Discrepancy of random graphs and hypergraphs

Jie Ma∗ Humberto Naves† Benny Sudakov‡

Abstract

Answering in a strong form a question posed by Bollobás and Scott, in this paper we determine the discrepancy between two random k-uniform hypergraphs, up to a constant factor depending solely on k.

1 Introduction

A hypergraph H is an ordered pair $H = (V, E)$, where V is a finite set (the vertex set), and E is a family of distinct subsets of V (the edge set). The hypergraph H is k-uniform if all its edges are of size k. In this paper we consider only k-uniform hypergraphs. The edge density of a k-uniform hypergraph H with n vertices is $\rho_H = e(H)/(\binom{n}{k})$. We define the discrepancy of H to be

$$\text{disc}(H) = \max_{S \subseteq V(H)} \left| e(S) - \rho_H \left(\binom{|S|}{k} \right) \right|,$$

where $e(S) = e(H[S])$ is the number of edges in the sub-hypergraph induced by S. The discrepancy can be viewed as a measure of how uniformly the edges of H are distributed among the vertices. This important concept appears naturally in various branches of combinatorics and has been studied by many researchers in recent years. The discrepancy is closely related to the theory of quasi-random graphs (see [6]), as the property $\text{disc}(G) = o(|V(G)|^2)$ implies the quasi-randomness of the graph G.

Erdős and Spencer [8] proved that for $k \geq 2$, any k-uniform hypergraph H with n vertices has a subset S satisfying $\left| e(S) - \frac{1}{2} \binom{|S|}{k} \right| \geq cn^{k+1}k$, which implies the bound $\text{disc}(H) \geq cn^{k+1}k$ for k-uniform hypergraphs H of edge density $\frac{1}{2}$. Erdős, Goldberg, Pach and Spencer [7] obtained a similar lower bound for graphs of edge density smaller than $\frac{1}{2}$. These results were later generalized by Bollobás and Scott in [3], who proved the inequality $\text{disc}(H) \geq c_k \sqrt{rn^{k+1}k}$ for k-uniform hypergraphs H, whenever $r = \rho_H(1 - \rho_H) \geq 1/n$. The random hypergraphs show that all the aforementioned lower bounds are optimal up to constant factors. For more discussion and general accounts of discrepancy, we refer the interested reader to Beck and Sós [2], Bollobás and Scott [3], Chazelle [5], Matoušek [10] and Sós [11].

A similar notion is the relative discrepancy of two hypergraphs. Let G and H be two k-uniform hypergraphs over the same vertex set V, with $|V| = n$. For a bijection $\pi : V \to V$, let G_π be obtained from G by permuting all edges according to π, i.e., $E(G_\pi) = \pi(E(G))$. The overlap of G and H
with respect to \(\pi \), denoted by \(G_\pi \cap H \), is a hypergraph with the same vertex set \(V \) and with edge set \(E(G_\pi) \cap E(H) \). The discrepancy of \(G \) with respect to \(H \) is

\[
disc(G,H) = \max_{\pi} \left| e(G_\pi \cap H) - \rho_G \rho_H \left(\frac{n}{k} \right) \right|,
\]

where the maximum is taken over all bijections \(\pi : V \to V \). For random bijections \(\pi \), the expected size of \(E(G_\pi) \cap E(H) \) is \(\rho_G \rho_H \left(\frac{n}{k} \right) \), thus \(\text{disc}(G,H) \) measures how much the overlap can deviate from its average. In a certain sense, the definition (2) is more general than (1), because one can write \(\text{disc}(H) = \max_{1 \leq i \leq n} \text{disc}(G_i, H) \), where \(G_i \) is obtained from the complete i-vertex k-uniform hypergraph by adding \(n-i \) isolated vertices.

Bollobás and Scott introduced the notion of relative discrepancy in [4] and showed that for any two \(n \)-vertex graphs \(G \) and \(H \), if \(\frac{10}{n} \leq \rho_G, \rho_H \leq 1 - \frac{10}{n} \), then \(\text{disc}(G,H) \geq c \cdot f(\rho_G, \rho_H) \cdot n^{\frac{3}{2}} \), where \(c \) is an absolute constant and \(f(x,y) = x^2(1-x)^2y^2(1-y)^2 \). As a corollary, they proved a conjecture in [7] regarding the bipartite discrepancy \(\text{disc}(G,K_{\frac{n}{2}, \frac{n}{2}}) \). Moreover, they also conjectured that a similar bound holds for \(k \)-uniform hypergraphs, namely, there exists \(c = c(k, \rho_G, \rho_H) \) for which \(\text{disc}(G,H) \geq cn^{k+\frac{1}{2}} \) holds for any \(k \)-uniform hypergraphs \(G \) and \(H \) satisfying \(\frac{1}{n} \leq \rho_G, \rho_H \leq 1 - \frac{1}{n} \).

In their paper, Bollobás and Scott also asked the following question (see Problem 12 in [4]). Given two random \(n \)-vertex graphs \(G, H \) with constant edge probability \(p \), what is the expected value of \(\text{disc}(G,H) \)? In this paper, we solve this question completely for general \(k \)-uniform hypergraphs. Let \(\mathcal{H}_k(n,p) \) denote the random \(k \)-uniform hypergraph on \(n \) vertices, in which every edge is included independently with probability \(p \). We say that an event happens with high probability, or w.h.p. for brevity, if it happens with probability at least \(1 - n^{-w(n)} \), where here and later \(w(n) > 0 \) denotes an arbitrary function tending to infinity together with \(n \).

Theorem 1.1. For positive integers \(n \) and \(k \), let \(N = \binom{n-\frac{n}{k-1}}{k-1} \). Let \(G \) and \(H \) be two random hypergraphs distributed according to \(\mathcal{H}_k(n,p) \) and \(\mathcal{H}_k(n,q) \) respectively, where \(\frac{w(n)}{N} \leq p \leq q \leq \frac{1}{2} \).

1. **Dense case** - If \(pqN > \frac{1}{30} \log n \), then w.h.p. \(\text{disc}(G,H) = \Theta \left(\sqrt{pq \binom{n}{k} n \log n} \right) \);
2. **Sparse case** - If \(pqN \leq \frac{1}{30} \log n \), let \(\gamma = \frac{\log n}{pqN} \), then

 1. if \(pN \geq \frac{\log n}{5 \log \gamma} \), then w.h.p. \(\text{disc}(G,H) = \Theta \left(\frac{n \log n}{\log \gamma} \right) \).
 2. if \(pN \leq \frac{\log n}{5 \log \gamma} \), then w.h.p. \(\text{disc}(G,H) = \Theta \left(\frac{n}{k} \right) \).

The previous theorem also provides tight bounds when \(p \) and/or \(q \geq \frac{1}{2} \), as we shall see in the concluding remarks. The result of Theorem 1.1 in the sparse range is closely related to the recent work of the third author with Lee and Loh [9]. Among other results, the authors of [9] show that two independent copies \(G, H \) of the random graph \(G(n,p) \) with \(p \ll \sqrt{\log n / n} \) w.h.p. have overlap of order \(\Theta \left(\frac{n \log n}{\log \gamma} \right) \), where \(\gamma = \frac{\log n}{pN} \). Hence \(\text{disc}(G,H) = \Theta \left(\frac{n \log n}{\log \gamma} \right) \) holds, since in this range of edge probability, \(n \log n / \log \gamma \) is larger than the average overlap \(p^2 \binom{n}{2} \). Our proof in the sparse case borrows some ideas from [9]. On the other hand, one can not use their approach for all cases, hence some new ideas were needed to prove Theorem 1.1.

It will become evident from our proof that the problem of determining the discrepancy can be essentially reduced to the following question. Let \(K > 0 \) and let \(X \) be a binomial random variable with
parameters m and ρ. What is the maximum value of $\Lambda = \Lambda(m, \rho, K)$ satisfying $\mathbb{P}(X - m\rho > \Lambda) \geq e^{-K}$?

This question is related to the rate function of binomial distribution. In all cases, the discrepancy in the statement of Theorem 1.1 is w.h.p.

$$\text{disc}(G, H) = \Theta_k \left(n \cdot \Lambda \left(p \left(\frac{n - 1}{k - 1} \right), q, \log n \right) \right).$$ \hfill (3)

Note that $p\left(\frac{n - 1}{k - 1} \right)$ is roughly the size of the neighborhood of a vertex in the hypergraph G.

The rest of this paper is organized as follows. Section 2 contains a list of inequalities and technical lemmas used throughout the paper. In section 3, we define the probabilistic discrepancy $\text{disc}_P(G, H)$ and prove that w.h.p. it does not deviate too much from $\text{disc}(G, H)$. Additionally, we establish the upper bounds for $\text{disc}(G, H)$ based on analogous bounds for $\text{disc}_P(G, H)$. In section 4, we give a detailed proof of the lower bounds. The final section contains some concluding remarks and open problems. In this paper, the function log refers to the natural logarithm and all asymptotic notation symbols (Ω, O, o and Θ) are with respect to the variable n. Furthermore, the k-subscripts in these symbols indicate the dependence on k in the relevant constants.

2 Auxiliary results

In this section we list and prove some useful concentration inequalities about the binomial and hypergeometric distributions and also prove a corollary from the well-known Vizing’s Theorem which asserts the existence of a linear-size matching in nearly regular graphs (i.e., the maximum degree is close to the average degree). We will not attempt to optimize our constants, preferring rather to choose values which provide a simpler presentation. Let us start with classical Chernoff-type estimates for the tail of the binomial distribution (see, e.g., [1]).

Lemma 2.1. Let $X = \sum_{i=1}^{l} X_i$ be the sum of independent zero-one random variables with average $\mu = \mathbb{E}[X]$. Then for all non-negative $\lambda \leq \mu$, we have $\mathbb{P}(\|X - \mu\| > \lambda) \leq 2e^{-\frac{\lambda^2}{4\mu}}$.

The following lower tail inequality (see [1]) is due to Janson.

Lemma 2.2. Let $A_1, A_2, ..., A_l$ be subsets of a finite set Ω, and let R be a random subset of Ω for which the events $r \in R$ are mutually independent over $r \in \Omega$. Define X_j to be the indicator random variable of $A_j \subset R$. Let $X = \sum_{j=1}^{l} X_j$, $\mu = \mathbb{E}[X]$, and $\Delta = \sum_{i \sim j} \mathbb{E}[X_i \cdot X_j]$, where $i \sim j$ means that X_i and X_j are dependent (i.e., A_i intersects A_j). Then for any $\lambda > 0$,

$$\mathbb{P}(X \leq \mu - \lambda) < e^{-\frac{\lambda^2}{2\mu + \Delta}}.$$

In the proof of the dense case of the main theorem we will need a lower bound for the tail of the hypergeometric distribution. To prove it we use the following well-known estimates for the binomial coefficient.

Proposition 2.3. Let $H(p) = p \log p + (1 - p) \log(1 - p)$, then for any integer $m > 0$ and real $p \in (0, 1)$ satisfying $pm \in \mathbb{Z}$ we have

$$\frac{\sqrt{2\pi}}{e^2} \leq \left(\frac{m}{pm} \right) \sqrt{mp(1-p)e^{mp(1-p)}} \leq \frac{e}{2\pi}.$$
Proof. This can be derived from Stirling’s formula $\sqrt{2\pi m \left(\frac{m}{e}\right)^m} \leq m! \leq e\sqrt{m \left(\frac{m}{e}\right)^m}$.

Lemma 2.4. Let d_1, d_2, Δ and N be integers and K be a real parameter such that $1 \leq d_1, d_2 \leq \frac{2N}{3}$, $1 \leq K \leq \frac{d_1 d_2}{100N}$ and $\Delta = \sqrt{\frac{d_1 d_2 K}{N}}$. Then,

$$
\sum_{t \geq \frac{d_1 d_2}{N} + \Delta} \frac{\binom{d_1}{t} \binom{N-d_1}{d_2-t}}{\binom{N}{d_2}} \geq e^{-40K}.
$$

Proof. For convenience, we write $L = \frac{d_1 d_2 K}{N}$. Let $f(t) = \frac{\binom{d_1}{t} \binom{N-d_1}{d_2-t}}{\binom{N}{d_2}}$, where $t = \frac{d_1 d_2}{N} + \theta \Delta$ with $1 \leq \theta \leq 2$. Indeed, to show this, note that there are at least $\frac{2\sqrt{\Delta}}{\pi}$ integers between $\frac{d_1 d_2}{N} + \Delta$ and $\frac{d_1 d_2}{N} + 2\Delta$ and

$$
\Delta > \frac{1}{2} \sqrt{\Delta^2 + \Delta} \geq \frac{1}{2} \sqrt{\frac{d_1 d_2}{N} + \Delta}.
$$

Next we prove the bound for $f(t)$. For our choice of Δ, the inequality $\Delta \leq \frac{d_1}{15}$ is true since

$$
\Delta = \sqrt{\frac{d_1 d_2 K}{N}} = \frac{d_1 d_2 K}{d_1} \cdot \frac{d_2}{d_1} \leq \frac{d_1 d_2}{N} \cdot \frac{d_1}{100} = \frac{d_1}{10} \cdot \frac{d_2}{N} \leq \frac{d_1}{15}.
$$

Similarly $\Delta \leq \frac{d_2}{15}$. Let $x = \frac{d_2}{N}$, $y = \frac{\theta \Delta}{d_1}$ and $z = \frac{\theta \Delta}{d_2}$. Then $t = (x+y)d_1$ and $d_2 - t = (x-z)(N-d_1)$. But $0 < x + y < 1$, because $0 < x \leq \frac{2}{3}$ and $0 < y \leq \frac{2\Delta}{d_1} < \frac{1}{3}$. Furthermore, $0 < x - z < 1$, because $\frac{2\Delta}{d_2} \leq \frac{\theta \Delta}{d_2} \leq \frac{2}{5}$ and $x \leq \frac{2}{3}$. By Proposition 2.3, we have

$$
f(t) = \frac{\binom{d_1 d_2}{(x+y) d_1} \binom{N-d_1}{(x-z)(N-d_1)}}{\binom{N}{d_2}} \geq \frac{4 \pi^2}{e^5} \sqrt{Re^{-L}},
$$

where $L = d_1 \cdot H(x+y) + (N-d_1) \cdot H(x-z) - N \cdot H(x)$ and

$$
R = \frac{x(1-x)N}{(x-z)(1-x+z)(x+y)(1-x-y)d_1(N-d_1)} \geq \frac{1}{(x+y)d_1} \geq \frac{1}{2} \cdot \frac{1}{\frac{d_1 d_2}{N^2} + \Delta}.
$$

Here we used the inequality $\theta \leq 2$ and the identity $(x+y)d_1 = t = \frac{d_1 d_2}{N^2} + \theta \Delta$. Because $d_1 y = (N-d_1)z = \theta \Delta$ and $\log(1+s) \leq s$, we obtain
\[
L = d_1 \left[(x + y) \log \left(1 + \frac{y}{x} \right) + (1 - x - y) \log \left(1 - \frac{y}{1 - x} \right) \right] \\
+ (N - d_1) \left[(x - z) \log \left(1 - \frac{z}{x} \right) + (1 - x + z) \log \left(1 + \frac{z}{1 - x} \right) \right] \\
\leq d_1 \left\{ \frac{(x + y)y}{x} - \frac{(1 - x - y)y}{1 - x} \right\} + (N - d_1) \left\{ \frac{(x - z)z}{x} + \frac{(1 - x + z)z}{1 - x} \right\} \\
= \theta \Delta \cdot (y + z) \cdot \left(\frac{1}{x} + \frac{1}{1 - x} \right) = \frac{\theta^2 \Delta^2 N^3}{d_1(N - d_1)d_2(N - d_2)} \leq 36K.
\]

Thus we always have \(f(t) \geq \frac{4e^2}{\sqrt{2e^5}} \cdot \frac{e^{-36K}}{\sqrt{2\Delta N^2 + \Delta}} \geq \frac{4e^{-40K}}{\sqrt{d_1d_2N^2 + \Delta}} \), completing the proof.

The next lemma will be used to prove the lower bound in the sparse case of Theorem 1.1, and was inspired by an analogous result in [9].

Lemma 2.5. For positive integers \(n \) and \(k \), let \(N = \binom{n - \frac{n}{k - 1}}{k - 1} \), \(\frac{w(n)}{N^2} \leq p \leq q \leq \frac{1}{2} \) and suppose that \(pqN \leq \frac{1}{30} \log n \). Define \(\gamma = \frac{\log n}{pqN} \). Let \(N_1, \ldots, N_s \subseteq B \) be \(s \geq n^{1/3} \) disjoint sets of size \((1 + o(1))Np\), and consider the random set \(B_q \), obtained by taking each element of \(B \) independently with probability \(q \). Then w.h.p., there is an index \(i \) for which

1. \(|B_q \cap N_i| \geq \frac{\log n}{6 \log \gamma} \) if \(pn \geq \frac{\log n}{5 \log \gamma} \);
2. \(N_i \subseteq B_q \) if \(pn < \frac{\log n}{5 \log \gamma} \).

Proof. Let \(t = \frac{\log n}{6 \log \gamma} \). Clearly \(1 - q \geq e^{-3q/2} \) when \(q \leq 1/2 \). For a fixed index \(i \), the probability that \(|B_q \cap N_i| \geq t \) is at least \(\left(\frac{|N_i|}{t} \right)^q (1 - q)^{|N_i| - t} \). Using the bounds \((a)^b \geq (\frac{a}{b})^b\) for \(a \geq b \), and \(\frac{1}{30} \log n \geq Npq = \frac{\log n}{\gamma} \), we obtain

\[
\left(\frac{|N_i|}{t} \right)^q (1 - q)^{|N_i| - t} \geq \left(\frac{(1 + o(1))Npq}{t} \right)^t e^{-2pqN} \geq \left(\frac{5 \log \gamma}{\gamma} \right)^{\frac{\log n}{\gamma \log \gamma}} n^{-1/15} \\
\geq n^{-1/6} \cdot n^{-1/15} \geq n^{-0.3}.
\]

Hence the expected number of indices \(i \) such that \(|B_q \cap N_i| \geq t \) is at least \(sn^{-0.3} \geq n^{1/30} \). Since the sets \(N_i \) are disjoint, these events are independent for different choices of \(i \). Therefore by Lemma 2.1 w.h.p. we can find such an index (actually many).

If \(pn < \frac{\log n}{6 \log \gamma} \), then \(q = \frac{\log n}{\gamma pn} \geq \frac{5 \log \gamma}{\gamma} \geq \gamma^{-1} \). Therefore the probability that some \(N_i \subseteq B_q \) is

\[
q^{|N_i|} \geq \gamma^{-(1 + o(1))Np} \geq \gamma^{-4 \frac{\log n}{4 \log \gamma}} = n^{-1/4}.
\]

and we can complete the proof as in the first case.

The last lemma in this section, which can be easily derived from Vizing’s Theorem, will be used to find a linear-size matching in nearly regular graphs.

Lemma 2.6. Every graph \(G \) with maximum degree \(\Delta(G) \), contains a matching of size at least \(\frac{e^{\Delta(G)}}{\Delta(G) + 1} \).
Proof. By Vizing’s Theorem, the graph G has a proper edge coloring $f : E(G) \to \{1, 2, \ldots, \Delta(G) + 1\}$. For each color $1 \leq c \leq \Delta(G) + 1$, the edges $f^{-1}(c)$ form a matching in G. By the pigeonhole principle, there is a color c such that $f^{-1}(c)$ has at least $\frac{e(G)}{\Delta(G) + 1}$ edges. \hfill \Box

3 Upper bounds

In this section we prove the upper bound for the discrepancy in Theorem 1.1. Let G and H be two random hypergraphs over the same vertex set V, distributed according to $\mathcal{H}_k(n, p)$ and $\mathcal{H}_k(n, q)$, respectively. The probabilistic discrepancy of G and H is defined by

$$\text{disc}_P(G, H) = \max_{\pi} |e(G \cap H) - pq(n\choose k)|,$$

where the maximum is taken over all bijections $\pi : V \to V$. We will show that w.h.p. the difference between $\text{disc}(G, H)$ and $\text{disc}_P(G, H)$ is very small. Before we proceed, we state the following fact whose proof is fairly trivial.

Proposition 3.1. If $|AB - A_0B_0| \geq \epsilon_1 \epsilon_2 + |A_0| \epsilon_2 + |B_0| \epsilon_1$, then either $|A - A_0| \geq \epsilon_1$ or $|B - B_0| \geq \epsilon_2$.

Lemma 3.2. With probability at least $1 - 4e^{-\sqrt{n}}$, the inequality $|\text{disc}(G, H) - \text{disc}_P(G, H)| \leq 2\epsilon$ holds, where $\epsilon = 4n^{\frac{1}{4}} \sqrt{pq(n\choose k)}$.

Proof. Since $p(n\choose k) = \Omega(n)$, applying Lemma 2.1 to the random variable $e(G)$ for $\lambda = 2n^{\frac{1}{4}} \sqrt{p(n\choose k)} \leq p(n\choose k)$ yields

$$\mathbb{P}\left[|e(G) - p(n\choose k)| \leq 2n^{\frac{1}{4}} \sqrt{p(n\choose k)}\right] \geq 1 - 2e^{-\sqrt{n}}.$$

Similarly, we have $\mathbb{P}\left[|e(H) - q(n\choose k)| \leq 2n^{\frac{1}{4}} \sqrt{q(n\choose k)}\right] \geq 1 - 2e^{-\sqrt{n}}$. Therefore, with probability at least $1 - 4e^{-\sqrt{n}}$, $|\rho_G - p| \leq 2n^{\frac{1}{4}} (p/\binom{n}{k})^{1/2}$ and $|\rho_H - q| \leq 2n^{\frac{1}{4}} (q/\binom{n}{k})^{1/2}$. These inequalities, together with Proposition 3.1, imply

$$|\rho_G \rho_H \binom{n}{k} - pq(n\choose k)| \leq 4\sqrt{pqn} + 2pn^{\frac{1}{4}} q(n\choose k) + 2qn^{\frac{1}{4}} p(n\choose k) \leq 2\epsilon,$$

completing the proof of the lemma. \hfill \Box

It is easy to check that the error term ϵ is much smaller than the bounds in Theorem 1.1. Therefore, in order to prove Theorem 1.1 for $\text{disc}(G, H)$, it suffices to prove the corresponding bounds for $\text{disc}_P(G, H)$ instead.

Lemma 3.3. Let G and H be as in Theorem 1.1. Then with high probability $\text{disc}_P(G, H)$ satisfies the stated upper bounds of this theorem.

Proof. Since the number of edges of G is distributed binomially and $p(n\choose k) = \Omega(n)$, by Lemma 2.1, we have $e(G) < 2p(n\choose k)$ with probability at least $1 - e^{-\Theta(n)}$. Since $\text{disc}_P(G, H)$ is bounded by $\max\{e(G), pq(n\choose k)\}$, this implies the assertion in the case (2.2) of Theorem 1.1.
For any fixed bijection $\pi : V \to V$, the number of edges in $G_\pi \cap H$ is distributed binomially with parameters $\binom{n}{k}$ and pq. If $pq\binom{n}{k} > 4n \log n$ let $\lambda = 2\sqrt{pq\binom{n}{k} n \log n} \leq pq\binom{n}{k}$. Then by Lemma 2.1, the probability that $e(G_\pi \cap H) - pq\binom{n}{k} > \lambda$ is at most $2e^{-n \log n}$. On the other hand, if $pq\binom{n}{k} \leq 4n \log n$, let $\gamma' = 4\frac{e^{n \log n}}{pq\binom{n}{k}} \geq e$ and $\lambda = \frac{4e^{e n \log n}}{\log \gamma'} \geq \frac{4e^{e n \log n}}{\gamma'^k} = epq\binom{n}{k}$. Since $\binom{n}{k} \leq \binom{\frac{n}{k-1}}{k}$, the probability that $e(G_\pi \cap H) > \lambda$ is at most

$$\left(\frac{n}{\lambda}\right) \left(\frac{pq}{\lambda}\right)^\lambda \leq \left(\frac{e^{\Gamma}}{\lambda}\right)^\lambda \leq \left(\frac{4e^2 n \log n}{\Gamma \lambda}\right)^\lambda = \left(\frac{\gamma'}{\log \gamma'}\right)^{\frac{4e^2 n \log n}{\log \gamma'}} < e^{-n \log n}.$$

Since there are $n!$ possible bijections $\pi : V \to V$, by the union bound

$$\mathbb{P}\left[\text{disc}_P(G,H) > \lambda\right] \leq n! \cdot 2e^{-n \log n} \leq e^{-n/2}.$$

To finish the proof of the lemma note that γ, defined in Theorem 1.1, satisfies $\gamma = \Theta_k(\gamma')$. Also observe that for p, q satisfying both $pq\binom{n}{k} \leq 4n \log n$ and $pqN \geq \frac{1}{30} \log n$, where $N = \binom{\frac{n}{k-1}}{k}$, we have $\sqrt{pq\binom{n}{k} n \log n} = \Theta_k\left(\frac{4e^2 n \log n}{\log \gamma'}\right)$.

4 Lower bounds

In this section we prove the lower bounds in Theorem 1.1. As we previously explained, it is enough to obtain these bounds for $\text{disc}_P(G,H)$. We divide the proof into two cases. The first (dense case) will be discussed in the next subsection. The second (sparse case) will be discussed in subsection 4.2. Throughout the proofs, we assume that k is fixed and n is tending to infinity.

4.1 Dense Case

Let $N = \binom{n-2}{k-1}$ and let p, q be such that $pqN > \frac{1}{30} \log n$. Select an arbitrary set $L \subseteq V$ of size $|L| = \frac{n}{k}$. We prove that w.h.p. there exists an L-bijection $\pi : V \to V$ with overlap

$$e(G_\pi \cap H) \geq pq\binom{n}{k} + \Theta_k\left(n \cdot \sqrt{pqN \log n}\right) = pq\binom{n}{k} + \Theta_k\left(\sqrt{pq\binom{n}{k} n \log n}\right),$$

where an L-bijection $\pi : V \to V$ is a bijection from V to V which only permutes the elements of L, i.e., $\pi(x) = x$ for all $x \notin L$.

From the random hypergraph G we construct a random bipartite graph \tilde{G} with vertex set $L_G \cup R$, where $L_G = L$ and R is the set of all $(k-1)$-tuples in $V \setminus L$. Note that $|R| = N$. The vertices $v_1 \in L_G$ and $\{v_2, v_3, \ldots, v_k\} \in R$ are adjacent if $\{v_1, v_2, \ldots, v_k\}$ forms an edge in the hypergraph G. With slight abuse of notation, we view \tilde{G} as a sub-hypergraph of G, containing all edges e having exactly one vertex in L, i.e. $|e \cap L| = 1$. Similarly, from the random hypergraph H we construct a random bipartite graph \tilde{H} with vertex set $L_H \cup R$. Figure 1 shows the resulting bipartite graphs.

Given an L-bijection $\pi : V \to V$, we divide the edge set of $G_\pi \cap H$ into two subsets: the edge set of $\tilde{G}_\pi \cap \tilde{H}$ and its complement. To prove our result we first expose the random edges in \tilde{G} and \tilde{H}, and show how to find an L-bijection π having overlap at least $\Theta_k\left(n \cdot \sqrt{pqN \log n}\right)$ more than the expectation. Then we fix such π and expose all the remaining edges in G and H showing that the contribution of these edges to $G_\pi \cap H$ does not deviate much from the expected contribution. More precisely, let

$$7$$
Figure 1: Random bipartite graphs \tilde{G} and \tilde{H}.

$e_\pi = |E((G - \tilde{G})_\pi) \cap E(H - \tilde{H})|$, then $e(G_\pi \cap H) = e(\tilde{G}_\pi \cap \tilde{H}) + e_\pi$. Moreover, e_π is distributed according to $\text{Bin}(m, pq)$, where $\frac{1}{2} \binom{n}{k} \leq m = \binom{n}{k} - N \frac{n}{k}^2 \leq \binom{n}{k}$. Thus w.h.p. $|e_\pi - pqm| < \sqrt{pqm} \cdot \log n$, as Lemma 2.1 shows. Since $\sqrt{pqm} \cdot \log n \ll \sqrt{pq} \binom{n}{k} n \log n$, in order to obtain (4), it is enough to show that w.h.p. there exists an L-bijection π such that

$$e(\tilde{G}_\pi \cap \tilde{H}) \geq \frac{n}{k} \cdot \left(pqN + \Theta k \left(\sqrt{pqN \log n}\right)\right).$$

We define an auxiliary bipartite graph $\Gamma = \Gamma(\tilde{G}, \tilde{H})$ as follows. A vertex $u \in L_G$ survives if $|\deg_{\tilde{G}}(u) - pN| \leq 2\sqrt{2pN}$ and similarly, a vertex $v \in L_H$ survives if $|\deg_{\tilde{H}}(v) - qN| \leq 2\sqrt{2qN}$. Let S_G and S_H be the sets of all surviving vertices of \tilde{G} and \tilde{H}, respectively. Let $s_G = |S_G|$ and $s_H = |S_H|$. The set of vertices of Γ is the union of S_G and S_H. The edges of Γ are defined by the property

$$u \sim_{\Gamma} v \iff \text{codeg}(u, v) \geq \frac{\deg_{\tilde{G}}(u) \deg_{\tilde{H}}(v)}{N} + 10^{-2} \sqrt{pqN \log n},$$

where $\text{codeg}(u, v)$ denotes the codegree of $u \in L_G$ and $v \in L_H$, i.e. $\text{codeg}(u, v) = |N_{\tilde{G}}(u) \cap N_{\tilde{H}}(v)|$.

The graph Γ has many vertices in both parts, as the following simple lemma demonstrates

Lemma 4.1. W.h.p. each part of Γ has size at least $\frac{n}{4k}$.

Proof. Let α be the probability that some vertex u survives in L_G. Since $pN \geq w(n) \geq 8$, we have that $2\sqrt{2pN} \leq pN$. Thus Lemma 2.1 applied to $\deg_{\tilde{G}}(u)$ implies $\alpha \geq 1 - 2e^{-2} \geq 1/2$. Since the events that vertices survive are independent, s_G stochastically dominates the binomial distribution with parameters n/k and 1/2. Thus, again by Lemma 2.1, w.h.p. $s_G \geq n/(4k)$ and a similar estimate holds for s_H. \qed

To prove (5), we will show that the following two statements hold w.h.p.

(a) Γ has a matching $M = \{(u_1, v_1), \ldots, (u_l, v_l)\}$ of size $l = \frac{n}{50k}$;

(b) there exists an L-bijection π such that $\pi(u_i) = v_i$ for all $i = 1, 2, \ldots, l$, and

$$\sum_{u \in L_G \setminus \{u_1, u_2, \ldots, u_l\}} \text{codeg}(u, \pi(u)) \geq \left(\frac{n}{k} - l\right) pqN - 2 \frac{n}{k} \sqrt{pqN}.$$
Indeed, for any two adjacent vertices \(u, v \) in \(\Gamma \), we have
\[
\frac{\deg_G(u) \deg_H(v)}{N} \geq \frac{(pN - \sqrt{8pN})(qN - \sqrt{8qN})}{N} \geq pN - 6\sqrt{pqN}.
\]
Thus using (a), (b) and \(l = \frac{n}{50k} \) we obtain
\[
e(G_{\pi} \cap H) = \sum_{u \in L_G} \frac{\sum_{i=1}^{l} \text{codeg}(u, \pi(u))}{\deg_G(u) \deg_H(v)} \geq \sum_{i=1}^{l} \frac{\text{codeg}(u_i, v_i) + (\frac{n}{k} - l) pqN - 2\frac{n}{k} \sqrt{pqN}}{N}.
\]
\[
\geq \sum_{i=1}^{l} \frac{\frac{\deg_G(u_i) \deg_H(v_i)}{N} + 10^{-2} \sqrt{pqN \log n}}{\frac{\deg_G(u_i) \deg_H(v_i)}{N} + 10^{-2} \sqrt{pqN \log n} + (\frac{n}{k} - l) pqN - 2\frac{n}{k} \sqrt{pqN}}
\]
\[
\geq \frac{n}{k} \left(pqN + 10^{-4} \sqrt{pqN \log n} \right).
\]
We need the following lemma in order to prove that (b) holds.

Lemma 4.2. Let \(0 < \alpha < 1 \) be any absolute constant. Then with probability at least \(1 - e^{-\frac{\alpha}{k}} \), any two subsets \(A \subseteq L_G \) and \(B \subseteq L_H \) with \(|A| = |B| = \frac{\alpha n}{k} \) satisfy
\[
X_{A,B} := \sum_{u \in A, v \in B} \text{codeg}(u, v) \geq \left(\frac{\alpha n}{k} \right)^2 pqN - 2\alpha \left(\frac{n}{k} \right)^2 \sqrt{pqN}.
\]

Proof. Let \(X_{w,u,v} \) be the indicator of \(uw \in E(\tilde{G}) \) and \(vw \in E(\tilde{H}) \) for \(w \in R, u \in A, v \in B \). So \(X_{A,B} = \sum_{w \in R, u \in A, v \in B} X_{w,u,v} \) and \(E[X_{w,u,v}] = pq, \) Moreover, \(X_{w,u,v} \) and \(X_{w',u',v'} \) are dependent if and only if \(uw = w'u' \) or \(vw = w'v' \). Thus, \(\mu = E[X_{A,B}] = \left(\frac{\alpha n}{k} \right)^2 Npq \) and
\[
\Delta = \sum_{w \in R, u \in A, v \in B} \sum_{v', u' \in B} E[X_{w,u,v} \cdot X_{w,u,v'}] + \sum_{w \in R, u \in A} \sum_{u', v \in B} E[X_{w,u,v} \cdot X_{w,u',v}] = \frac{\alpha n}{k} \left(\frac{\alpha n}{k} \right) Npq (p + q),
\]
where \(\mu \) and \(\Delta \) are defined as in Lemma 2.2. Let \(F \) be the event that there exists at least one pair of subsets \(A \subseteq L_G, B \subseteq L_H \) with \(|A| = |B| = \frac{\alpha n}{k}\) satisfying \(X_{A,B} < \left(\frac{\alpha n}{k} \right)^2 Npq - 2\alpha \left(\frac{n}{k} \right)^2 \sqrt{pqN} \). By the union bound and by Lemma 2.2, we have
\[
\mathbb{P}[F] \leq \sum_{A \in \binom{L_G}{\frac{\alpha n}{k}}, \ B \in \binom{L_H}{\frac{\alpha n}{k}}} \mathbb{P} \left[X_{A,B} < \mu - 2\alpha \left(\frac{n}{k} \right)^2 \sqrt{pqN} \right] \leq \left(\frac{\alpha}{k} \right) \left(\frac{2n}{\sqrt{pqN}} \right)^2 e^{-\frac{4\alpha^2 pq}{3(\sqrt{pqN} - 2\alpha)}}
\]
since \(2\mu + \Delta \leq \left(\frac{\alpha n}{k} \right)^3 Npq, \alpha < 1 \) and \(\alpha \log(e/\alpha) \leq 1 \) for all such \(\alpha \).

Let \(M = \{(u_1, v_1), \ldots, (u_l, v_l)\} \) be a matching satisfying (a) and let \(A = L_G \setminus \{u_1, u_2, \ldots, u_l\} \) and \(B = L_H \setminus \{v_1, v_2, \ldots, v_l\} \). One can write \(|A| = |B| = \frac{n}{k} - l = \frac{2n}{k} \), where \(\alpha = \frac{49}{50} \). Consider \(X_{A,B} = \sum_{u \in A, v \in B} \text{codeg}(u, v) \). Then, by Lemma 4.2, with probability at least \(1 - e^{-\frac{\alpha}{k}} \), we have
\[
\sum_{u \in A, v \in B} \text{codeg}(u, v) \geq \left(\frac{n}{k} - l \right)^2 pqN - 2 \frac{n}{k} \left(\frac{n}{k} - l \right) \sqrt{pqN}.
\]
Let Γ' be the graph obtained from Γ by randomly deleting some edges. This cannot contain a linear-size matching. However, we will show that it is possible to delete some edges of Γ' at random and obtain a pruned graph Γ'', which is nearly regular. Let $f(d_1, d_2) := \mathbb{P}[u \sim_{\Gamma'} v \mid \deg_G(u) = d_1, \deg_H(v) = d_2]$, where $|d_1 - pN| \leq 2\sqrt{2pN}$ and $|d_2 - qN| \leq 2\sqrt{2qN}$. Let f_0 be the minimum of $f(d_1, d_2)$ over all pairs (d_1, d_2) in the domain of f. Suppose that $f_0 \geq n^{-\frac{1}{2}}$, which we shall prove later. We keep each edge uv of Γ in Γ' independently with probability $f_0 / f(d_1, d_2)$, where $d_1 = \deg_G(u)$ and $d_2 = \deg_H(v)$. Then, we claim that for any vertex $u \in S_G$, $\deg_{\Gamma'}(u)$ is binomially distributed with parameters s_H and f_0. Indeed, by definition, $\mathbb{P}[u \sim_{\Gamma'} v \mid \deg_G(u) = d_1, \deg_H(v) = d_2] = f_0$ for all possible d_1, d_2. Moreover, we can establish the assertion of Lemma 4.1, i.e., $|S'_G| = s_G \geq \frac{n^2}{4K}$ and $|S'_H| = s_H \geq \frac{n^2}{4K}$. Thus both $s_G f_0$ and $s_H f_0$ are $\Omega_k(\sqrt{n})$. Since all degrees in Γ' are binomially distributed, Lemma 4.1 together with the union bound implies that w.h.p. all vertices $u \in S_G, v \in S_H$ satisfy

$$\frac{s_H f_0}{2} \leq \deg_{\Gamma'}(u) \leq \frac{3s_H f_0}{2} \quad \text{and} \quad \frac{s_G f_0}{2} \leq \deg_{\Gamma'}(v) \leq \frac{3s_G f_0}{2}.$$

Therefore, the max-degree $\Delta(\Gamma') \leq \max\left\{ \frac{3s_H f_0}{2}, \frac{3s_G f_0}{2} \right\} \leq \frac{3n f_0}{2K} + e(\Gamma') \geq \frac{s_G s_H f_0}{2K} \geq \frac{n^2 f_0}{32K^2}$. Thus by Lemma 2.6, Γ' has a matching of size at least $\frac{\frac{1}{3K} \log n}{\Delta(\Gamma')} \geq \frac{n}{30}$, completing the proof of (a).

It remains to prove the bound $f_0 \geq n^{-\frac{1}{2}}$. Let $K = \log \frac{n}{5000} \geq 1$. Since pN tends to infinity, $p \leq q \leq 1/2$ and $|d_1 - pN| \leq 2\sqrt{2pN}$, we have $1 \leq d_1 = (1 + o(1))pN \leq 2N^\frac{3K}{4}$. Similarly, $1 \leq d_2 = (1 + o(1))qN \leq 2N^\frac{3K}{4}$. Also recall that $pqN \geq \frac{1}{30} \log n$, which implies

$$\frac{d_1 d_2}{100N} = (1 + o(1))\frac{pqN}{100} \geq (1 + o(1))\frac{\log n}{3000} > K.$$

Therefore we can apply Lemma 2.4 with $\Delta = \sqrt{\frac{d_1 d_2 K}{N}} > \sqrt{\frac{pqN \log n}{100}}$. By the definition of $f(d_1, d_2)$, we have

$$f(d_1, d_2) = \sum_{t \geq \frac{d_1 d_2}{N} + \sqrt{\frac{pqN \log n}{100}}} \binom{d_1}{t} \binom{N-d_1}{d_2-t} \geq \sum_{t \geq \frac{d_1 d_2}{N} + \Delta} \binom{d_1}{t} \binom{N-d_1}{d_2-t} \geq e^{-40K} > n^{-\frac{1}{2}}.$$

This completes the proof. □
4.2 Sparse case

In this subsection, we prove the lower bound in the sparse case \(pqN \leq \frac{1}{30} \log n \). Note that, since \(p < q \) in this case, we have \(p \leq N^{-1/2+o(1)} \). The proof runs along the same lines as that of the dense case differing only in the application of Lemma 2.5 to obtain an \(L \)-bijection \(\pi : V \to V \) whose sum of codegrees \(\sum_{u \in L_G} \text{codeg}(u, \pi(u)) \) is large. Suppose first that \(pN \geq \frac{\log n}{\log \gamma} \). Recall that \(\gamma = \frac{\log n}{pqN} \geq 30 \) and thus \(\frac{\log n}{6 \log \gamma} \geq \frac{\log n}{42 \log \gamma} + \frac{\log n}{\gamma} = \frac{\log n}{42 \log \gamma} + pN \). Therefore it is enough to find a bijection \(\pi \) between \(L_G \) and \(L_H \) such that \(\sum_{u \in L_G} \text{codeg}(u, \pi(u)) \geq (1 + o(1)) \frac{n}{K} \cdot \frac{\log n}{6 \log \gamma} \).

Partition the vertices of \(L_G \) into \(r = \frac{n}{K} \) disjoint sets \(S_1, \ldots, S_r \) each of size \(s = n^{2/5} \). We will construct \(\pi \) by applying the following greedy algorithm to each set. Let us start with \(S_1 \). The algorithm will reveal the edges emanating from a vertex in \(S_1 \), one at a time. Throughout this process, we construct a subset \(S'_1 \subseteq S_1 \) of size \((1 - o(1))|S_1| \) and a family of disjoint sets \(N_u \subseteq R \), such that each \(N_u \) has size \((1 + o(1))Np \) and is contained in the neighborhood of \(u \), for all \(u \in S'_1 \). At each step, we pick a fresh vertex \(u \) in \(S_1 \) and expose its neighborhood. If \(u \) has a set of \((1 + o(1))Np \) neighbors which is disjoint from \(N_u \) for all \(w \) in the current \(S'_1 \), denote this particular set by \(N_u \) and put \(u \) in the set \(S'_1 \); otherwise move to the next step. At every step, the union \(X = \cup_{w \in S'_1} N_u \) has size at most \(O(pN \cdot s) \leq N^{0.9+o(1)} \). Moreover, every vertex in \(R \setminus X \) is adjacent to \(u \) independently with probability \(p \). Since \(pN \geq w(n) \) tends to infinity with \(n \), the set of neighbors of \(u \) outside \(X \) has size \((1 + o(1))|R \setminus X|p = (1 + o(1))Np \) with probability \(1 - o(1) \). Furthermore, for different vertices such events are independent. Therefore, by Lemma 2.1, w.h.p. \(|S'_1| = (1 - o(1))|S_1| \). Now we will construct the partial matching for \(S_1 \). Consider the disjoint sets \(N_u \), for \(u \in S'_1 \), each of size \((1 + o(1))Np \). Pick an arbitrary vertex \(v \) in \(L_H \) and expose its neighbors in \(H \). This is a random subset \(N_v \) of \(R \) obtained by taking each element independently with probability \(q \). Therefore by case (1) of Lemma 2.5, w.h.p there is a vertex \(u \in S'_1 \) such that \(\text{codeg}(u, v) \geq |N_u \cap N_v| \geq \frac{\log n}{6 \log \gamma} \). Define \(\pi(u) = v \), remove \(u \) from \(S'_1 \), remove \(v \) from \(L_H \) and continue. Note that, as long as there are at least \(n^{1/3} \) vertices remaining in \(S'_1 \), we can match one of them with a newly exposed vertex from \(L_H \) such that the codegree of this pair is at least \(\frac{\log n}{6 \log \gamma} \). Once the number of vertices in \(S'_1 \) drops below \(n^{1/3} \), leave the remaining vertices unmatched. W.h.p. we can match a \(1 - o(1) \) fraction of the vertices in \(S_1 \).

Continue the above procedure for \(S_2, \ldots, S_r \) as well. At the end of the process, we will have matched a \(1 - o(1) \) fraction of all the vertices in \(L_G \) with distinct vertices in \(L_H \) such that codegree of every matched pair is at least \(\frac{\log n}{6 \log \gamma} \). Therefore the sum of the codegrees of this partial matching is at least \((1 + o(1)) \frac{n}{K} \cdot \frac{\log n}{6 \log \gamma} \). To obtain the bijection \(\pi \), one can match the remaining vertices in \(L_G \) and \(L_H \) arbitrarily.

When \(pN < \frac{\log n}{\log \gamma} \) the same proof as above together with case (2) of Lemma 2.5 yields a bijection \(\pi \) such that \(\sum_{u \in L_G} \text{codeg}(u, \pi(u)) \geq (1 + o(1)) \frac{n}{K} \cdot pN \). Since \(q \leq \frac{1}{2} \), this is at least \((\frac{1}{2} + o(1)) \frac{n}{K} \cdot pN \) more than the expectation, finishing the analysis of the sparse case. \(\square \)

5 Concluding remarks

As we stated in the introduction, Theorem 1.1 also yields tight bounds when \(p \) and/or \(q > \frac{1}{2} \). For any \(G \) and \(H \), one can check that \(\text{disc}(G, \overline{H}) = \text{disc}(G, H) \), where \(\overline{H} \) is the complement of \(H \). Moreover, \(\overline{H} \) is distributed according to \(\mathcal{H}_k(n, 1 - q) \), hence we can reduce the case \(q' = 1 - q < \frac{1}{2} \)
the same holds when we take the complement of G instead. We remark that one can determine the discrepancy when p is smaller than $\frac{\omega(n)}{N}$, but we chose not to discuss this range here, since the proof is similar to the sparse case and it wouldn’t provide any new insight.

The definition of discrepancy can be rephrased as $\operatorname{disc}(G, H) = \max \{\operatorname{disc}^+(G, H), \operatorname{disc}^-(G, H)\}$, where $\operatorname{disc}^+(G, H) = \max_{\pi} e(G_\pi \cap H) - \rho_G \rho_H(\binom{n}{k})$ and $\operatorname{disc}^-(G, H) = \rho_G \rho_H(\binom{n}{k}) - \min_{\pi} e(G_\pi \cap H)$ are the one-sided relative discrepancies. In fact, all the lower bounds we obtained are for $\operatorname{disc}^+(G, H)$, and some of them are not true for $\operatorname{disc}^-(G, H)$. This is because $\operatorname{disc}^-(G, H) \leq \rho_G \rho_H(\binom{n}{k}) \approx pq(\binom{n}{k})$ and in the sparse case, $pq(\binom{n}{k})$ could be much smaller than $\operatorname{disc}(G, H)$. Under the same hypothesis and using similar ideas as in Theorem 1.1, one can show that

$$\operatorname{disc}^-(G, H) = \begin{cases} \Theta_k \left(\sqrt{pq(\binom{n}{k})} n \log n\right) & \text{if } \frac{pq}{N} > \frac{1}{30} \log n; \\
\Theta_k \left(pq(\binom{n}{k})\right) & \text{otherwise.} \end{cases}$$

The last equation is related to the lower tail of the binomial distribution.

Lastly, we would like to mention that there are a substantial number of open problems about $\operatorname{disc}(G, H)$ and its related topics in [4].

References

