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Summary. There have been many efforts, dating back four decades, to
develop stablemixed finite elements for the stress-displacement formulation
of the plane elasticity system. This requires the development of a compatible
pair of finite element spaces, one to discretize the space of symmetric tensors
in which the stress field is sought, and one to discretize the space of vector
fields in which the displacement is sought. Although there are number of
well-known mixed finite element pairs known for the analogous problem
involving vector fields and scalar fields, the symmetry of the stress field is
a substantial additional difficulty, and the elements presented here are the
first ones using polynomial shape functions which are known to be stable.
We present a family of such pairs of finite element spaces, one for each
polynomial degree, beginning with degree two for the stress and degree one
for the displacement, and show stability and optimal order approximation.
We also analyze some obstructions to the construction of such finite element
spaces, which account for the paucity of elements available.

Mathematics Subject Classification (1991):65N30, 74S05

1. Introduction

Letσ andu denote the stress and displacement fields engendered by a body
forcef acting on a linearly elastic body which occupies a planar regionΩ
and which is clamped on∂Ω. Thenσ takes values in the spaceS = R2×2
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of symmetric tensors andu in R2, and the pair(σ, u) is characterized as the
unique critical point of the Hellinger–Reissner functional

J (τ, v) =
∫

Ω

(1
2
Aτ : τ + div τ · v − f · v) dx.(1.1)

Here the compliance tensorA = A(x) : S → S is bounded and symmetric
positive definite uniformly forx ∈ Ω, and the critical point is sought among
all τ ∈ H(div, Ω,S), the space of square-integrable symmetric matrix
fields with square-integrable divergence, and allv ∈ L2(Ω,R2), the space
of square-integrable vector fields. Equivalently,(σ, u) ∈ H(div, Ω,S) ×
L2(Ω,R2) is the unique solution to the following weak formulation of the
elasticity system:

∫
Ω

(Aσ : τ + div τ · u + div σ · v) dx =
∫

Ω
fv dx,

(τ, v) ∈ H(div, Ω,S) × L2(Ω,R2).(1.2)

A mixed finite element method determines an approximate stress field
σh and an approximate displacement fielduh as the critical point ofJ over
Σh × Vh whereΣh ⊂ H(div, Ω,S) andVh ⊂ L2(Ω,R2) are suitable
piecewise polynomial subspaces. Equivalently, the pair(σh, uh) ∈ Σh ×Vh

is determined by the weak formulation (1.2), with the test space restricted
toΣh × Vh. As is well known, the subspacesΣh andVh cannot be chosen
arbitrarily. To ensure that a unique critical point exist and that it provides
a good approximation of the true solution, they must satisfy the stability
conditions from the theory of mixed methods [6,7]:

(A1) There exists a positive constantc1 such that‖τ‖H(div) ≤ c1‖τ‖L2

wheneverτ ∈ Σh satisfies
∫
Ω div τ · v dx = 0 for all v ∈ Vh.

(A2) There exists a positive constantc2 such that for all nonzerov ∈ Vh

there exists nonzeroτ ∈ Σhwith
∫
Ω div τ ·v dx ≥ c2‖τ‖H(div)‖v‖L2 .

Condition (A2) is one of the two stability conditions of [6], while (A1)
implies the other, and essentially equivalent to it in practice. However we
shall establish a second set of conditions, which imply (A1) and (A2) and
also some other useful properties of the mixed method. These conditions
are:

(A1′) divΣh ⊂ Vh.
(A2′) There exists a linear operatorΠh : H1(Ω, S) → Σh, bounded in

L(H1, L2) uniformly with respect toh, and such thatdivΠhσ =
Ph div σ for all σ ∈ H1(Ω,S), wherePh : L2(Ω,R2) → Vh denotes
theL2-projection.
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It is clear that condition (A1′) implies (A1) with c1 = 1. In order to see that
the so-called commuting diagram property (A2′) implies (A2) we have to
invoke the fact that for eachv ∈ L2(Ω,R2) there exists aτ ∈ H1(Ω, S)
such that

div τ = v, ‖τ‖H1 ≤ c0‖v‖L2 ,

wherec0 is independent ofv (this is discussed briefly in the following
section). Forv ∈ Vh and with this choice ofτ we haveΠhτ ∈ Σh,
divΠhτ = Ph div τ = Phv = v, and∫

Ω
divΠhτ · v dx = ‖v‖2

L2 ≥ c−1
0 ‖τ‖H1‖v‖L2 ≥ c2‖Πhτ‖H(div)‖v‖L2 ,

wherec2 = c−1
0 (1 + ‖Πh‖2

L(H1,L2))
−1/2.

Despite four decades of effort, very few choices of finite element spaces
have been constructed which satisfy conditions (A1) and (A2). In fact, the
only ones known use composite elements, in whichVh consists of piece-
wise polynomials with respect to one triangulation of the domain, whileΣh

consists of piecewise polynomials with respect to a different, more refined,
triangulation [4,12,13,19]. Because of the lack of suitable mixed elasticity
elements, several authors have resorted to the use of Lagrangian functionals
which are modifications of the Hellinger–Reissner functional given above
[1,3,5,15–18], in which the symmetry of the stress tensor is enforced only
weakly or abandoned altogether. Another modification is analyzed in [14],
where the solution space is altered such thatΣh is only required to be a
subspace ofL2(Ω,S).
In this paper we present a family of mixed finite element spaces for the

unmodified Hellinger–Reissner formulation. The spaces consist of piece-
wise polynomials with respect to a single arbitrary triangular subdivision of
Ω and satisfy conditions (A1′) and (A2′) with constantsc1 andc2 indepen-
dent of the triangulation (assuming, as usual, uniform shape regularity of
the triangulations). The spaceVh we use to approximate the displacement
simply consists of all piecewise polynomials of degreek with no interele-
ment continuity constraints. The degreekmay be any positive integer (with
different values ofk determining different finite element spaces on the same
triangulation). The spaceΣh is, of course, more complicated. Restricted to a
single simplex theelements ofΣh consist of all piecewisepolynomialmatrix
fields of degree at mostk+1 together with the divergence-freematrix fields
of degreek + 2. Degrees of freedom are specified on each element which
determine the interelement continuity and ensure thatΣh ⊂ H(div, Ω,S).
In order to present the main ideas as clearly as possible, we shall first

analyze the lowest order family of elements. After some preliminaries in
Sect. 2, in Sect. 3 we construct the spacesΣh andVh in the casek = 1, by
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describing their restrictions to each triangle and giving a unisolvent set of
local degrees of freedom. We establish a relation between these space and
the Hermite quinticC1 finite element space, and explain in general the rela-
tionship between stable finite elements for the Hellinger–Reissner principle
andC1 finite elements. This provides a major obstruction to the construc-
tion of the former. Our element involves vertex degrees of freedom, a fact
which, as we shall show, is unavoidable. Because of this, the interpolation
operator intoΣh associated with the degrees of freedom is not bounded on
H1(Ω,S), and so, even though it satisfies the commutativity property of
condition (A2′), it does not establish that condition. In the following section
we modify the interpolation operator, maintaining the commutativity, and
establish its boundedness and approximation properties. Then in Sect. 5 we
complete the error analysis for thek = 1 case. In Sect. 6, we briefly describe
the casek ≥ 1, which is altogether analogous to the casek = 1. In a few
brief final paragraphs we describe a variant of the lowest order element with
fewer degrees of freedom, and mention some simple extensions.

2. Notation and preliminaries

We denote byHk(T,X) the Sobolev space consisting of functions with
domainT ⊂ R2, taking values in the finite-dimensional vector spaceX, and
with all derivatives of order at mostk square-integrable. For our purposes,
the range spaceX will be eitherS, R2, or R. In the latter case we may
write simplyHk(T ). We will generally write‖ · ‖k or ‖ · ‖Hk instead of
‖ · ‖Hk(T,X). We similarly denote byPk(T,X) the space of polynomials on
T with degree at mostk.
If τ is a symmetric matrix field then its divergence,div τ , is the vector

field obtained by applying the ordinary divergence operator to each row. The
symmetric part of the gradient of a vector fieldv, denotedε v, is given by
ε v = [grad v + (grad v)T]/2.
Throughout the paper we assume that the elastic domainΩ is a simply

connected polygonal domain inR2. Any smooth vector field onΩ may be
realized as the divergence of a smooth symmetric matrix field. E.g., we may
extend the vector field smoothly to a larger smoothly bounded domain, and
then solve the equations of elasticity there with the extended vector field as
body forces. The same argument shows that any vector field inL2(Ω,R2)
may be realized as the divergence of a matrix field inH1(Ω, S), a fact we
already invoked in the introductionandwill useaswell in the sequel. Further,
a symmetric matrix fieldτ on a simply connected domain is divergence-free
if and only if τ admits a potential, or Airy stress function,

τ = Jq :=
(

∂2q/∂y2 −∂2q/∂x∂y
−∂2q/∂x∂y ∂2q/∂x2

)
.
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The potentialq is determined byτ up to addition of a linear polynomial.
These considerations are summarized by the statement that the following se-
quence is exact (i.e., that the range of eachmap is the kernel of the following
one):

0 −−−→ P1(Ω) ⊂−−−→ C∞(Ω)
J−−−→ C∞(Ω,S) div−−−→ C∞(Ω,R2) −−−→ 0.

This exact sequence is related, although rather indirectly, to the de Rham
sequence for the domain theΩ [11]. We have stated it in terms of infinitely
differentiable functions, but analogous results hold with less smoothness.
E.g., the sequence

0 −−−→ P1(Ω) ⊂−−−→ H2(Ω) J−−−→ H(div, Ω,S)
div−−−→ L2(Ω,R2) −−−→ 0

(2.1)

is also exact. There is a polynomial analogue of the sequence as well: for
any integerk ≥ 0 the sequence

0 −−−→ P1(Ω) ⊂−−−→ Pk+3(Ω) J−−−→ Pk+1(Ω, S)
div−−−→ Pk(Ω,R2) −−−→ 0

is exact. (To verify the surjectivity of the final divergence, it suffices to count
dimensions and use the exactness of the sequence at the other points.) As we
shall see a key ingredient in the development and analysis of mixedmethods
for elasticity is a discrete analogue of the exact sequence (2.1).

3. The finite element method in the lowest order case

In this section we present amixed finite element method based on piecewise
linear displacements and piecewise quadratic stresses, the latter augmented
by some cubic shape functions. First we describe the finite elements on a
single triangleT ⊂ Ω. Define

ΣT = P2(T,S) + { τ ∈ P3(T,S) | div τ = 0 }
= { τ ∈ P3(T, S) | div τ ∈ P1(T,R2)},

VT = P1(T,R2).

(3.1)

The spaceVT has dimension6 and a complete set of degrees of freedom are
givenby the value of the two components at the threenodes interior toT . The
spaceΣT clearly has dimension at least24, since thedimP3(T,S) = 30
and the condition thatdiv τ ∈ P1(T,R2) represents six linear constraints.
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We now exhibit24 degrees of freedomΣT → R and show that they vanish
simultaneously only whenτ = 0. This implies that the dimension ofΣT

is precisely24 (which could also be established directly using the fact that
div P3(Ω,S) = P2(Ω,R2)), and that the degrees of freedomare unisolvent.
The degrees of freedom are

– the values of three components ofτ(x) at each vertexx of T (9 degrees
of freedom)

– the values of the moments of degree0 and1 of the two normal compo-
nents ofτ on each edgee of T (12 degrees of freedom)

– the value of the three components of the moment of degree0 of τ onT
(3 degrees of freedom)

Otherwise stated, we determineτ ∈ ΣT by giving its values at the ver-
tices, the values of

∫
e(τn) ds and

∫
e(τn)s ds for all edges, and the value of∫

T τ dx. (Heres is a parameter giving the distance to one of the end points
of e andn is one of the unit vectors normal toe.) Note that the degrees of
freedom associated to an edge and its end points determineτn on that edge.
This is just the condition required to obtain a conforming approximation of
H(div, Ω,S). The element diagrams in Fig. 1 are mnemonic of the degrees
of freedom.

Fig. 1. Element diagrams for the lowest order stress and displacement elements

Lemma 3.1. If the 24 degrees of freedom just given all vanish for some
τ ∈ ΣT , thenτ = 0.

Proof. We immediately have thatτn vanishes on each edge. Lettingv =
div τ , a linear vector field onT , we get∫

T
v2 dx = −

∫
T
τ : ε v dx +

∫
∂T

τn · v ds = 0(3.2)

since the integral ofτ vanishes as well asτn. Thusτ is divergence-free
and henceτ = Jq for someq ∈ P5(T ). Adjusting by a linear function we
may takeq to vanish at the vertices. Now∂2q/∂s2 = τn · n = 0 on each
edge, whenceq is identically zero on∂T . This implies that the gradient of
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q vanishes at the vertices. Since∂2q/∂s∂n = −τn · t = 0 on each edge
(with t a unit vector tangent to the edge), we conclude that∂q/∂n vanishes
identically on∂T as well. Sinceq has degree at most5, it must vanish
identically. ��
Having given a unisolvent set of degrees of freedom forVT andΣT , our
finite element space is assembled in the usual way. LetTh be some triangu-
lation ofΩ, i.e., a set of closed triangles with union̄Ω and such that any two
distinct non-disjoint elements ofTh meet in a common edge or vertex. The
associated finite element element spaceVh is then the space of all piece-
wise linear vector fields with respect to this triangulation, not subject to any
interelement continuity conditions. The spaceΣh is the space of all matrix
fields which belong piecewise toΣT , subject to the continuity conditions
that the normal components are continuous across mesh edges and all com-
ponents are continuous at mesh vertices. The first condition is necessary
to ensure thatΣh ⊂ H(div, Ω,S), but the second condition is a further
restriction not implied by the inclusion inH(div, Ω,S). (This is analogous
to the condition of continuity of second derivatives at mesh vertices for the
Hermite quinticC1 finite element. We shall see below that these two phe-
nomena are in fact related, and we shall argue that the restriction to vertex
continuity is unavoidable.) Note that the stability condition (A1′) holds by
construction.
The global degrees of freedom for the assembled finite element space

Σh are the values of all three components at all the mesh vertices, the values
of the moments of degrees0 and1 of the normal components on all the
mesh edges, and the values of the moments of degree0 for all components
on all the mesh triangles. These functionals extend naturally toC(Ω, S) and
so determine a canonical interpolation operatorC(Ω, S) → ΣT . However,
because of the vertex degrees of freedom, the canonical interpolation op-
erator is not bounded with respect to the norm inH1(Ω, S) and so cannot
be used to establish the stability condition (A2′). Therefore we define an
alternate interpolation operator which is bounded onH1(Ω, S). To do so,
we require bounded linear operatorsEx

h : H1(Ω, S) → S for each vertexx
of the triangulation. Given such operators, we defineΠh : H1(Ω, S) → Σh

by

Πhτ(x) = Ex
hτ for all verticesx,(3.3) ∫

e
(τ − Πhτ)n · v ds = 0 for all edgese and allv ∈ P1(e,R2),(3.4)

∫
T
(τ − Πhτ) dx = 0 for all trianglesT .(3.5)

If Ex
h were simply the evaluation operatorτ �→ τ(x), we would obtain the

canonical interpolation operator, but this choice ofEx
h does not fulfill the
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required boundedness onH1(Ω,S). A choice that is certainly bounded is
simply Ex

hτ = 0 for all τ and allx, and in fact this choice is sufficient
for verifying the stability condition (A2′). We shall denote the resulting
interpolation operator byΠ0

h. However, in the next section we shall choose
Ex

hτ to be an approximate evaluation operator (a weighted average ofτ
nearx), and in that way obtain an interpolation operatorΠh with better
approximation properties.
We have for anyτ ∈ H1(Ω,S), andT ∈ Th, and anyv ∈ VT that∫

T
div(τ − Πhτ) · v dx

= −
∫

T
(τ − Πhτ) : ε v dx +

∫
∂T

(τ − Πhτ)n · v ds.

The right hand side vanishes in view of (3.5) and (3.4). This verifies the
commutativity property

divΠhτ = Ph div τ,(3.6)

wherePh : L2(Ω,R2) → Vh is the orthogonal projection. We note that
this property holds no matter how the choice of theEx

h are made. A useful
consequence of (3.6) is thatdivΣh = Vh. Indeed, given anyv ∈ Vh we
may findτ ∈ H1(Ω,S) such thatdiv τ = v, and thenΠhτ ∈ Σh satisfies
divΠhτ = Phv = v.
Let Qh = { q ∈ H2(Ω) |Jq ∈ Σh }. It is easy to identifyQh. Its el-

ements are piecewise quintic polynomials and belong globally toC1(Ω).
Moreover, they areC2 at the vertices of the mesh, sinceJq ∈ Σh. Further,
any piecewise quintic with these continuity properties is mapped byJ into
Σh, so belongs toQh. We conclude thatQh is precisely the space ofC1

piecewise quintics which areC2 at the vertices, that is, the well-known Her-
mite quintic or Argyris finite element [2]; cf., also [8,§ 9]. The relationship
betweenQh andΣh is even more intimate. Define a projection operator
Ih : C∞(Ω) → Qh by requiring that the vertex values ofIhq, the vertex
values ofgrad Ihq, and the edge moments of degree0 of ∂(Ihq)/∂n all
be equal to the corresponding values forq, and that the Hessian ofIhq at
each vertexh be given byJIhq = Ex

hJq. Then the commutativity property
JIhq = ΠhJq can be verified easily. All these considerations are summa-
rized in the following commutative diagram with exact rows:

0 −−−−−→ P1(Ω) ⊂−−−−−→ C∞(Ω) J−−−−−→ C∞(Ω, S) div−−−−−→ C∞(Ω, R
2) −−−−−→ 0



�id



�Ih



�Πh



�Ph

0 −−−−−→ P1(Ω) ⊂−−−−−→ Qh
J−−−−−→ Σh

div−−−−−→ Vh −−−−−→ 0
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It is instructive to examine which properties of ourH(div, Ω,S) finite el-
ement spaceΣh led us to anH2 finite element space. Suppose we have
any finite element spaceΣh ⊂ H(div, Ω,S) and an interpolation operator
Πh : C∞(Ω,S) → Σh (e.g., the interpolation operation determined by a
set of degrees of freedom forΣh) satisfing:

(a) Πhτ is divergence-free wheneverτ is divergence-free,
(b) (Πhτ)n on any edge is determined by the restriction ofτn to that edge,
(c)

∫
e(Πhτ)nds =

∫
e τn ds and

∫
e(Πhτ)n · n s ds =

∫
e τn · n s ds.

The first property is satisfied if a commutativity property like (3.6) holds,
and the second is necessary if the interpolation operator maps into the space
H(div, Ω,S) and is determined by local degrees of freedom. The third prop-
erty is usually required to verify the commutativity property (3.6). Under
these assumptions we can define a corresponding subspaceQh of H2(Ω)
as the inverse image ofΣh underJ (so, in particular, the elements ofQh are
piecewise polynomials of degree two greater than those ofΣh), and define
Ih : C∞(Ω) → Qh as follows.Givenq ∈ C∞(Ω),ΠhJq is divergence-free
by the second property, and so is equal toJr for some functionr determined
up to addition of a linear polynomial. Thus for any specified vertexxwe de-
termineIhq uniquely by the conditions thatJIhq = ΠhJq, Ihq(x) = q(x),
∇Ihq(x) = ∇q(x).Now(Jq)n·n = ∂2q/∂s2 and(Jq)n·t = −∂2q/∂s∂n.
SinceIhq preserves the moments ofJq indicated in property (c), and it also
preserves the value and the gradient ofq at one vertex, we can integrate on
edges to conclude thatIhq = q and∇Ihq = ∇q at all vertices. We can
then use property (b) in a similar way to show thatIhq and∂Ihq/∂n is
determined on any edge by the the restriction ofq and∂q/∂n on that edge.
This gives us the essential ingredients of a conformingH2 finite element
space determined by local degrees of freedom. Roughly speaking, we have
shown that whenever one can construct anH(div, Ω,S) finite element space
Σh with expected properties, one can construct anH2 finite element space
related byQh = J−1(Σh). Our element is so related to the Hermite quintic
element, the element of [13] is so related to the Clough–Tocher composite
H2 element, and the element family of [4] is so related to the higher order
compositeH2 elements of [10].
The relationship betweenH(div, Ω,S) finite elements andH2 finite

elements just outlined presents a major obstruction toward the construction
of the former, since the difficulty in constructing conformingH2 elements
is well-known. There is an analogous obstruction to the development of
H(div, Ω,R2) finite elements, but it is, in contrast, very minor. It requires
only that the inverse image of such a space under the curl operator must
be a conforming finite element discretization ofH1(Ω), as, for example,
the Lagrange finite elements of degreek + 1 are the inverse image of the
Raviart–Thomas elements of orderk.
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The finite element method for elasticity based on our spacesΣh andVh

has many features in common with popular mixed finite element methods
for scalar elliptic problems, and we shall use these in Sect. 5 to give an
error analysis. However there are some notable differences as well. One of
these is the presence of vertex nodes. This leads to technical complications
in the analysis, since it adds an additional regularity requirement for func-
tions to belong to the domain ofΠh. However, as we now explain, vertex
nodesare unavoidablewhenever continuous shape functions are used to con-
struct anH(div, Ω,S) finite element space. To seewhy, imagine building an
H(div, Ω,S) finite element space from spacesΣT of continuous symmetric
matrix fields, imposing interelement continuity only by means of quantities
defined on the edges (and so shared by only two neighboring elements).
This means that the degrees of freedom associated with each edge must
determine the normal component on the edge. Now consider two edges of a
triangle meeting at a common vertexx. If n1 is the normal to the first edge
andn2 the normal to the second edge then the degrees of freedom on the
first edge must determineτn1 there and similarly the degrees of freedom
on the second edge must determineτn2 there. Sinceτ is continuous, we
have in particular that the degrees of freedom on the first edge determine
τ(x)n1 ·n2, and those on the second edge determineτ(x)n2 ·n1. But these
quantities are equal sinceτ is symmetric. This is a contradiction, since the
degrees of freedom on the two edges are necessarily independent.
This argument indicates that it is at least necessary to take the quantity

τ(x)n1 · n2 as a degree of freedom associated to the vertex nodex. But
the nodex is shared by other triangles which will have other values for
the edge normal vectorsni. For this reason, except if we restrict to very
special triangulations, we are forced to take all three components ofτ(x)
as degrees of freedom associated to the nodex1. Note that the composite
H(div, Ω,S) finite elements of [13] and [4] avoid the necessity of vertex
degrees of freedom because they use discontinuous shape functions.

4. Approximation properties

In this section we analyze the approximation properties of the interpolation
operatorΠh : H1(Ω,S) → Σh. Recall that this operator is definedby (3.3)–
(3.5), whereEx

h is a suitable approximate evaluation operator. We start by
specifying our choice ofEx

h precisely. LetΣ
′
h = Σh ∩ H1(Ω, S) be the

space of continuous piecewise quadratic symmetric matrix fields, and let
Rh : L2(Ω,S) → Σ′

h ⊂ Σh be a Clement interpolant [9] satisfying

1 A variant of this argument can be used to show that anH2 finite element which usesC1

shape functionsmust include second derivatives at the vertices among its degrees of freedom
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‖Rhτ − τ‖j ≤ chm−j‖τ‖m, 0 ≤ j ≤ 1, j ≤ m ≤ 3,(4.1)

whereh denotes the mesh size (i.e., the maximum diameter of a triangle in
Th), and the constantc depends only on the shape regularity of the triangu-
lation. We then specify the interpolation operatorΠh via (3.3)–(3.5) with
Ex

hτ = Rhτ(x).
Recall also thatΠ0

h : H1(Ω,S) → Σh denotes the simpler interpolation
operator obtained with the choiceEx

hτ = 0. It is straightforward to verify
the identity

Πh = Π0
h(I − Rh) + Rh.

Hence the error inΠh, is given by

I − Πh = (I − Π0
h)(I − Rh).(4.2)

The operatorΠ0
h is completely local with respect to the triangulationTh

and wemay analyze it triangle-by-triangle, mapping each triangle to a fixed
reference element and applying standard scaling arguments. We can then
establish error estimates for the interpolation operatorΠh by combining
estimates forΠ0

h with the estimates (4.1) for the Clement interpolant.
Let F : T̂ → T be an affine isomorphism of the formFx̂ = Bx̂ + b.

Given τ̂ : T̂ → S, defineτ : T → S by the matrix Piola transform

τ(x) := Bτ̂(x̂)BT,(4.3)

wherex = Fx̂. Clearly this sets up a one-to-one correspondence between
L2(T,S) andL2(T̂ ,S). A direct computation also shows that

div τ(x) = B div τ̂(x̂).(4.4)

It follows that τ ∈ H(div, T,S) if and only if τ̂ ∈ H(div, T̂ ,S) and that
τ ∈ ΣT if and only if τ̂ ∈ ΣT̂ . Indeed,ΣT is the space ofτ polynomial of
degree3 such thatdiv τ is polynomial of degree1, and, by (4.3) and (4.4),
these properties clearly transform.
LetΠ0

T : H1(T,S) → ΣT be the restriction ofΠ0
h to a single triangle,

i.e.,

– Π0
T τ(x) = 0 for all verticesx of T ,

–
∫
e(τ − Π0

hτ)n · v ds = 0 for all edgese of T , andv ∈ P1(e,R2),
–

∫
T (τ − Π0

hτ) dx = 0.

We claim that

Π0
T τ(x) = BΠ0

T̂
τ̂(x̂)BT,(4.5)
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whereτ andτ̂ are related by (4.3) andx = Fx̂. To verify (4.5) we first note
that

BΠ0
T̂
τ̂(x̂)BT = 0

for each vertex ofT . Furthermore,∫
T
BΠ0

T̂
τ̂(x̂)BT dx = (detB)B

∫
T̂
Π0

T̂
τ̂(x̂) dx̂BT

= (detB)B
∫

T̂
τ̂(x̂) dx̂BT

=
∫

T
τ(x) dx.

Hence, it only remains to verify thatBΠ0
T̂
τ̂(x̂)BT has the edge moments

required ofΠ0
T τ(x). Let e be an edge ofT , ê the corresponding edge of̂T ,

and letv ∈ P1(e,R2). SinceBTne is normal toê it follows that∫
e
[BΠ0

T̂
τ̂(x̂)BT]ne · v(x) ds =

|e|
|ê|B

∫
ê
Π0

T̂
τ̂(x̂)BTne · v̂(x̂) dŝ

=
|e|
|ê|B

∫
ê
τ̂(x̂)BTne · v̂(x̂) dŝ

=
∫

e
τ(x)ne · v(x) ds,

wherev̂(x̂) = v(x). The equation (4.5) is therefore verified.
The operatorΠ0

T̂
is bounded fromH1(T̂ ,S) to L2(T̂ ,S). Therefore, a

standard scaling argument using (4.5) gives

‖Π0
hτ‖0 ≤ c(‖τ‖0 + h‖τ‖1)(4.6)

where the constantc depends only on the shape regularity of the triangula-
tion. From (4.1) and (4.6) we obtain

‖Π0
h(I − Rh)τ‖0 ≤ c(‖(I − Rh)τ‖0 + h‖(I − Rh)τ‖1 ≤ chm‖τ‖m

for 1 ≤ m ≤ 3. Hence, it follows from (4.1) and (4.2) that

‖Πhτ − τ‖0 ≤ chm‖τ‖m, 1 ≤ m ≤ 3.(4.7)

It follows in particular that

‖Πhτ‖0 ≤ c‖τ‖1,(4.8)

and so the stability property (A2′) holds.We also note that for the orthogonal
projection operatorPh, we have the obvious error estimates

‖v − Phv‖0 ≤ chm‖v‖m, 0 ≤ m ≤ 2.(4.9)
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5. Error analysis

Having established the stability properties (A1′) and (A2′) for the spaces
Σh andVh, we conclude that the Hellinger–Reissner functional has a unique
critical point overΣh × Vh and obtain the quasioptimal estimate [6,7]

‖σ − σh‖H(div) + ‖u − uh‖L2 ≤ c inf
τ∈Σh
v∈Vh

(‖σ − τ‖H(div) + ‖u − v‖L2).

The infimum on the right hand side is easily seen to beO(h2) for smooth
solutions. However we shall now state and prove more precise estimates,
with an analysis very analogous to that for second order elliptic problems.

Theorem 5.1. Let (σ, u) denote the unique critical point of the Hellinger–
Reissner functional overH(div, Ω,S)×L2(Ω,R2) and let(σh, uh) denote
unique critical point overΣh ×Vh, whereΣh andVh are the spaces defined
in Sect. 3. Then

‖σ − σh‖0 ≤ chm‖σ‖m, 1 ≤ m ≤ 3,
‖div σ − div σh‖0 ≤ chm‖div σ‖m, 0 ≤ m ≤ 2,

‖u − uh‖0 ≤ chm‖u‖m+1, 1 ≤ m ≤ 2.

Proof. Recall that the exact solution(σ, u) ∈ H(div, Ω,S)×L2(Ω,R2) is
the unique solution of (1.2), i.e.,∫

Ω
(Aσ : τ + div τ · u) dx = 0, τ ∈ H(div, Ω,S),

∫
Ω

div σ · v dx =
∫

Ω
f · v dx, v ∈ L2(Ω,R2).

The mixed method solution(σh, uh) ∈ Σh ×Vh satisfies the corresponding
discrete system∫

Ω
(Aσh : τ + div τ · uh) dx = 0, τ ∈ Σh,∫
Ω

div σh · v dx =
∫

Ω
f · v dx, v ∈ Vh.

Subtracting we obtain error equations, which, sincedivΣh ⊂ Vh, we may
write as ∫

Ω
[A(σ − σh) : τ + div τ · (Phu − uh)] dx = 0, τ ∈ Σh,(5.1)

∫
Ω

div(σ − σh) · v dx = 0, v ∈ Vh.(5.2)
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The second equation immediately implies that

div σh = Ph div σ = divΠhσ,(5.3)

where the last equality comes from (3.6). Hence, from (4.9), we immediately
obtain the desired error bound fordiv σ:

‖div σ − div σh‖0 = ‖(I − Ph) div σ‖0 ≤ chm‖div σ‖m, 0 ≤ m ≤ 2.
(5.4)

Takingτ = Πhσ − σh in (5.1) and invoking (5.3) we obtain∫
Ω
A(σ − σh) : (Πhσ − σh) dx

=
∫

Ω
div(Πhσ − σh) · (Phu − uh) dx = 0,

from which it easily follows that

‖σ − σh‖A ≤ ‖σ − Πhσ‖A,

where‖τ‖2
A :=

∫
Aτ : τ dx. Since the norm‖ · ‖A is equivalent to the

L2–norm it follows from (4.7) that

‖σ − σh‖0 ≤ chm‖σ‖m, 1 ≤ m ≤ 3.(5.5)

In order to establish the error estimate for the displacement, we recall
that

‖u − Phu‖0 ≤ ch2‖u‖2.

Therefore, the desired estimate will follow from the bound

‖Phu − uh‖0 ≤ chm‖u‖m+1 1 ≤ m ≤ 2.(5.6)

Let τ ∈ H1(Ω,S) satisfydiv τ = Phu − uh with ‖τ‖1 ≤ c‖Phu − uh‖0.
Then, in light of the commutativity property, (3.6), and the bound (4.8),
divΠhτ = Phu − uh and‖Πhτ‖0 ≤ c‖Phu − uh‖0. Hence,

‖Phu − uh‖2
0 =

∫
Ω

divΠhτ · (Phu − uh) dx

= −
∫

Ω
A(σ − σh) : Πhτ dx

≤ c‖σ − σh‖0‖Phu − uh‖0.

Thus

‖Phu − uh‖0 ≤ c‖σ − σh‖0 ≤ chm‖σ‖m ≤ chm‖u‖m+1, 1 ≤ m ≤ 3,

which contains (5.6). ��
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6. Higher order elements

The foregoing considerations generalize in a straightforward manner to el-
ements of higher order. Letk be a positive integer, the casek = 1 being
that considered heretofore. Generalizing (3.1), we define the finite element
spaces on a single triangle:

ΣT = Pk+1(T,S) + { τ ∈ Pk+2(T,S) | div τ = 0 }
= { τ ∈ Pk+2(T,S) | div τ ∈ Pk(T,R2)},

VT = Pk(T,R2).

ClearlydimVT = (k + 1)(k + 2), and

dimΣT ≤ dk : = dimPk+2(T,S) − [dimPk+1(T,R2)−dimPk(T,R2)]

= (3k2 + 17k + 28)/2.

We shall show that in factdimΣT = dk and exhibit a unisolvent set of
degrees of freedom. To this end, we define

Mk(T ) = { τ ∈ Pk+2(T,S) |div τ = 0 andτn = 0 on∂T }.
In the proof of Lemma 3.1, we showed that fork = 1,Mk(T ) = 0. The
same argument shows that fork ≥ 2,Mk(T ) = J(b2T Pk−2(T )), wherebT

is the cubic bubble function onT (the unique cubic polynomial achieving a
maximum value of unity onT and vanishing on∂T ). ThusdimMk(T ) =
(k2 − k)/2 for k ≥ 1. The spaceε[Pk(T,R2)] has dimension(k + 1)(k +
2) − 3 and is clearlyL2-orthogonal toMk(T ). Thus the spaceNk(T ) :=
ε[Pk(T,R2)] + Mk(T ) has dimension(3k2 + 5k − 2)/2. The degrees of
freedom we take forΣT are

– the values of three components ofτ(x) at each vertexx of T (9 degrees
of freedom)

– the values of the moments of degree at mostk of the two normal com-
ponents ofτ on each edgee of T (6k + 6 degrees of freedom)

– the value of the moments
∫
T τ : φdx, φ ∈ Nk(T ) ((3k2 + 5k − 2)/2

degrees of freedom)

We have specifieddk degrees of freedom. Thus to show unisolvence it suf-
fices to show that if all the degrees of freedom vanish for someτ ∈ Σk(T ),
thenτ vanishes. The proof is just as for Lemma 3.1. From the vanishing
of the first two sets of degrees of freedom we conclude thatτn vanishes
on∂T . This, together with the vanishing of

∫
T τ : φdx, φ ∈ ε[Pk(T,R2)]

implies thatdiv τ vanishes as well, soτ ∈ Mk(T ), and, using the remain-
ing degrees of freedom, we conclude thatτ vanishes identically. Element
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Fig. 2. Element diagrams for the stress and displacement elements in the casek = 2

diagrams for the casek = 2 are shown in Fig. 2. In this caseN2(T ) is the
span ofP1(T ,S) and the additional matrix fieldJ(b2T ).
Having specified finite element spaces on individual triangles and the

degrees of freedom, we have determined the finite element spacesΣh and
Vh for any triangulation. The latter space is simply the space of piecewise
polynomial vector fields of degree atmostk, while the former space consists
of H(div, Ω,S) matrix fields which belong toΣT on eachT ∈ Th and
in addition are continuous at the mesh vertices. In addition to the natural
interpolation operator determined by the degrees of freedom, we define
Πh : H1(Ω,S) → Σh by using as degrees of freedom at the vertices the
values of a suitable Clement interpolant. In this way we obtain an operator
which satisfies the commutativity property (3.6) (withPh theL2-projection
intoVh), and the error estimates (4.7), now for1 ≤ m ≤ k+2. The analysis
generalizes directly from the casek = 1, resulting in the following analogue
of Theorem 5.1.

Theorem 6.1. Let (σ, u) denote the unique critical point of the Hellinger–
Reissner functional overH(div, Ω,S)×L2(Ω,R2) and let(σh, uh) denote
the unique critical point overΣh × Vh, whereΣh andVh are the spaces
defined above for some integerk ≥ 1. Then

‖σ − σh‖0 ≤ chm‖σ‖m, 1 ≤ m ≤ k + 2,
‖div σ − div σh‖0 ≤ chm‖div σ‖m, 0 ≤ m ≤ k + 1,

‖u − uh‖0 ≤ chm‖u‖m+1, 1 ≤ m ≤ k + 1.

7. A simplified element of low order

There does not exist an element pair fork = 0 in our family. Indeed,
there could not, since there does not exist anH2 finite element of degree4.
However, there is a variant of the lowest order (k = 1 element), with fewer
degrees of freedom, which we now describe briefly. To do so we denote
by RM(T ) the space of infinitesmal rigid motions onT , i.e., the span of
P0(T,R2) and the linear vector field(−x2, x1). This is precisely the kernel
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Fig. 3. Element diagrams for the elements of reduced order

of the symmetric gradient operatorε. For our simplified element we takeVT

to beRM(T ) and

ΣT = { τ ∈ P3(T,S) | div τ ∈ RM(T ) }.
ThendimΣT = 21 and a unisolvent set of degrees of freedom are

– the values of three components ofτ(x) at each vertexx of T (9 degrees
of freedom)

– the values of the moments of degree0 and1 of the two normal compo-
nents ofτ on each edgee of T (12 degrees of freedom)

See Fig. 3. In this caseP0(T,R2) � VT � P1(T,R2) andP1(T,S) �

ΣT � P2(T,S). Therefore the final error estimates are

‖σ − σh‖0 ≤ chm‖σ‖m, 1 ≤ m ≤ 2,
‖div σ − div σh‖0 ≤ chm‖div σ‖m, 0 ≤ m ≤ 1,

‖u − uh‖0 ≤ ch‖u‖2.

The analysis follows closely that of the previous element family. One dif-
ference is that the spaceΣT for this element is not invariant under the Piola
transform. Consequently a different argument is required to prove the ap-
proximation properties ofΣh. This can be done, for example, by scaling to
a similar element of unit diameter using translation, rotation, and dilation,
and using a compactness argument.

8. Final remarks

In the interest of clarity we have considered an elastic body clamped all
around its boundary and described by a uniformly positive definite com-
pliance tensor. Both restrictions can be loosened. The extension to traction
boundary conditions on part of the boundary is straightforward. For the
Hellinger–Reissner variational form, traction boundary conditions are es-
sential, and thus must be imposed in the stress spaceΣh. When traction
boundary conditions are imposed on both edges meeting at a corner, then
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the entire stress tensormust vanish there, and so all three degrees of freedom
at the corner set equal to zero. At other boundary points traction boundary
conditions imply two linear relations among three degrees of freedom. (Such
linear relation boundary conditions can be implemented by modifying the
relevant columns and rows of the unconstrained stiffness matrix, maintain-
ing symmetry.)
Another generalization that can easily be handled is the extension to

nearly incompressible or incompressible elastic materials. In the homoge-
neous isotropic case the compliance tensor is given byAτ = [τ − λ/(2µ+
2λ) tr τ I]/2µ, whereµ > 0, λ ≥ 0 are the Laḿe constants. For our mixed
method, as for most methods based on the Hellinger–Reissner principle,
one can prove that the error estimates hold uniformly inλ (the incom-
pressible limit beingλ → ∞). In the analysis above we used the fact that∫
Aτ : τ dx ≥ c0‖τ‖2

0 for some positivec0. This estimate degenerates
(c0 → 0) asλ → ∞. However the estimate remains true withc0 > 0 de-
pending only onΩ andµ if we restrictτ to functions for whichdiv τ ≡ 0,∫
Ω tr τ dx = 0, and this is enough to carry through the analysis. See [4]
where the details are presented for a composite mixed element.

References

1. MohamedAmara, Jean-Marie Thomas: Equilibrium finite elements for the linear elastic
problem. Numer. Math.33(4), 367–383 (1979)

2. John H. Argyris, Isaac Fried, Dieter W. Scharpf: The TUBA family of plate elements
for the matrix displacement method. Aero. J. Roy. Aero. Soc.72, 514–517 (1968)

3. DouglasN.Arnold, FrancoBrezzi, JimDouglas, Jr.: PEERS: a newmixed finite element
for plane elasticity. Japan J. Appl. Math.1(2), 347–367 (1984)

4. Douglas N. Arnold, Jim Douglas, Jr., Chaitan P. Gupta: A family of higher order mixed
finite element methods for plane elasticity. Numer. Math.45(1), 1–22 (1984)

5. Douglas N. Arnold, Richard S. Falk: A new mixed formulation for elasticity. Numer.
Math.53(1-2), 13–30 (1988)

6. Franco Brezzi: On the existence, uniqueness and approximation of saddle-point prob-
lemsarising fromLagrangianmultipliers. Rev. Franc¸aiseAutomat. Informat. Recherche
Opérationnelle Śer. Rouge8(R-2), 129–151 (1974)

7. Franco Brezzi, Michel Fortin: Mixed and Hybrid Finite Element Methods. New York:
Springer-Verlag, 1991

8. PhilippeG.Ciarlet: The finite elementmethod for elliptic problems. Amsterdam:North-
Holland, 1978

9. PhilippeCĺement: Approximation by finite element functions using local regularization.
Rev. Franc¸aise Automat. Informat. RechercheOpérationnelle Śer. Rouge9(R-2), 77–84
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