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Summary. There have been many efforts, dating back four decades, to
develop stable mixed finite elements for the stress-displacement formulation
of the plane elasticity system. This requires the development of a compatible
pair of finite element spaces, one to discretize the space of symmetric tensors
in which the stress field is sought, and one to discretize the space of vector
fields in which the displacement is sought. Although there are number of
well-known mixed finite element pairs known for the analogous problem
involving vector fields and scalar fields, the symmetry of the stress field is
a substantial additional difficulty, and the elements presented here are the
first ones using polynomial shape functions which are known to be stable.
We present a family of such pairs of finite element spaces, one for each
polynomial degree, beginning with degree two for the stress and degree one
for the displacement, and show stability and optimal order approximation.
We also analyze some obstructions to the construction of such finite element
spaces, which account for the paucity of elements available.

Mathematics Subject Classification (19965N30, 74S05

1. Introduction

Let o andu denote the stress and displacement fields engendered by a body
force f acting on a linearly elastic body which occupies a planar reglon
and which is clamped ofif2. Theno takes values in the spage= R2?
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of symmetric tensors andin R?, and the paifo, u) is characterized as the
unique critical point of the Hellinger—Reissner functional

(1.2) j(T,’U):/()(;ATZT+diVT-U—f.U)d$.

Here the compliance tensdr= A(x) : S — S is bounded and symmetric
positive definite uniformly for: € 2, and the critical point is sought among
all - € H(div,{2,S), the space of square-integrable symmetric matrix
fields with square-integrable divergence, andval L?(£2, R?), the space

of square-integrable vector fields. Equivalently, u) € H(div, {2,S) x
L?(£2,R?) is the unique solution to the following weak formulation of the
elasticity system:

/(AU : T+diVT-u+diVJ-v)dx:/ fudez,
2 2
(1.2) (t,v) € H(div, 22,S) x L*(2,R?).

A mixed finite element method determines an approximate stress field
o, and an approximate displacement fiejdas the critical point of7 over
Xh x Vi, where X, ¢ H(div, £2,S) andV;, C L?(£2,R?) are suitable
piecewise polynomial subspaces. Equivalently, the ajruy,) € Xy, x V3
is determined by the weak formulation (1.2), with the test space restricted
to Xy, x V. As is well known, the subspacés, andV}, cannot be chosen
arbitrarily. To ensure that a unique critical point exist and that it provides
a good approximation of the true solution, they must satisfy the stability
conditions from the theory of mixed methods [6, 7]:

(A1) There exists a positive constant such that||7|| g(aiv) < c1ll7]| 12
wheneverr € Y, satisfies[, div 7 - vdxz = 0 forallv € V.

(A2) There exists a positive constatt such that for all nonzeroe € V},
there exists nonzeroc X, with [, div 7-v dz > co||7|| gaiv) V] 2

Condition (A2) is one of the two stability conditions of [6], while (A
implies the other, and essentially equivalent to it in practice. However we
shall establish a second set of conditions, which imply)(&nd (A2) and

also some other useful properties of the mixed method. These conditions
are:

(All) div Xy, C V.

(A2') There exists a linear operatdf;, : H'(£2,S) — X, bounded in
L(H*', L?) uniformly with respect tah, and such thadliv IT,0c =
Pydivoforallo € H(02,S), whereP, : L?(£2,R?) — V}, denotes
the L2-projection.
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It is clear that condition (&) implies (Al) with ¢; = 1. In order to see that
the so-called commuting diagram property2(Aimplies (A2) we have to
invoke the fact that for each € L?(£2,R?) there exists a € H'(2,S)
such that

divr =v, |[|7][g < collv| L2,

where ¢ is independent ob (this is discussed briefly in the following
section). Forv € V}, and with this choice ofr we havell,t € X,
div Il = P, divT = Pyv = v, and

/Qdivﬂm'vdw = [vllZ2 2 &g Irllmnllvllze = eall |l a0l 2,

wherec, = ¢y (1 + [ 14|71 12) 7>

Despite four decades of effort, very few choices of finite element spaces
have been constructed which satisfy condition$)(and (A2). In fact, the
only ones known use composite elements, in whighconsists of piece-
wise polynomials with respect to one triangulation of the domain, whiile
consists of piecewise polynomials with respect to a different, more refined,
triangulation [4,12,13,19]. Because of the lack of suitable mixed elasticity
elements, several authors have resorted to the use of Lagrangian functionals
which are modifications of the Hellinger—Reissner functional given above
[1,3,5,15-18], in which the symmetry of the stress tensor is enforced only
weakly or abandoned altogether. Another maodification is analyzed in [14],
where the solution space is altered such thatis only required to be a
subspace of.%(12,S).

In this paper we present a family of mixed finite element spaces for the
unmodified Hellinger—Reissner formulation. The spaces consist of piece-
wise polynomials with respect to a single arbitrary triangular subdivision of
2 and satisfy conditions (X) and (A2") with constants:;; andcs indepen-
dent of the triangulation (assuming, as usual, uniform shape regularity of
the triangulations). The spadé we use to approximate the displacement
simply consists of all piecewise polynomials of degkeeith no interele-
ment continuity constraints. The degremay be any positive integer (with
different values of determining different finite element spaces on the same
triangulation). The spack, is, of course, more complicated. Restricted to a
single simplex the elements &f, consist of all piecewise polynomial matrix
fields of degree at most+- 1 together with the divergence-free matrix fields
of degreek + 2. Degrees of freedom are specified on each element which
determine the interelement continuity and ensure at H(div, £2,S).

In order to present the main ideas as clearly as possible, we shall first
analyze the lowest order family of elements. After some preliminaries in
Sect. 2, in Sect. 3 we construct the spakgsandV}, in the caseé: = 1, by
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describing their restrictions to each triangle and giving a unisolvent set of
local degrees of freedom. We establish a relation between these space and
the Hermite quintic”! finite element space, and explain in general the rela-
tionship between stable finite elements for the Hellinger—Reissner principle
andC' finite elements. This provides a major obstruction to the construc-
tion of the former. Our element involves vertex degrees of freedom, a fact
which, as we shall show, is unavoidable. Because of this, the interpolation
operator intaY;, associated with the degrees of freedom is not bounded on
H'(£2,S), and so, even though it satisfies the commutativity property of
condition (A2'), it does not establish that condition. In the following section
we modify the interpolation operator, maintaining the commutativity, and
establish its boundedness and approximation properties. Then in Sect. 5 we
complete the error analysis for the= 1 case. In Sect. 6, we briefly describe

the case: > 1, which is altogether analogous to the case 1. In a few

brief final paragraphs we describe a variant of the lowest order element with
fewer degrees of freedom, and mention some simple extensions.

2. Notation and preliminaries

We denote byH*(T, X) the Sobolev space consisting of functions with
domainT c R?, taking values in the finite-dimensional vector spacend
with all derivatives of order at mogt square-integrable. For our purposes,
the range spac& will be eitherS, R2, or R. In the latter case we may
write simply H*(T). We will generally write|| - || or || - ||y~ instead of

| [ %, xy- We similarly denote b§Py, (7', X) the space of polynomials on
T with degree at most.

If 7is a symmetric matrix field then its divergencgy 7, is the vector
field obtained by applying the ordinary divergence operator to each row. The
symmetric part of the gradient of a vector fielddenoted: v, is given by
ev = [gradv + (grad v)T]/2.

Throughout the paper we assume that the elastic dofaga simply
connected polygonal domain R?. Any smooth vector field o2 may be
realized as the divergence of a smooth symmetric matrix field. E.g., we may
extend the vector field smoothly to a larger smoothly bounded domain, and
then solve the equations of elasticity there with the extended vector field as
body forces. The same argument shows that any vector field if?, R?)
may be realized as the divergence of a matrix fieldf/in(£2, S), a fact we
already invoked in the introduction and will use as well in the sequel. Further,
a symmetric matrix fiela- on a simply connected domain is divergence-free
if and only if 7 admits a potential, or Airy stress function,

gy ( PPa/0y —0%q/0x0y
—0%q)0x0y  0%q)ox* )
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The potentialy is determined by- up to addition of a linear polynomial.
These considerations are summarized by the statement that the following se-
guence is exact (i.e., that the range of each map is the kernel of the following
one):

0 —— PiI(R) —S—= C=()
—L s o®n,s) —& 022, R2) —— 0.
This exact sequence is related, although rather indirectly, to the de Rham
sequence for the domain thig[11]. We have stated it in terms of infinitely
differentiable functions, but analogous results hold with less smoothness.
E.g., the sequence

ey 0 P(R) —= H2(2) —L H(div,2,S)

YL 2R —— 0

is also exact. There is a polynomial analogue of the sequence as well: for
any integert > 0 the sequence

0 —— Pi(2) —S Prys(2) —L Prr(2,5)
L PUR,RY) —— 0
is exact. (To verify the surjectivity of the final divergence, it suffices to count
dimensions and use the exactness of the sequence at the other points.) As we
shall see a key ingredient in the development and analysis of mixed methods
for elasticity is a discrete analogue of the exact sequence (2.1).

3. The finite element method in the lowest order case

In this section we present a mixed finite element method based on piecewise
linear displacements and piecewise quadratic stresses, the latter augmented
by some cubic shape functions. First we describe the finite elements on a
single trianglel’ C (2. Define

Xr = PQ(T,S) + {T € Pg(T,S) | divr = 0}
(3.1) = {7 € P3(T,S)| divr € P1(T,R?)},

Vi = P1(T, R?).
The spacé/; has dimensioi and a complete set of degrees of freedom are
given by the value of the two components at the three nodes intefibiTioe

spaceX’r clearly has dimension at leadt, since thedim P3(7,S) = 30
and the condition thativ 7 € P1(T, R?) represents six linear constraints.
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We now exhibit24 degrees of freedov — R and show that they vanish
simultaneously only whem = 0. This implies that the dimension df

is precisely24 (which could also be established directly using the fact that
div P3(£2,S) = Po(£2,R?)), and that the degrees of freedom are unisolvent.
The degrees of freedom are

— the values of three componentsrfr) at each vertex of 7' (9 degrees
of freedom)

— the values of the moments of degfieand1 of the two normal compo-
nents ofr on each edge of T' (12 degrees of freedom)

— the value of the three components of the moment of de@gyde- on 7'
(3 degrees of freedom)

Otherwise stated, we determinec X7 by giving its values at the ver-
tices, the values of (7n) ds and [ (Tn)s ds for all edges, and the value of

fT Tdx. (Heres is a parameter giving the distance to one of the end points
of e andn is one of the unit vectors normal to) Note that the degrees of
freedom associated to an edge and its end points determiae that edge.
This is just the condition required to obtain a conforming approximation of
H(div, £2,S). The element diagrams in Fig. 1 are mnemonic of the degrees

of freedom.

Fig. 1. Element diagrams for the lowest order stress and displacement elements

Lemma 3.1. If the 24 degrees of freedom just given all vanish for some
T € X, thent = 0.

Proof. We immediately have thatn vanishes on each edge. Letting=
div 7, a linear vector field off", we get

(3.2) /02d$:—/T16Ud$+/ ™-vds =0
T T T

since the integral of vanishes as well asn. Thust is divergence-free
and hence = Jq for someq € P5(T). Adjusting by a linear function we
may takeg to vanish at the vertices. Nowfq/0s> = n - n = 0 on each

edge, whence is identically zero or@T'. This implies that the gradient of
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q vanishes at the vertices. Sindéq/9s0n = —rn -t = 0 on each edge
(with ¢ a unit vector tangent to the edge), we conclude &lagn vanishes
identically ondT as well. Sinceg has degree at mo$t it must vanish
identically. a

Having given a unisolvent set of degrees of freedomWiprand X', our

finite element space is assembled in the usual way7}.ete some triangu-
lation of £2, i.e., a set of closed triangles with uniéhand such that any two
distinct non-disjoint elements @f, meet in a common edge or vertex. The
associated finite element element sp&gds then the space of all piece-
wise linear vector fields with respect to this triangulation, not subject to any
interelement continuity conditions. The spacg s the space of all matrix
fields which belong piecewise tbr, subject to the continuity conditions

that the normal components are continuous across mesh edges and all com-
ponents are continuous at mesh vertices. The first condition is necessary
to ensure that’, C H(div, {2,S), but the second condition is a further
restriction not implied by the inclusion iH (div, £2,S). (This is analogous

to the condition of continuity of second derivatives at mesh vertices for the
Hermite quinticC! finite element. We shall see below that these two phe-
nomena are in fact related, and we shall argue that the restriction to vertex
continuity is unavoidable.) Note that the stability conditioni (®holds by
construction.

The global degrees of freedom for the assembled finite element space
X, are the values of all three components at all the mesh vertices, the values
of the moments of degredésand1 of the normal components on all the
mesh edges, and the values of the moments of dégi@eall components
on all the mesh triangles. These functionals extend naturafly( fo, S) and
so determine a canonical interpolation oper&tof2, S) — Xr. However,
because of the vertex degrees of freedom, the canonical interpolation op-
erator is not bounded with respect to the nornfif(£2, S) and so cannot
be used to establish the stability condition2(A Therefore we define an
alternate interpolation operator which is boundedrbh{ 2, S). To do so,
we require bounded linear operatdrs : H'(12,S) — S for each vertex:
of the triangulation. Given such operators, we defihe: H'(£2,S) — X,

by
(3.3) Iy (z) = Efr  for all verticese,

(3.4) /(7’ — I7)n-vds =0 forall edges and allv € Py (e, R?),
(3.5) / (t — IIy7)dx =0 forall trianglesT.
T

If £} were simply the evaluation operator— 7(x), we would obtain the
canonical interpolation operator, but this choice/gjf does not fulfill the
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required boundedness @' (£2,S). A choice that is certainly bounded is
simply Ey7 = 0 for all 7 and allz, and in fact this choice is sufficient
for verifying the stability condition (&’). We shall denote the resulting
interpolation operator bg/],?. However, in the next section we shall choose
E7T to be an approximate evaluation operator (a weighted average of
nearz), and in that way obtain an interpolation operaldg with better
approximation properties.

We have for anyr € H'(£2,S), andT € Ty, and any € Vr that

/ div(t — Iy7) - vdz
T

= —/(T — 1) : evdm—i—/ (t — Hp7)n - vds.
T T
The right hand side vanishes in view of (3.5) and (3.4). This verifies the
commutativity property

(3.6) div Il = Py div T,

where P, : L?(£2,R?) — V} is the orthogonal projection. We note that
this property holds no matter how the choice of fiigare made. A useful
consequence of (3.6) is thdiv X, = V},. Indeed, given any € V}, we
may findr € H'(£2,S) such thatliv r = v, and thenlI, = € ¥, satisfies
div I, 7 = Pyv = .

LetQ, = {q € H?(2)|Jq € X} }. Itis easy to identifyQ. Its el-
ements are piecewise quintic polynomials and belong globalty't@?).
Moreover, they ar€? at the vertices of the mesh, sinde ¢ X,. Further,
any piecewise quintic with these continuity properties is mapped imyo
X, so belongs ta;,. We conclude thaf),, is precisely the space @f!
piecewise quintics which a@? at the vertices, that is, the well-known Her-
mite quintic or Argyris finite element [2]; cf., also [89]. The relationship
between@),, and X, is even more intimate. Define a projection operator
I, : C*=(2) — Qp by requiring that the vertex values &fq, the vertex
values ofgrad I;,¢, and the edge moments of degfeef d(1;q)/on all
be equal to the corresponding values §oand that the Hessian df,q at
each vertex. be given byJI,q = E} Jq. Then the commutativity property
JInq = I, Jq can be verified easily. All these considerations are summa-
rized in the following commutative diagram with exact rows:

00— Pi(2) —S c~@0) —L 5 c~,s) — 5 c®2,R?) —— 0
lz‘d lIh l”h lph
0 — P1(02) = Qn ’ n v, Vi — 0
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It is instructive to examine which properties of oli(div, {2, S) finite el-
ement space’), led us to anH? finite element space. Suppose we have
any finite element spack,, C H(div, £2,S) and an interpolation operator
I, : C*>(£2,S) — X} (e.g., the interpolation operation determined by a
set of degrees of freedom far,) satisfing:

(a) 11,7 is divergence-free whenevers divergence-free,
(b) (II,7)nonany edge is determined by the restrictiomoto that edge,
(©) [UInT)nds = [ tndsand (IIyT)n-nsds= [ mn-nsds.

The first property is satisfied if a commutativity property like (3.6) holds,
and the second is necessary if the interpolation operator maps into the space
H(div, £2,S) and is determined by local degrees of freedom. The third prop-
erty is usually required to verify the commutativity property (3.6). Under
these assumptions we can define a corresponding subgpactH?(12)

as the inverse image af;, underJ (so, in particular, the elements @f, are
piecewise polynomials of degree two greater than thosg,9f and define

I, : C*°(2) — @y asfollows. Givery € C*°({2), I1},J qis divergence-free

by the second property, and so is equaltdor some function- determined

up to addition of a linear polynomial. Thus for any specified vesteye de-
terminel,q uniquely by the conditions thatl,q = I1,Jq, Inq(z) = q(x),
VIng(z) = Vg(z). Now(Jq)n-n = §%q/0s*> and(Jq)n-t = —0%q/dson.
Sincel,q preserves the moments 6§ indicated in property (c), and it also
preserves the value and the gradieng at one vertex, we can integrate on
edges to conclude thd,g = ¢ andVI,q = Vq at all vertices. We can
then use property (b) in a similar way to show tligy and 01,q/0n is
determined on any edge by the the restrictiog ahddq/0n on that edge.
This gives us the essential ingredients of a conforndifigfinite element
space determined by local degrees of freedom. Roughly speaking, we have
shown that whenever one can construckguiv, 2, S) finite element space

X, with expected properties, one can construcf&nfinite element space
related byQ,, = J~1(X},). Our element is so related to the Hermite quintic
element, the element of [13] is so related to the Clough—Tocher composite
H? element, and the element family of [4] is so related to the higher order
compositeH? elements of [10].

The relationship betweeH (div, £2,S) finite elements andi? finite
elements just outlined presents a major obstruction toward the construction
of the former, since the difficulty in constructing conformiff elements
is well-known. There is an analogous obstruction to the development of
H(div, 2, R?) finite elements, but it is, in contrast, very minor. It requires
only that the inverse image of such a space under the curl operator must
be a conforming finite element discretization it (£2), as, for example,
the Lagrange finite elements of degree- 1 are the inverse image of the
Raviart—Thomas elements of order
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The finite element method for elasticity based on our spagesndV},
has many features in common with popular mixed finite element methods
for scalar elliptic problems, and we shall use these in Sect. 5 to give an
error analysis. However there are some notable differences as well. One of
these is the presence of vertex nodes. This leads to technical complications
in the analysis, since it adds an additional regularity requirement for func-
tions to belong to the domain di;,. However, as we now explain, vertex
nodes are unavoidable whenever continuous shape functions are used to con-
structanH (div, {2, S) finite element space. To see why, imagine building an
H(div, £2,S) finite element space from spac®s of continuous symmetric
matrix fields, imposing interelement continuity only by means of quantities
defined on the edges (and so shared by only two neighboring elements).
This means that the degrees of freedom associated with each edge must
determine the normal component on the edge. Now consider two edges of a
triangle meeting at a common vertexIf ny is the normal to the first edge
andn. the normal to the second edge then the degrees of freedom on the
first edge must determinen; there and similarly the degrees of freedom
on the second edge must determing there. Sincer is continuous, we
have in particular that the degrees of freedom on the first edge determine
7(z)n1 - ng, and those on the second edge determingn, - n,. But these
guantities are equal singeis symmetric. This is a contradiction, since the
degrees of freedom on the two edges are necessarily independent.

This argument indicates that it is at least necessary to take the quantity
7(x)n1 - ny as a degree of freedom associated to the vertex modt
the nodex is shared by other triangles which will have other values for
the edge normal vectors;. For this reason, except if we restrict to very
special triangulations, we are forced to take all three component&:of
as degrees of freedom associated to the ndddlote that the composite
H(div, £2,S) finite elements of [13] and [4] avoid the necessity of vertex
degrees of freedom because they use discontinuous shape functions.

4. Approximation properties

In this section we analyze the approximation properties of the interpolation
operatot1;, : H'(£2,S) — X}. Recall thatthis operator is defined by (3.3)—
(3.5), whereE7 is a suitable approximate evaluation operator. We start by
specifying our choice of¢ precisely. LetY) = X, N H(£2,S) be the
space of continuous piecewise quadratic symmetric matrix fields, and let
Ry, : L*(2,S) — X} C X, be a Clement interpolant [9] satisfying

1 Avariant of this argument can be used to show thali&rinite element which uses*
shape functions must include second derivatives at the vertices among its degrees of freedom
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@.1) (R =7y <ch™ I rflm, 0<i<1, j<m <3,

whereh denotes the mesh size (i.e., the maximum diameter of a triangle in
Tr), and the constantdepends only on the shape regularity of the triangu-
lation. We then specify the interpolation operaldy via (3.3)—(3.5) with
E¥T = Ry7(x).

Recall also thatl) : H'(2,S) — X, denotes the simpler interpolation
operator obtained with the choidg’r = 0. It is straightforward to verify
the identity

ITy, = II)(I — Ry) + Ry,
Hence the error itil},, is given by
(4.2) I—1I, = (I — I (I — Ry).

The operatorI) is completely local with respect to the triangulati@p
and we may analyze it triangle-by-triangle, mapping each triangle to a fixed
reference element and applying standard scaling arguments. We can then
establish error estimates for the interpolation operatgrby combining
estimates fol ,Ez with the estimates (4.1) for the Clement interpolant.

Let F : T — T be an affine isomorphism of the forfii = Bz + b.
Given? : T — S, definer : T' — S by the matrix Piola transform

(4.3) 7(x) := B7(#)BT,

wherez = F'z. Clearly this sets up a one-to-one correspondence between
L3(T,S) andL?(T,S). A direct computation also shows that

(4.4) div7(x) = Bdiv7(%).

It follows thatr € H(div,T,S) if and only if # € H(div,T,S) and that
7 € Yrifandonly if 7 € Y. Indeed, V7 is the space of polynomial of
degree3 such thatliv 7 is polynomial of degreé, and, by (4.3) and (4.4),
these properties clearly transform.

Let 1719 : HY(T,S) — Xr be the restriction ofI? to a single triangle,
ie.,

— II97(z) = 0 for all verticesz of T,
— [(r—I)7T)n-vds =0 foralledges of T, andv € Pi (e, R?),
— Jp(r = II}7)dx = 0.

We claim that

(4.5) y7(z) = BII}#(2)B",



412 D.N. Arnold, R. Winther
wherer and7 are related by (4.3) and= F'z. To verify (4.5) we first note
that
0~y T _
BII;7(2)B" =0
for each vertex of . Furthermore,

/ BIT}#(&)B" dx = (det B)B / 9#(2) diB"
T T

= (det B)B/ 7(#)dzBT
T

_ /T (@) da.

Hence, it only remains to verify thﬂﬂ%%(fc)BT has the edge moments

required oflI%7(z). Lete be an edge df’, é the corresponding edge ot
and letv € P; (e, R?). SinceBTn, is normal teé it follows that

/ [BIIY#(2)B"n, - v(x) ds = :?;B / 9#(2)B n, - (&) d3
e € é

whereo(z) = v(z). The equation (4.5) is therefore verified.
The operator1?, is bounded fromi }(7,S) to L*(T,S). Therefore, a
standard scaling argument using (4.5) gives

(4.6) 1R llo < e(llTllo + A7l

where the constantdepends only on the shape regularity of the triangula-
tion. From (4.1) and (4.6) we obtain

HZR(I — Rp)7llo < e(lI(L = Ra)7llo + hlI(I = Rp)7l1 < ch™[|7]|m
for 1 < m < 3. Hence, it follows from (4.1) and (4.2) that
4.7) T — 7|0 < ch™||T||my, 1 <m <3.
It follows in particular that
(4.8) [T llo < cll7l1,

and so the stability property (&) holds. We also note that for the orthogonal
projection operatoP,, we have the obvious error estimates

(4.9) lo = Prolly < ch™ o]y 0 <m<2.
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5. Error analysis

Having established the stability propertiesi(Aand (A2') for the spaces
X', andV;,, we conclude that the Hellinger—Reissner functional has a unique
critical point overX’;, x V;, and obtain the quasioptimal estimate [6, 7]

o — onllmivy + lu — unllz2 < CTiEHth(HU = Tl r@iv) + llu — vl z2).
veVy

The infimum on the right hand side is easily seen talg&?) for smooth
solutions. However we shall now state and prove more precise estimates,
with an analysis very analogous to that for second order elliptic problems.

Theorem 5.1. Let (0, u) denote the unique critical point of the Hellinger—
Reissner functional ovei (div, 2, S) x L?(£2,R?) and let(oy,, u ) denote
unigue critical point over”), x V,,, whereX’;, andV}, are the spaces defined
in Sect. 3. Then

HU - UhHO < ChmHO-”ma 1 <m <3,
|diveo — divopllo < ch™||divol|m, 0<m <2,
llu —upllo < ch™||u|lmsr, 1<m<2.

Proof. Recall that the exact solutidir, v) € H(div, £2,S) x L?(£2,R?)is
the unique solution of (1.2), i.e.,

/(Aa:7+div7-u)d;v=0, T € H(div, £2,9),
Q

/divo-vdmz/f-vda:, v € L*(2,R?).
9 2

The mixed method solutiofy,, uy) € X, x V}, satisfies the corresponding
discrete system

/(A0h27+diVT-uh)dl':0, T E Xy,
o)

/divoh-vdxz/f‘vda:, v € V.
2 2

Subtracting we obtain error equations, which, sidoeX’;, C V},, we may
write as

(5.1) / [A(c —op) : T+ divT - (Pyu —up)]de =0, 7€ Xy,
Q

(5.2) / div(ec —op) -vde =0, v € V.
2
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The second equation immediately implies that
(5.3) div oy, = Py, dive = div II},0,

where the last equality comes from (3.6). Hence, from (4.9), we immediately
obtain the desired error bound féiv o

(5.4)
|dive —divopllo = [|[(I — Pn)divollo < ch™||divo|m, 0<m <2.

TakingT = II0 — oy, in (5.1) and invoking (5.3) we obtain
/ Ao — o) : (ITho — op) dx
0

= / div(IIpo — op) - (Pyu — up) dx = 0,
Q
from which it easily follows that
lo—onlla < llo = Ihol|a,

where||7||% := [ A7 : 7dx. Since the nornj|- || 4 is equivalent to the
L?—norm it follows from (4.7) that

(5.5) lo—onllo < ch™||o||lm, 1<m<3.

In order to establish the error estimate for the displacement, we recall
that

lu — Pyullo < ch?||ul2.
Therefore, the desired estimate will follow from the bound
(5.6) |Pru — upllo < ch™||ul|mer 1 <m < 2.

LetT € H(£2,S) satisfydivr = Pyu — uy, with |71 < || Pyu — up||o-
Then, in light of the commutativity property, (3.6), and the bound (4.8),
div I, = Pyu — uy, andHUhTH() < CHPhU — uhHo. Hence,

| Pru — up |3 :/ div ITp7 - (Ppu — up,) dx
2

= —/ A(o —op) - HpTdx
Q
< cllo = anllo|| Pru — unllo-
Thus
1Pyt — unllo < cllo = anllo < h™|llm < ch™ fullmss, 1< m <3,

which contains (5.6). a
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6. Higher order elements

The foregoing considerations generalize in a straightforward manner to el-
ements of higher order. Lét be a positive integer, the cage= 1 being

that considered heretofore. Generalizing (3.1), we define the finite element
spaces on a single triangle:

X = Pk+1(T, S) + {T c Pk+2(T, S) ’ divr = 0}
= {7 € Pry2(T,S) | divr € Pr(T,R?)},
Vi = Pr(T,R?).

Clearlydim Vp = (k + 1)(k + 2), and

dim Y7 < dy, : = dim Pyo(T,S) — [dim Py (T, R?) —dim Py (T, R?)]
= (3k% 4 17k + 28)/2.

We shall show that in facfim Y+ = d; and exhibit a unisolvent set of
degrees of freedom. To this end, we define

My(T) = {7 € Pr2(T,S)|divr =0andrn =00ondT }.

In the proof of Lemma 3.1, we showed that for= 1, M (T) = 0. The
same argument shows that for> 2, M (T') = J(b2Px_o(T)), whereby

is the cubic bubble function df (the unigue cubic polynomial achieving a
maximum value of unity ofl” and vanishing o®T"). Thusdim My(T) =
(k* — k)/2 for k > 1. The space[Py(T,R?)] has dimensiorik + 1)(k +

2) — 3 and is clearlyL?-orthogonal toM(T). Thus the spac&V,(T) :=
€[Pr(T,R?)] + M (T) has dimensior{3k? + 5k — 2)/2. The degrees of
freedom we take forr are

— the values of three componentsrfr) at each vertex of 7' (9 degrees
of freedom)

— the values of the moments of degree at miosf the two normal com-
ponents ofr on each edge of T' (6% + 6 degrees of freedom)

— the value of the moment§. 7 : ¢ dz, ¢ € Ny(T) ((3k* + 5k — 2)/2
degrees of freedom)

We have specified;, degrees of freedom. Thus to show unisolvence it suf-
fices to show that if all the degrees of freedom vanish for soraeX, (T),
thenr vanishes. The proof is just as for Lemma 3.1. From the vanishing
of the first two sets of degrees of freedom we conclude thavanishes

on dT. This, together with the vanishing ¢f.7 : ¢ dz, ¢ € €[Py(T,R?)]
implies thatdiv 7 vanishes as well, so € M (T'), and, using the remain-
ing degrees of freedom, we conclude thatanishes identically. Element
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Fig. 2. Element diagrams for the stress and displacement elements in the eage

diagrams for the case = 2 are shown in Fig. 2. In this cagé,(7') is the
span ofP; (7, S) and the additional matrix field (b%).

Having specified finite element spaces on individual triangles and the
degrees of freedom, we have determined the finite element spacasd
V}, for any triangulation. The latter space is simply the space of piecewise
polynomial vector fields of degree at masivhile the former space consists
of H(div, {2,S) matrix fields which belong ta”r on eachT’ € 7, and
in addition are continuous at the mesh vertices. In addition to the natural
interpolation operator determined by the degrees of freedom, we define
I, : H(02,S) — X, by using as degrees of freedom at the vertices the
values of a suitable Clement interpolant. In this way we obtain an operator
which satisfies the commutativity property (3.6) (with the L2-projection
into 4,), and the error estimates (4.7), now foK m < k+ 2. The analysis
generalizes directly from the cake= 1, resulting in the following analogue
of Theorem 5.1.

Theorem 6.1. Let (o, u) denote the unique critical point of the Hellinger—
Reissner functional ovei (div, 2, S) x L?(£2,R?) and let(oy,, u ) denote
the unique critical point ovet’;, x V,, whereX, andV}, are the spaces
defined above for some integet> 1. Then

lo = onllo < ch™||o]|m, 1<m<k+2,
|diveo — divopllo < ch™||divollm, 0<m<k+1,
lu —upllo < ch™||ullms+1, 1<m<k+1.

7. A simplified element of low order

There does not exist an element pair for= 0 in our family. Indeed,
there could not, since there does not exist&nfinite element of degreé.
However, there is a variant of the lowest order 1 element), with fewer
degrees of freedom, which we now describe briefly. To do so we denote
by RM(T') the space of infinitesmal rigid motions @h i.e., the span of
Po(T, R?) and the linear vector fiel-z2, 1 ). This is precisely the kernel
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/N

R

Fig. 3. Element diagrams for the elements of reduced order

of the symmetric gradient operator~or our simplified element we také
to be RM(T) and

Yr={7e€Ps(T,S)|divr € RM(T)}.
Thendim Xy = 21 and a unisolvent set of degrees of freedom are

— the values of three componentsmfr) at each vertex of 7' (9 degrees
of freedom)

— the values of the moments of degfeand1 of the two normal compo-
nents ofr on each edge of 7' (12 degrees of freedom)

See Fig. 3. In this casBy(T,R?) C Vp € P1(T,R?) andPy(T,S) <
Y71 C Po(T,S). Therefore the final error estimates are

lo—onllo < ch™|[o]m, 1<m<2,
||dive — divopllo < ch™||divo|m,, 0<m<1,
lu = unllo < chlfulla.

The analysis follows closely that of the previous element family. One dif-
ference is that the spacer for this element is not invariant under the Piola
transform. Consequently a different argument is required to prove the ap-
proximation properties ak;,. This can be done, for example, by scaling to

a similar element of unit diameter using translation, rotation, and dilation,
and using a compactness argument.

8. Final remarks

In the interest of clarity we have considered an elastic body clamped all
around its boundary and described by a uniformly positive definite com-
pliance tensor. Both restrictions can be loosened. The extension to traction
boundary conditions on part of the boundary is straightforward. For the
Hellinger—Reissner variational form, traction boundary conditions are es-
sential, and thus must be imposed in the stress spacéVhen traction
boundary conditions are imposed on both edges meeting at a corner, then
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the entire stress tensor must vanish there, and so all three degrees of freedom
at the corner set equal to zero. At other boundary points traction boundary
conditions imply two linear relations among three degrees of freedom. (Such
linear relation boundary conditions can be implemented by modifying the
relevant columns and rows of the unconstrained stiffness matrix, maintain-
ing symmetry.)

Another generalization that can easily be handled is the extension to
nearly incompressible or incompressible elastic materials. In the homoge-
neous isotropic case the compliance tensor is giveAby= [T — \/(2u +
2\) tr 7 I]/2u, wherep > 0, A > 0 are the Lard constants. For our mixed
method, as for most methods based on the Hellinger—Reissner principle,
one can prove that the error estimates hold uniformlyithe incom-
pressible limit being\ — o0). In the analysis above we used the fact that
[ A7 : T7dz > ¢ 7|3 for some positivecy. This estimate degenerates
(co — 0) asA — oco. However the estimate remains true with> 0 de-
pending only onf2 andy if we restrictr to functions for whichdiv + = 0,
JotrTdx = 0, and this is enough to carry through the analysis. See [4]
where the details are presented for a composite mixed element.
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