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Math 4567. Homework Set # 4 Solutions

February 26, 2010

Chapter 2 (page 42, problem 8), (page 54, problems 1,5,6,7), Chapter 3 (page
63, problem 3), (page 71, problems 1,2,8), (page 76, problem 1).

Chapter 2, page 42, Problem 8 From the Fourier series

f(x) =
a0

2
+ lim

N→∞

N∑
n=1

(an cos
nπx

c
+ bn sin

nπn

c
)

derive the complex series

f(x) = lim
n→∞

N∑
n=−N

An exp(i
nπx

c
),

where A0 = a0

2
, An = an−ibn

2
, A−n = an+ibn

2
for n = 1, 2, · · ·. Derive the

formula

Ak =
1

2c

∫ c

−c
f(t) exp(−ikπt

c
)dt, k = 0,±1,±2, · · · .

Solution:

N∑
n=−N

AN exp(i
nπx

c
) = A0+

N∑
n=1

(
An exp(i

nπx

c
) + A−n exp(−inπx

c
)
)

=
a0

2
+

1

2

N∑
n=1

[
(an − ibn)(cos

nπx

c
+ i sin

nπx

c
) + (an + ibn)(cos

nπx

c
− i sin

nπx

c
)
]

=
a0

2
+

N∑
n=1

[
an cos(

nπx

c
) + bn sin(

nπx

c
)
]
,
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because the cross terms cancel out in the last expansion. Furthermore,

A0 =
a0

2
=

1

2c

∫ c

−c
f(t)dt,

for k > 0,

Ak =
ak − ibk

2
=

1

2c

∫ c

−c
f(t)

(
cos

kπt

c
− i sin

kπt

c

)
dt =

1

2c

∫ c

−c
f(t) exp(−ikπt

c
)dt,

and for k < 0,

Ak =
a−k + ib−k

2
=

1

2c

∫ c

−c
f(t)

(
cos

kπt

c
+ i sin(−kπt

c
)

)
dt =

1

2c

∫ c

−c
f(t) exp(−ikπt

c
)dt.

Chapter 2, page 54, Problem 1 a. Show that the function

f(x) =

{
0 when − π ≤ x ≤ 0,
sinx when 0 < x ≤ π,

satisfies all conditions for uniform convergence on [−π, π].

b. Verify that the Fourier series

f ∼ 1

π
+

1

2
sinx− 2

π

∞∑
n=1

cos 2nx

4n2 − 1
, −π < x < π

converges pointwise uniformly to f on [−π, π].

c. State why the series can be differentiated on (−π, π) and describe
the function that is represented by the differentiated series for all
x.

Solution:

a. f is continuously differentiable on the open intervals 0 < x < π
and −π < x < 0. We have f(−π) = f(0) = f(π) = 0, so it is
continuous on [−π, π]. f ′(0+0) = 1, f ′(0−0) = 0, f ′(π−0) = −1,
f ′(−π + 0) = 0 so f is piecewise smooth.

b. By part [a.] the series for f converges poinwise uniformly to f on
[−π, π].
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c. Since f satisfies the conditions for uniform convergence and since
f ′′(x) is piecewise continuous on (−π, π) the Fourier series can be
differentiated term-by-term. The differentiated series converges to
0 for −π < x < 0, to cosx for 0 < x < π, to 1

2
for x = 0 and to

−1
2

for x = ±π.

Chapter 2, page 54, Problem 5 Integrate from s = 0 to s = x, (−π ≤
x ≤ π) the Fourier series

s = 2
∞∑
n=1

(−1)n+1

n
sinns

and the Fourier series

f(s) = 2
∞∑
n=1

sin(2n− 1)s

2n− 1

for

f(s) =

{
−π/2 when − π < s < 0,
π/2 when 0 < s < π

In each case describe graphically the function represented by the series.

Solution:

a. Integrating both sides of the Fourier series term-by term from 0 to
x we get

x2

2
= 2

∞∑
n=1

(−1)n

n2
(cosnx− 1), −π ≤ x ≤ π.

The series is representing the parabola F (x) = x2/2 in the interval
[−π, π].

b. Integrating both sides of the Fourier series term-by term from 0 to
x we get

F (x) =
∫ x

0
f(s)ds = 2

∞∑
n=1

(−1)

(2n− 1)2
(cos(2n−1)x−1), −π ≤ x ≤ π,

where

F (x) =

{
πx
2

when 0 ≤ x ≤ π
−πx

2
when − π ≤ x < 0.

Thus F (x) = π|x|
2

for −π ≤ x ≤ π.
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Chapter 2, page 54, Problem 6 Let pn, qn n = 1, · · · , N be real numbers
where at least one of the pn is nonzero. By considering the quadratic
equation

N∑
n=1

(pnx+ qn)2 = 0,

derive the Cauchy inequality

(
N∑
n=1

pnqn

)2

≤
(

N∑
n=1

p2
n

)(
N∑
n=1

q2
n

)
.

Solution: Write the quadratic equation as

(P, P )x2 + 2(P,Q)x+ (Q,Q) = 0,

where

(P, P ) =
N∑
n=1

p2
n, (P,Q) =

N∑
n=1

pnqn, (Q,Q) =
N∑
n=1

q2
n.

By assumption, (P, P ) > 0. Since the original form of the quadratic
equation is as a sum of squares, this equation has at most one real
solution x, which would be such that pnx + qn = 0 for all n. The
discriminant of the quadratic equation ax2 + bx+ c = 0 is D = b2−4ac
and it has the property that D > 0 for the case that there are 2 distinct
real roots, D = 0 if there is exactly one real root, and D < 0 when
there are no real roots. In this case D = 4(P,Q)2 − 4(P, P )(Q,Q)
and there is at most one real root. Hence we must have D ≤ 0 or
(P,Q)2 ≤ (P, P )(Q,Q).

Chapter 2, page 54, Problem 7 Let SN(x) be the Nth partial sum of the
Fourier series

f(x) = 2
∞∑
n=1

sin(2n− 1)x

2n− 1

for

f(x) =

{
−π/2 when − π < x < 0,
π/2 when 0 < x < π
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1. By writing A = x, B = (2n− 1)x in the identity,

2.
2 sinA cosB = sin(A+B) + sin(A−B)

and then summing from n = 1 to n = N derive

2
N∑
n=1

cos(2n− 1)x =
sin 2Nx

sinx
, x 6= 0,±π,±2π, · · · .

Verify that

S ′N(x) =
sin 2Nx

sinx
, 0 < x < π.

3. Show that the first extremum of SN(x) in 0 < x < π is a relative
maximum occuring when x = π/(2N).

4. Show that

SN(
π

2N
) = I1 + I2, I1 =

∫ π/(2N)

0

x− sinx

x sinx
sin 2Nx dx,

I2 =
∫ π/(2N)

0

sin 2Nx

x
dx.

Verify that the integrands are piecewise continuous on 0 < x <
π/(2N). so that the integrals converge.

5. Show that I1 → 0 as N →∞ so that

lim
N→∞

SN(
π

2N
) =

∫ π

0

sin t

t
dt.

Solution:

1. We have

2 sinx cos(2n− 1)x = sin 2nx− sin 2(n− 1)x.

Thus by truncation

2 sinx
N∑
n=1

cos(2n− 1) =
N∑
n=1

(sin 2nx− sin 2(n− 1)x) = sin 2Nx,

so, dividing by sinx we have

2
N∑
n=1

cos(2n− 1)x =
sin 2Nx

sinx
, x 6= 0,±π,±2π, · · · .
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2.

S ′N(x) =
d

dx

(
2

N∑
n=1

sin(2n− 1)x

2n− 1

)
= 2

N∑
n=1

cos(2n− 1)x

=
sin 2Nx

sinx
, 0 < x < π.

3. S ′N(0) = 2
∑N
n=1 cos(2n − 1)0 = 2N > 0 so SN(x) is initially

increasing from SN(0) = 0 for x increasing from 0. The first
maximum of SN(x) is at the first positive xN such that S ′N(xN) =
0. Thus xN = π/(2N).

4.

SN(
π

2N
) = SN(0) +

∫ π/(2N)

0

sin 2Nx

sinx
dx =

∫ π/(2N)

0

sin 2Nx

sinx
dx

∫ π/(2N)

0

[
x− sinx

x sinx
sin 2Nx+

sin 2Nx

x

]
dx

= I1 + I2,

where

I1 =
∫ π/(2N)

0

x− sinx

x sinx
sin 2Nx dx, I2 =

∫ π/(2N)

0

sin 2Nx

x
dx.

The integrand of I1 is piecewise continuous over [0, π/(2N)] except
perhaps at x = 0. However, by the l’Hôpital rules

lim
x→0+

x− sinx

x sinx
l′H
= lim

x→0+

1− cosx

sinx+ x cosx
l′H
= lim

x→0+

sinx

2 cosx− x sinx
= 0

so the integrand goes to 0 as x → 0+. Thus the integrand of I1
is continuous over [0, π/(2N)], hence bounded above in absolute
value by a positive constant M . Similarly the integrand of I2 is
piecewise continuous over [0, π/(2N)] except perhaps at x = 0.
However, by the l’Hôpital rule

lim
x→0+

sin 2Nx

x
l′H
= lim

x→0+

2N cos 2Nx

1
= 2N

so the integrand is piecewise continuous on [0, π/(2N)].
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5. We have

|I1| ≤
∫ π/(2N)

0
M dx =

Mπ

2N
→ 0

as N →∞. Thus

lim
N→∞

SN(
π

2N
) = lim

N→∞
I2 = lim

N→∞

∫ π/(2N)

0

sin 2Nx

x
dx

lim
N→∞

∫ π

0

sinu

u
du =

∫ π

0

sinu

u
du = σ = 1.85 · · ·

Since π/2 = 1.57 · · ·, this shows that the partial sums overshoot
the function values f(xN) for xN → 0+ by the difference σ−π/2.

Chapter 3, page 63, problem 3 Show that the substitution τ = kt can
be used to write the equation

ut = k(uxx + uyy),

in the form
uτ = uxx + uyy.

Solution: Since τ = kt we have

∂tu =
∂τ

∂t
uτ = kuτ .

Thus we can cancel the common factor k from both sides of the first
equation to obtain the desired result.

Chapter 3, page 71, Problem 1 Let u(x) be the steady-state tempera-
ture in a slab bounded by planes x = 0 x = c when those faces are kept
at fixed temperatures u = 0, u = u0, respectively. Solve the boundary
value problem for u(x) to show that

u(x) =
u0

c
x, Φ0 = K

u0

c
,

where Φ0 is the flux of heat to the left across each plane. x = x0.

Solution: The boundary value problem for this system is u = u(x)
where u is continuous on [0, c] and 2 times differentiable on (0, c), with

uxx = 0, 0 < x < c where u(0) = 0, u(c) = u0.
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The general solution of the differential equation is u(x) = ax+ b. The
boundary conditions give u(0) = b = 0 and u(c) = ac = u0 so the
unique solution is u(x) = u0

c
x. The flux of heat to the left across each

plane x = x0 is Φ0 = K du(x)
dx

= Ku0

c
.

Chapter 3, page 71, Problem 2 A slab occupies the region 0 ≤ x ≤ c.
There is a constant flux of heat Φ0 into the slab through the face x = 0.
The face x = c is kept at temperature u = 0. Solve the boundary value
problem for the steady-state temperatures u(x) in the slab.

Solution: The boundary value problem for this system is u = u(x)
with u continuous on [0, c], left differentiable at x = 0 and 2 times
differentiable on (0, c), with

uxx = 0, 0 < x < c, where Φ0 = −Kux(0), u(c) = u0.

The general solution of the differential equation is u(x) = ax+ b. The
boundary conditions give Φ0 = −Ka and u(c) = ac + b = u0 so the
unique solution is a = −Φ0/K, b = u0 + cΦ0/K or

u(x) = −Φ0

K
(x− c) + u0.

Chapter 3, page 71, Problem 8 Derive expressions for ∂u
∂y

and ∂2u
∂y2

in cylin-
drical coordinates.

Solution: Cylindrical coordinates are defined by relations

x = ρ cosφ, y = ρ sinφ, z = z.

or
ρ =

√
x2 + y2, tanφ =

y

x
, z = z.

Thus,

ρy =
y√

x2 + y2
= sinφ, sec2 φ φy =

1

x
, zy = 0.

Since sec2 φ = tan2 φ+ 1 = y2

x2 + 1 we have

φy =
x

x2 + y2
=

cosφ

ρ
.

8



By the chain rule:

∂y = ρy∂ρ + φy∂φ + zy∂z = sinφ∂ρ +
cosφ

ρ
∂φ.

Thus

uy = sinφuρ +
cosφ

ρ
uφ.

and

uyy =

(
sinφ∂ρ +

cosφ

ρ
∂φ

)(
sinφuρ +

cosφ

ρ
uφ

)

= sin2 φuρρ −
sinφ cosφ

ρ2
uφ +

sinφ cosφ

ρ
uφρ +

cos2 φ

ρ
uρ

+
sinφ cosφ

ρ
uφρ −

sinφ cosφ

ρ2
uφ +

cos2 φ

ρ2
uφφ

= sin2 φuρρ + 2
sinφ cosφ

ρ
uφρ − 2

sinφ cosφ

ρ2
uφ +

cos2 φ

ρ
uρ +

cos2 φ

ρ2
uφφ

Chapter 3, page 76, Problem 1 A stretched string with ends fixed at
x = 0, x = 2c hangs at rest under its own weight. Show how it
follows from equation

ytt(x, t) = a2yxx − g

that the static y(x) must satisfy the equation a2y′′(x) = g, where a2 =
H/δ.

Solution: If the solution y is static then yt ≡ 0, hence ytt = 0 for all
t and yx(x) = y′(x). The general solution of equation a2y′′(x) = g is

y(x) = gx2

2a2 +Ax+B where A,B are constants. Since y(0) = 0, we have
B = 0. Since y(2c) = 0 we have A = − gc

a2 . Thus

y(x) =
gx

2a2
(x− 2c), and (x− c)2 =

2a2

g
(y +

gc2

2a2
).

This is an inverted parabola with vertex at x = c and depth |y(c)| =
gc2

2a2 = gδc2

2H
.
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