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A UNIFORMLY ACCURATE FINITE ELEMENT METHOD
FOR THE REISSNER-MINDLIN PLATE*

DOUGLAS N. ARNOLDt AND RICHARD S. FALK:

This paper is dedicated to Jim Douglas, Jr., on the occasion of his 60th birthday.

Abstract. A simple finite element method for the Reissner-Mindlin plate model in the prim-
itive variables is presented and analyzed. The method uses nonconforming linear finite elements
for the transverse displacement and conforming linear finite elements enriched by bubbles for the
rotation, with the computation of the element stiffness matrix modified by the inclusion of a simple
elementwise averaging. It is proved that the method converges with optimal order uniformly with
respect to thickness.
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1. Introduction. The Reissner-Mindlin model describes the deformation of a
plate subject to a transverse loading in terms of the transverse displacement of the
midplane and the rotation of fibers normal to the midplane. This model, as well
as its generalization to shells, is frequently used for plates and shells of small to
moderate thickness. We present and analyze here a simple finite element method for
the Reissner-Mindlin plate model. Our method uses linear finite elements for the
transverse displacement and the rotation (the finite element space for the rotations
are in fact slightly enriched by interior degrees of freedom) with the element stiffness
matrix altered through the use of a simple elementwise average in the computation
of the shear energy. We prove that the approximate values of the displacement and
the rotation, together with their first derivatives, all converge at an optimal rate
uniformly with respect to thickness. As far as we know, this is the only method for
the Reissner-Mindlin problem in the primitive variables for which uniform optimal
convergence results have been established,

Although the Reissner-Mindlin model is simple in appearance, its discretization is
not straightforward. Most seemingly reasonable choices of finite element spaces lead to
an approximate solution that is far more sensitive to the plate thickness than the true
solution, and that grossly underestimates the displacement of thin plates. The root of
this difficulty, referred to as locking of the numerical solution, is well understood. As
the plate thickness tends to zero, the Reissner-Mindlin model enforces the Kirchhoff
constraint so that the rotation of the normal fibers equals the gradient of the transverse
displacement. On the continuous level this simply means that the solution of the
Reissner-Mindlin model converges to the solution of a related biharmonic problem
as the thickness tends to zero. On the discrete level, the standard finite element
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FINITE ELEMENTS FOR THE REISSNER-MINDLIN PLATE 1277

formulation similarly imposes the Kirchhoff constraint on the finite element subspaces
in the limit. Therefore, if a finite element method based on the standard formulation
is to approximate well uniformly with respect to plate thickness, then the subspace
of trial functions for the transverse displacement whose gradients are in the rotation
trial space must have good approximation properties. This simply does not occur in
standard low-order finite element spaces.

The most common approach to avoiding the locking problem is to modify the
variational formulation when determining the element stiffness matrices so that only
a weaker, discrete Kirchhoff hypothesis is enforced in the thin plate limit. One pos-
sibility, known as "reduced/selective integration," is to compute the terms of the
stiffness matrix involving the difference between the transverse displacement gradient
and the rotation, i.e., the terms arising from the shear strain energy, with a quadra-
ture rule of low-order.. Another possibilityuwhich is closely related and in some cases
equivalent--is to interpolate or project (as proposed here) the discrete transverse shear
strain into a lower-order finite element space. The use of altered variational principles
enlarges the class of possible methods, and the question then becomes how to modify
the variational formulation and choose the finite element spaces in order to achieve
good approximation for all values of the plate thickness. This problem can be posed
mathematically in a simple way. We consider a family of problems, one for each value
of the plate thickness, in which the loadings are all proportional but scaled so that the
solution tends to a nonzero limit as the the plate thickness tends to zero. The goal is
then to derive a simple finite element scheme which gives optimal order approximation
of the exact solution uniformly in the thickness.

In the case of the corresponding beam model, the Timoshenko beam, the use of
standard finite element spaces and an appropriate reduced integration scheme give
methods that are uniformly optimal-order accurate. For example, we may use contin-
uous piecewise linear elements for the displacement and rotation and one integration
point per element. The uniform optimality of these methods is very clearly seen in
computations, and has been rigorously established through mathematical analysis [1].
(See also [13] for an arch problem.) For the plate problem, however, simple analo-
gous procedures do not work. For example, standard piecewise linear elements for
the displacement and rotation suffer severely from lockinguwhether or not reduced
integration is used. Many procedures, using more complex elements and/or a more
involved modification of the variational form, have been proposed by engineers and
applied successfully in certain regimes. (The literature is far too extensive to re-
view here. The reader is referred to [7] and [10] and the papers referenced therein.)
However, none of these has been justified in a rigorous way, and the claims made on
empirical and heuristic grounds have not been totally satisfying. In addition, most of
these procedures are quite complicated, more so than the one proposed here.

Brezzi and Fortin [4] derived a reformulation of the Reissner-Mindlin plate model
and devised a finite element method for this formulation for which they were able to
derive uniform error estimates. Their formulation involves the introduction of two
scalar variables (the irrotational and solenoidal parts of the transverse shear strain)

1There is a second difficulty in the numerical discretization of the Reissner-Mindlin plate,
namely, the existence of a boundary layer in the solution. This problem is quite separate from the
locking phenomenon, as can be seen by considering the Timoshenko beam, which does not have a
boundary layer, but for which standard numerical methods evidence locking. Although the boundary
layer of the plate solution is rather weak and does not pose great problems for the numerical solution,
it does complicate the numerical analysis, particularly for higher-order methods.
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1278 DOUGLAS N. ARNOLD AND RICHARD S. FALK

in addition to the primitive variables (the transverse displacement and the rotation
vector). For their numerical method they approximate all these variables by indepen-
dent finite elements. Although the reformulation is equivalent to the Reissner-Mindlin
model on the continuous level, the finite element scheme they use for its approxima-
tion is not equivalent to any practical finite element scheme applied directly to the
original Reissner-Mindlin model. This fact complicates the implementation and its
generalization to nonlinear and shell problems.

Several other authors have proposed and analyzed finite element methods for
the Reissner-Mindlin model in the primitive variables, although none has achieved
optimal-order estimates uniformly in the thickness. (We do not consider a bound for
the error to be uniform in the thickness if it depends on norms of the solution that
grow unboundedly with decreasing thickness.) In particular see [3] and [11].

We conclude this introduction with a list of some basic notations used in the
sequel. In 2 we recall the Reissner-Mindlin model and its reformulation by Brezzi
and Fortin and show that they are well posed. In 3 we describe our finite element
method. In 4 we prove a discrete analogue of the Helmholtz Theorem, giving the
decomposition of a vector field into an irrotational and a solenoidal field. This result
is essential to the analysis of our method, which is given in 5 and 6. Let us remark
that the discrete Helmholtz Theorem appears to be a new result, which should be
useful elsewhere in the analysis of finite element methods. We close the paper with
an Appendix, in which we prove certain regularity results used in the paper.

We will use the usual L2-based Sobolev spaces H8. The space H-1 denotes
the normed dual of/:/1, the closure of C in H1. We use a circumflex above a
function space to denote the subspace of elements with mean value zero. An un-
dertilde to a space denotes the 2-vector-valued analogue. The undertilde is also af-
fixed to vector-valued functions and operators, and double undertildes are used for
matrix-valued objects. Thus, for example, the notation f E 2(t) means that f is a

square integrable function on a domain t taking values in R2 and f f 0. The letter
C denotes a generic constant, not necessarily the same in each occurrence. Finally,
we use various standard differential operators:

(-Op/O )curlp- Op/Ox

2. The Reissner-Mindlin plate model. Let gt denote the region in R2 occu-
pied by the midsection of the plate, and denote by w and the transverse displacement

of and the rotation of the fibers normal to gt, respectively. The Reissner-Mindlin
plate model determines w and as the unique solution to the following variational

problem.
Problem M1. Find (w, ) E/:/1() x/-/l(t) such that

(2.1) a(,)+ At-2(-grad,-grad#)= (g,#) V(#,) /:/l(t) x l(t).

Here g is the scaled transverse loading function, t is the plate thickness, A Ek/2(l+u)
with E the Young’s modulus, u the Poisson ratio, and k the shear correction factor,
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FINITE ELEMENTS FOR THE REISSNER-MINDLIN PLATE 1279

and the parentheses denote the usual L2 inner product. The bilinear form a is defined

By Korn’s inequality, a is an inner product on () equivalent to the usual one. Note
that we have scaled the load by a constant multiple of the square of the thickness so
that the solution tends to a nonzero limit as t tends to zero.

For simplicity of notation, we shall henceforth consider a simplified version of
this model. Namely, we will consider the problem whose weak formulation is given by
(2.1), with A i, and

a(, ) (grad , grad ).

It will be easy to check that all our results apply equally well to the true problem.
For our analysis we shall also make use of an equivalent formulation of the

Reissner-Mindlin plate equations suggested by Brezzi and Fortin [4]. This formu-
lation is derived from Problem M by using the Helmholtz Theorem to decompose the
shear strain vector

(2.2) -’(grad ) grd r + cu,p,

ith (,,) e J() ().
Pro, M. Find (r, ,p,) e J() x () () () ,uch that

(.3) (grad, grad

(.4) (r:, )-
(e.) -(,cur) ’(curp, cur) 0 or

(2.6) (gradw, grads) ( + t2gradr, grads)

Note that (2.3) is a simple Poisson equation that decouples from the other three
equations. Once r has been determined from (2.3), and p may be computed from

(2.4) and (2.5) and then w is defined by (2.6), which is again a simple Poisson equation.
Thus all the difficulties of the problem have been concentrated in the system (2.4)-
(2.5) for and p. When t 0, this pair of equations gives the usual weak formulation

of the Stokes equations, subject to the trivial change of variables (, @) (2,-).
For positive t, these two equations represent a singularly perturbed Stokes system.

If (w, ) solves Problem M and (r,p) (O) x (O) are defined (uniquely)

b (.e),
(r, , p, w) solves Problem M2. Conversely if (r, ,p, ) solves Problem M then, since

rad()+cur’() L’(), (e.),nd (.) toether ipr (.e), ,nd then (e.)
and (2.4) imply (2.1). This shows the equivalence of Problems M and M2.

The following theorem sserts that Problem M2 (and consequently also Prob-
lem M) is well posed. A proof is provided in the Appendix. The analogous result
for the usual formulation of the Reissner-Mindlin plate on a smooth domain can be
found in [9].
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1280 DOUGLAS N. ARNOLD AND RICHARD S. FALK

THEOREM 2.1. Let 2 be a convex polygon or smoothly bounded domain in the
plane. For any t E (0, 1] and any g H-1, there exists a unique quadruple (r,,p,w)

[I() x [-Ii() x [-Ii() x [-I(2) solving Problem M2. Moreover, H2() and

there exists a constant C independent of t and g, such that

/f g L2(9/), then r, w H2(gt) and

Remarks. (1) Theorem 2.1 also provides a uniform bound in L2(fl) for the shear
strain vector t-2(- grad w), due to (2.2).

(2) If 9/is a smoothly bounded domain and g E H(fl), then we can easily extend
the, proof in the Appendix to show that w H3(2) and to estimate Ilwl13 uniformly
in t. Also it is clear that if g Hs(gt), s _> 0, then r can be bounded in H8+2()
uniformly in t. However, neither 11113 nor IIPlI2 may be bounded independently of

t, even when the boundary and g are smooth. This is because of the existence of a
boundary layer in the solution for t small.

3. The finite element method. Our finite element method is based on the
variational formulation in Problem M. As the trial space for we shall use standard

continuous piecewise linear finite elements augmented by a bubble function on each
triangle. As the trial space for w we shall use nonconforming piecewise linear elements.
Moreover, in the second term in (2.1), we shall project onto a piecewise constant

function. The reasons for these choices will emerge when we analyze the method.
We assume henceforth that the domain is a convex polygon, which is trian-

gulated by a triangulation 7. As usual, the subscript h refers to the diameter of
the largest triangle, and the constants in our error estimates will be independent of h
assuming that a minimum angle condition is satisfied as h 0. Denoting by 7k(T)
the set of functions on T which are the restrictions of polynomials of degree no greater
than k, we define the following finite element spaces:

Mk L2
--1 { e (fl) [T ( "Pk(T) for all T e ’T’h}

Mko Mk A H(fl)--1

Mok Mt A//1(’)
/t/, {/E L2() /[T E 7)1(T) for all T E , and /is continuous at midpoints

of element edges and vanishes at midpoints of boundary edges},
Bk { Mko "7 vanishes on the boundary of every element},
1 2I B3.

Note that is the usual space of conforming T’ elements augmented by one bubble
function for each triangle and )t:/, is the usual nonconforming Pl approximation of
/:/(9/). For # e 2t:/, + H() we define gradh # to be the L2(gt) function whose

restriction to each triangle T 7 is given by grad

Our approximation scheme is given in the following problem.

D
ow

nl
oa

de
d 

05
/0

9/
17

 to
 1

34
.8

4.
19

2.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



FINITE ELEMENTS FOR THE REISSNER-MINDLIN PLATE 1281

Problem M. Find (Wh, h) /l)/, X such that

(3.1) (grd h,gd) + t-2(PoCh gr2dn wn, gr2dn t) (g,

for all (t,) 2t/, x 0,~
where Po L2(fl) --* M is the orthogonal projection Note that since this projection

can be computed independently on each element, the implementation of Problem
causes no difficulty.

We check that Problem M admits a unique solution for any g L2(Ft) and any
1 satisfies (3.1) for g 0 thenpositive t It suffices to show that if (dh, h) e /,1 X 0

Wh 0 and Ch 0. Taking (#, ) (dh, Ch) in (3.1) we have that

II gdhll + t-2.11PoCh gradwhll 0.

This implies first that grad Ch 0, so Ch 0; whence grad Wh 0 and Wh O.

4. A discrete version of the Helmholtz Theorem. The Helmholtz The-
orem states that any L2 vector field can be decomposed uniquely into the sum of
the gradient of a function r in /:/1 plus the curl of a function p in /:/1; moreover,
the two summands are orthogonal in L2. It is not true in general that if the vector

field is piecewise constant, then r and p will be continuous piecewise linear functions.
However, the following theorem gives an alternative orthogonal decomposition of a
piecewise constant function into the curl of a continuous piecewise linear function and
the piecewise gradient of a nonconforming piecewise linear function.

THEOREM 4.1.

(4.1) M gradn 21/, @ curl

This is an L2 orthogonal decomposition.

Proof. It is obvious that the summands in (4.1) are piecewise constant functions,
i.e they are contained in M We verify that they are orthogonal in L2 Let r

and p t)/. Then

(4.2) (gradhr, curlp) E/Tgradhr curlp Ef00pr--.OSTT T T

Here ST is the counterclockwise tangent to OT. Now let e be any interior edge of
the triangulation, say e T+NT_. Let r+/- tit and s+ sIT. Sincep is a
piecewise linear function, the derivatives Op+/OsT+ are constant on e, and since p is

continuous, cOP+lOsT+ --Op-/OST_. Since r e 2t:/,, r+ -r_ is a linear function on
e that vanishes at the midpoint. It follows that

fe OP+ i OP- oo r+ + O r--U_
For similar reasons, if e is a boundary edge contained in the triangle T, fe rOp+lOST
0. Adding over all edges we conclude that the final sum in (4.2) is zero, so that gradh r

is orthogonal to curlp.

It remains to show that any function E M1 may be decomposed as gradh r

curl p for some r .E h:/, and p /I)/0. Define r as the approximate solution of the
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1282 DOUGLAS N. ARNOLD AND RICHARD S. FALK

Dirichlet problem for the equation A r div using nonconforming piecewise linear

elements. More precisely, r E h:/. is defined by

(4.3) (gradh r r/, gradh s) 0 for all s E/,.

Again let e denote an interior edge of the triangulation, and denote by ne one of the

unit vectors normal to e. If we choose s in (4.3) to be the element of it:/,, which
is equal to 1 at the midpoint of e and which vanishes at all other edge midpoints,
and integrate by parts over each triangle, we conclude (reasoning as before) that the
constant values of (r/- gradh r).ne from the two sides of e coincide. This implies

that the distributional divergence of - gradh r belongs to L2(Ft). Since this function

is constant on every triangle, it follows that div (r/- gradh r) 0 in the sense of

distributions. Since is simply connected (in fact, convex), there exists a function
p /:/l(gt) such that curlp /-gradh r. Finally, since curlp is constant on every

triangle, p is necessarily linear on every triangle, i.e., p ]t/. v1

Remark. We have chosen to give a constructive proof of this theorem. An alter-
native approach is to check that

dimM dim gradh lt/, + dim curl 21/--1

which, together with the orthogonality of the summands, establishes the theorem.

5. Error analysis. First we introduce a discrete version of Problem M2 and
show that it is equivalent to Problem M.

Problem M. Find (rh, h, Ph, 03h) j,l X J J01 j,l such that

(5.1) (gradh rh, gradh #) (g, #) for all # /1}/,,
(gd h, gr2d) (cufflph, ) (gradh rh, ) for all e ,~

--(h, curlq)- t2(curlph,curlq) 0 for all q //0,
(gradh 0)h, gradh s) (qh -[- t2gradh rh, gradh s) for all s it:/,.

LEMMA 5.1. For any g L2(gt) and any t (0, 1] there exists a unique solution
(rh, Ch,Ph, Wh) to Problem M2h Moreover, the pair (Wh, Ch) is the unique solution of
Problem M and

t-2(gradwh P0h) gradh rh + curlph.

Proof. Suppose g 0. Choosing # rh in (5.1) we see that rh O. Next
set Ch in (5.2) and q Ph in (5.3) and subtract. This shows that Ch 0 and

Ph O. Finally, taking s Wh, we conclude that Wh 0. This establishes existence
and uniqueness.

Since curl q and gradh s are piecewise constant for q E ]t/0, s ]t:/,, we may

replace Ch by PoCh in (5.3) and (5.4). Using the orthogonality proved in Theorem

4.1, we deduce that

(gradh Wh P0h, curl q) t2(gradh rh + curl ph, curlq) for all q

(gradh O)h PoCh, gradh s) t2(gradh rh -[- curlph, gradh s) for all s itS/,.D
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FINITE ELEMENTS FOR THE REISSNER-MINDLIN PLATE 1283

In light of Theorem 4.1, these two equations are equivalent to the single equation

(gradh Wh P0h, Y) t2(gradh rh + curlph r/) for all r/E M--I

from which (5.5) follows.
A similar application of orthogonality transforms (5.1) to

(gradh rh + curlph, gradh ) (g, ) for all 2.
Combining this equation with (5.2) gives

(gd h, grd) (grdh rh + Cufflph, grdh ) (g, #)

for all (, ) E x ,
or, in light of (5.5),

(grad Ch, grad) + t-2(Poh grad wh, gradh p) (g, )

for 11 (, p)E x ,
i.e., (Wh, Ch) solves Problem M.

Problem M is similar to the discretization suggested by Brezzi and Fortin [4].
Like them, we use the space x ] (the MINI element of [2]) to discretize the

Stokes-like system for Ch and Ph. The MINI element is very appropriate in this

context because it is stable for the Stokes system (t 0) and the pressure elements
are continuous so the penalty term in (5.3) makes sense. The only difference between
Problem M and the method of [4] is that we use the nonconforming space 2 for
the variables rh and Wh rather than the conforming space . While it might seem
more natural to use conforming space, the reduction to method in the primitive
variables, i.e., the equivalence to Problem M, depends on the choice of nonconforning
elements.

In order to prove error estimates for our approximation scheme, we require some
relatively standard results on nonconforming methods. The first lemma, which is of a
sort basic to the analysis of nonconforming methods, can be found in essence in [8].

LEMMA 5.2. There exists a constant C independent of h such that

f pC’aT < Chlll inf Igradh (p--q)[10
0T qE(fl)

for all E Hi(a), p E + 1().
LEMMA 5.3 (DISCRETE POINCAR INEQUALITY). There exists a constant C

independent of h such that

[[Pl]o C[[gradhp[[o for all p e .
Proof. For any H(), p 2,

/pdiv=- (/Tgradhp.-- P’T)C[[gradhp[[o[[[,l,
by Lemma 5.2.

result.

Choosing so that dive p and I1111 < CIIpll0 gives theD
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1284 DOUGLAS N. ARNOLD AND RICHARD S. FALK

LEMMA 5.4. Given G E L2() and F HI(f), let u solve the boundary value

problem
-Au=G-divF inf,, u O on

Let Uh 1I. be defined by

(gradh Uh,gradh Vh) (G, Vh) / (F, gradh Vh) for all Vh lZl,.

Then
hllgradh (u Uh)llo + Ilu UhllO <_ Ch2(llGIIo + IIFII1),

where C is a constant independent of G, F, and h.

Proof. When F 0 the convergence result for the gradient can be found in

[14] along with remarks for deriving the L2(f) estimate. The proof, which works
equally well for nonzero F, may be obtained as an application of the basic abstract

error estimates for nonconforming methods (see also [6, Thm. 4.2.2] for the gradient
estimate and [6, Exercise 4.2.3] for the L2() estimate), using Lemma 5.2 to bound
the consistency errors. El

We now give the energy estimates for our method, the proof of which is similar
to the proof in [4].

THEOREM 5.5. There exists a constant C such that if (r, , p, w) and (rh Ch Ph

Wh) solve Problems M2 and M, respectively, for some g L2(f) and some t (0, 1],
then

Ilgradh (r- rh)llo / I1-- hll / liP--PhilO / tllP--Phll / Ilgradh (w -Wh)llo <_ Chllgllo.

The constant C is independent of g and t.
Proof. From (2.3), (5.1), and Lemma 5.4, it follows that

(5.6) Ilgradh (r rh)]o Ch]]g]]o.

Let . be arbitrary. om (2.4) and (5.2) it follows that

II gd(h )11 (gd( ), gd(h )) + (cuffl(ph p), h )
+ (grdh (rh r), h ).

om (2.5) and (5.3)it follows that for any and q ,
t2] cuzl(ph q)ll t2 (cul(p- q), cuzl(ph q)) (h , cuzl(ph q))

t (cufl(v q), cu(w q))

( , cuz(. q)) + ( , cuz(w q)).

Adding these two equations, we get

grd(h )11 + t211 cul(ph q)l

(g( ), gr:(. ))
+ t: (crl( q), cuzl( q)) (crl(v q), . )
+ ( , cuzl(v. q)) + (gr (. ), ).
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FINITE ELEMENTS FOR THE REISSNER-MINDLIN PLATE 1285

Integrating the third and fourth terms on the right-hand side by parts and applying
the Schwarz inequality, the arithmetic-geometric mean inequality, and the Poincar
inequality, we get
(.)

2II grad(Ch )1102 + t211 curl(ph q)[ C( gd( )] + t2] cuffl(p q)o

+ IP q + ] grd( )]]o]]P
+ grd ( .)).

In [2] it was shown that the MINI element is stable for the Stokes problem, i.e., that
there exists 7 > 0 independent of h such that for all q there exists a nonzero

with0
71lq,ol gd lto g (cuff q, ).

Applying this result with q replaced by Ph- q, and again using (2.4) and (5.2), we
have

71p qol gdlo
(cu2( q), )
(cr( q), ) + (gra( ), ga)
(ga( ), )

c(, qlo + gr2d( )o
+ grdh (rh r)]o) grd [o,

so for all q and ,
(.s)

c(llp qlo + gd( )1o + gd( )o + lgr2d. ( )1o).
Substituting (5.7) in (5.8) and again applying the arithmetic-geometric mean inequal-
ity, we deduce that

gd( )o + tll cufl(p q)lo

By the triangle inequality

gd( )o + t cuz(p p)o

g C(l + tll ql + - qo + I,gr2d ( .)llo),
and with (5.8) we also have

p ph]o C(l + t[p q + p q[]o + [grdh (r rh)[o).
and q are arbitrary, we may apply standard approximation theory,Since o

(5.6), and Theorem 2.1 to getD
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1286 DOUGLAS N. ARNOLD AND RICHARD S. FALK

It remains to bound [Iw- wnl[. Define h e itS/, by

(grad, grad s) ( + tz grad r, grad s) for all s .
Then, by Lemma 5.4,

][gradh (w h)[[0 Ch][+ t2 gradr[ Ch[9[[o.
Thus it suffices to prove that

(5.9) ]]gradh (Wh
Now

(grdh (Wh h), grdh s) (h + t2grdh (rh r), grdh s) for all s .
Taking s Wh- h gives

proving (5.9).
6. Error analysis continued: L estimates. In this section we estimate

--h andw-whinL2.

THEOREM 6.1. Under the hypotheses of Theorem 5.5,

Proof. First we note that Lemma 5.4 implies

(6.1) []r rhinO Ch2]]g]lo.
To derive an L2 estimate on the rotation vector, we will apply a variant of the usual
Aubin-Nitsche duality argument. To do so, we introduce the following ailiary prob-
lem.

Problem A. Find (O,P) e () x (9t) such that

(gd,gd)- (,cufflP)= (-h,) for all

(curlq, ) t2(curlq, curlP) 0 for all q e 1().
We show in the Appendix that this problem admits a unique solution, and that

Choosing Ch and q p Ph in Problem A gives, ,. (gr:( ).g
t2 (curl(p Ph), curl P).

Next use (2.4), (2.5), (5.2), and (5.3) to get, for any (q,

(chr( ). ) t (cuz( ). cuz(P q))

+ (gr, (r .),
(6.3)

(gd( h), gr:d( )) (rot( h),P q)

(p ph, rot( )) t2 (cuffl(p Ph), cuffl(P q))

+ (gdh (r rh), ).
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FINITE ELEMENTS FOR THE REISSNER-MINDLIN PLATE 1287

We now choose and q such that

IIP- ql]o <_ ChllPIl,

Turning to the terms on the right-hand side of (6.3), we then have

(grd( h), gd(
t2 (curl(p Ph), cuffl(P q))

(6.4)

+

where we have used Theorem 5.5 and (6.2) in the last step. To treat the last term in
(6.3) we integrate by parts, then apply Lemma 5.2, and finally invoke Theorem 5.5,
(6.1), and (6.2) to obtain

(gradh (r rh), ) --(r rh, div ) + E[ (r rh)’C nT

(6.5)
g

<_

<_ Chllglloll

Substituting (6.4) and (6.5)in (6.3) gives

I1 Chll0 _< Ch2llgllo

as desired.
To complete the proof of the theorem, we now bound -Whll0. Let 0 co ter

and Oh Wh t2rh. In light of (6.1), it suffices to show that

(6.6) IlO OhllO <_ Ch211g]lo.

Now 0 e/:/l(f) and, from (2.2), -A 0 -div . Therefore if we define Oh e .]1, by
the equations

(6.7) (gradh h, gradh s)= (, gradh s) for all s

it follows from Lemma 5.4 that

(6.8) 0 --Ohllo <_ Ch2lllll _< Ch21lgllo

From (5.4) and (6.7), we have

(gr2dh (0h 0h), gradh s) (h , gr2dh

Setting s Oh -Oh gives

(6.9) Ilgradh (Oh- Oh)llO <_ CIlCh 1[0 <_

.Now (6.6) follows from (6.8), (6.9), and Lemma 5.3.

for all s 5/2.
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1288 DOUGLAS N. ARNOLD AND RICHARD S. FALK

7. Appendix. In this Appendix we prove that the solution to the Reissner-
Mindlin system possesses the regularity we need for the foregoing analysis uniformly
in the thickness. Similar results can be found in [4] and [9]. Note that we allow
a forcing function in the second equation below (used in the derivation of the L2

estimates) as well as a convex polygonal domain.
THEOREM 7.1. Let ft be a convex polygon or a smoothly bounded domain in

the plane. For any t E (0, 1], G H-l(ft), and F H-l(ft), there exists a unique

quadruple (r, ,p,w)e l(fl) II(f) [-Ii(t) l(gt) solving

(7.1)

(.2)

(7.a)

(.4)

(grad r, grad #) (G, #) for all # e

(gd ,gd) (cufflp, ) (grad r, ),+ (F, ) for all

-(,curlq) t2(curlp, curlq) 0 for all q

(gradw, grads)= ( + t2 gradr, grads) for all s

Moreover, if F L2 (gt), then H2 (f) and there exists a constant C independent

o:f t, G, and F such that

Ilrllx + 11112 + IlPlix + tllPll2 + Iic0111 c(llall-1 + IIFllo).

If also G L2(ft), then r, w H2(gt) and

(7.6) Ilrll2 + Ilwll2 _< c(llallo + IlFllo).

Proof. Existence and uniqueness are easy. Clearly r /2/l(ft) is determined
uniquely by (7.1). Then, subtracting (7.3) from (7.2) we can infer existence and
uniqueness of and p by the Lax-Milgram theorem. Finally (7.4) determines w

uniquely.
To prove (7.5), we note that the asserted bound on r is immediate, and the bound

on w follows from the bounds on and r. Thus it suffices to bound and p. Define

(O,pO) e//l(gt) x 2(f) as the solution of (7.2), (7.3) with t set equal to zero. This

is simply the Stokes system for (2o, _01, pO), which admits a unique solution. Known
regularity theory for the Stokes problem (see [5] in the case of a smooth domain and
[12] in the polygonal case) gives

11112 + IIpll C(llFIIo + Ilrlll) C(llFllo + IIGII-1).

From (7.2) and (7.3) and the definition of o and pO, we get

(gd( o), gr2d) (curl(p pO), ) + ( o, curl q) + t2(curl(p pO), curl q)

-t2(curlp,curlq) for all (,q)

Choosing o and q p- po, we obtain

I1- 111 / t2llp-plll < ct21lpllxllp

It easily follows that

(7.7) I1- 111 + flip- pll < ctllpllx <_ Ct(llFllo / Ilall-x).
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FINITE ELEMENTS FOR THE REISSNER-MINDLIN PLATE 1289

Hence also

Applying standard e8timate8 for second-order elliptic problems to (7.2), we further
obtain

I111. -< C(IIPlI / IIllx / IIFIIo) < C(IIFIIo + IIll-x).

Now from (7.3) and the definition of o we get

t2(curlp, curlq) -(,curlq) (0 ,curlq) for M1 q ().
Thus p is the weak solution of the boundary value problem

Ap t-2 rot( ) in , 0 on 0

and by standard a priori estimates

where we apply (7.7) at the last step. This completes the proof of (7.5).
The proof of (7.6) is straightforward. Since (7.1) is a weak form of Poisson’s

equation, the bound on r follows from standard elliptic regularity theory. The same
reasoning applied to (7.4) then gives

I1 11 c(11111 + t llrll ) C(llallo + IIFIIo).
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