos \phi}{\rho} \partial_{\phi} .
$$

Thus

$$
u_{y}=\sin \phi u_{\rho}+\frac{\cos \phi}{\rho} u_{\phi} .
$$

$$
\begin{aligned}
& \text { and } \\
& \qquad \begin{array}{l}
u_{y y}=\left(\sin \phi \partial_{\rho}+\frac{\cos \phi}{\rho} \partial_{\phi}\right)\left(\sin \phi u_{\rho}+\frac{\cos \phi}{\rho} u_{\phi}\right) \\
=\sin ^{2} \phi u_{\rho \rho}-\frac{\sin \phi \cos \phi}{\rho^{2}} u_{\phi}+\frac{\sin \phi \cos \phi}{\rho} u_{\phi \rho}+\frac{\cos ^{2} \phi}{\rho} u_{\rho} \\
+\frac{\sin \phi \cos \phi}{\rho} u_{\phi \rho}-\frac{\sin \phi \cos \phi}{\rho^{2}} u_{\phi}+\frac{\cos ^{2} \phi}{\rho^{2}} u_{\phi \phi} \\
=\sin ^{2} \phi u_{\rho \rho}+2 \frac{\sin \phi \cos \phi}{\rho} u_{\phi \rho}-2 \frac{\sin \phi \cos \phi}{\rho^{2}} u_{\phi}+\frac{\cos ^{2} \phi}{\rho} u_{\rho}+\frac{\cos ^{2} \phi}{\rho^{2}} u_{\phi \phi}
\end{array}
\end{aligned}
$$

Chapter 3, page 76, Problem 1 A stretched string with ends fixed at $x=0, x=2 c$ hangs at rest under its own weight. Show how it follows from equation

$$
y_{t t}(x, t)=a^{2} y_{x x}-g
$$

that the static $y(x)$ must satisfy the equation $a^{2} y^{\prime \prime}(x)=g$, where $a^{2}=$ H / δ.

Solution: If the solution y is static then $y_{t} \equiv 0$, hence $y_{t t}=0$ for all t and $y_{x}(x)=y^{\prime}(x)$. The general solution of equation $a^{2} y^{\prime \prime}(x)=g$ is $y(x)=\frac{g x^{2}}{2 a^{2}}+A x+B$ where A, B are constants. Since $y(0)=0$, we have $B=0$. Since $y(2 c)=0$ we have $A=-\frac{g c}{a^{2}}$. Thus

$$
y(x)=\frac{g x}{2 a^{2}}(x-2 c), \quad \text { and }(x-c)^{2}=\frac{2 a^{2}}{g}\left(y+\frac{g c^{2}}{2 a^{2}}\right) .
$$

This is an inverted parabola with vertex at $x=c$ and depth $|y(c)|=$ $\frac{g c^{2}}{2 a^{2}}=\frac{g \delta c^{2}}{2 H}$.

