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LOCAL 𝐿2-BOUNDED COMMUTING PROJECTIONS IN FEEC

Douglas Arnold1,* and Johnny Guzmán2

Abstract. We construct local projections into canonical finite element spaces that appear in the
finite element exterior calculus. These projections are bounded in 𝐿2 and commute with the exterior
derivative.
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1. Introduction

Bounded commuting projections are a primary instrument in the finite element exterior calculus (FEEC)
[1–3]. In particular, the existence of such projections from the Hilbert variant of the de Rham complex to a
finite dimensional subcomplex is the primary requirement for stable Galerkin approximations for the Hodge
Laplacian ([3], Thm. 3.8). Error estimates for the Galerkin approximation then follow. For this, the projections
must be bounded on the space of 𝐿2 differential forms with exterior derivative in 𝐿2. A stronger condition is
that the projections are bounded on the larger space 𝐿2, which is a primary requirement to obtain improved
error estimates ([3], Thm. 3.11) and also to convergence for eigenvalue problems ([3], Thm. 3.19).

The first commuting projections were developed by Schöberl [15] and later by Christiansen and Winther
[4], who treated non-quasiuniform meshes and spaces with essential boundary conditions. In particular, the
projection [4] is bounded in 𝐿2. However, the projections [4, 15] are not local, meaning that the projection of
a form 𝑢 on a simplex 𝑇 does not depend solely on 𝑢 on a patch of elements surrounding 𝑇 . More recently,
Falk and Winther [9,10] constructed commuting projections that are local and defined for 𝐿2 bounded 𝑘-forms
with its exterior derivative also belonging to 𝐿2. More recently in two and three dimensions, Ern et al. [8] have
developed commuting projections for the last part of the de Rham complex that are local and bounded in 𝐿2.
Bounded commuting projections that are local may also be used to obtain error estimates in other norms such
as 𝐿∞ [7, 11].

In this paper, inspired by the techniques of Falk and Winther [9], we construct local, 𝐿2-bounded, commuting
projections from the de Rham complex in any space dimension onto subcomplexes consisting of finite element
subspaces formed with respect to arbitrary simplicial meshes. To keep the presentation as simple as possible
we give details in the case of trimmed finite element spaces P−𝑟 , although the results will also work for the full
polynomials spaces. While there is overlap, there are also important differences between the work here and that
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in [9]. That paper makes use of weight functions 𝑧𝑘
𝑓 ([9], pg. 2642) which belong to the finite element spaces.

Here, instead, we use weight functions Z𝑘
𝑟 (𝜎) that are not finite element functions. Their use allows us to avoid

an extra correction step that seemed to be required in [9]. In order to define Z𝑘
𝑟 (𝜎) we use the formal adjoint

of the exterior derivative and bubble functions to guarantee smoothness across interelement boundaries. Our
functions Z𝑘

𝑟 (𝜎) rely on the existence of regular potentials for closed forms on contractible domains, for which
we rely on the work of Costabel and McIntosh [5]. In particular, we use these results on the extended patch of
a subsimplex.

As in [9], we also first construct the projection onto the lowest-order space (e.g., the Whitney forms [16]).
Then our projection for higher order elements uses the lowest order projection. An important difference is that
we use alternative degrees of freedom for higher order elements. The degrees of freedom are essentially the ones
used in the projection-based commuting interpolants developed by Demkowicz and collaborators [6]. In fact,
the degrees of freedom which we use are exactly the generalization of the degrees of freedom of the ones used be
Melenk et al. [14]. These degrees of freedom we allow us to define the higher order projections more efficiently.

The paper is organized as follows. In the next section we give some preliminaries. We then state the main
result, Theorem 3.1, in the following section. In Section 4 we assume the existence of the weight functions Z𝑘

𝑟 (𝜎)
satisfying certain requirements, and use them to construct the projections onto the lowest-order spaces, i.e.,
the spaces of the Whitney forms [16]. In the next section, we build on the lowest-order case to construct the
projection onto higher order finite elements, concluding with the proof of the main result of the paper. Finally,
in Section 6 we give the deferred construction of the weight functions Z𝑘

𝑟 (𝜎).

2. Preliminaries

2.1. Differential forms

The space of differential 𝑘-forms with smooth coefficients on a domain 𝑆 is denoted by 𝛬𝑘(𝑆). The larger
space allowing 𝐿2 coefficients is denoted by 𝐿2𝛬𝑘(𝑆) and similarly 𝐻ℓ𝛬𝑘(𝑆) denotes the space of 𝑘-forms with
coefficients in the Sobolev space 𝐻ℓ(𝑆). The exterior derivative, denoted by 𝑑𝑘, maps 𝛬𝑘(𝑆) → 𝛬𝑘+1(𝑆) and
extends to the spaces with less regularity. Finally, we define

𝐻𝛬𝑘(𝑆) := {𝑢 ∈ 𝐿2Λ𝑘(𝑆) : 𝑑𝑘𝑢 ∈ 𝐿2𝛬𝑘+1(Ω) }.

The Hodge star operator ⋆ maps 𝐿2Λ𝑘 isomorphically onto 𝐿2Λ𝑛−𝑘 for each 𝑘. Using it we define the formal
adjoint of 𝑑𝑘−1 by:

𝛿𝑘𝑤 = (−1)𝑘 ⋆−1 𝑑𝑛−𝑘(⋆𝑤) for 𝑤 ∈ 𝛬𝑘(Ω),

and the spaces

𝐻𝛿𝛬
𝑘(𝑆) = { 𝑣 ∈ 𝐿2𝛬𝑘(𝑆) : 𝛿𝑘𝑣 ∈ 𝐿2𝛬𝑘−1(𝑆) }, 𝐻𝛿𝛬

𝑘(𝑆) = { 𝑣 ∈ 𝐻𝛿𝛬
𝑘(𝑆) : tr𝜕𝑆 ⋆ 𝑣 = 0 },

the latter incorporating boundary conditions. The adjoint relation between 𝑑 and 𝛿 may be expressed as⟨︀
𝑑𝑘𝜔, 𝑣

⟩︀
𝑆

=
⟨︀
𝜔, 𝛿𝑘+1𝑣

⟩︀
𝑆

for 𝜔 ∈ 𝐻𝛬𝑘(𝑆), 𝑣 ∈ 𝐻𝛿𝛬
𝑘+1(𝑆), (2.1)

where
⟨︀
· , ·

⟩︀
𝑆

is the inner-product of 𝐿2Λ𝑘+1(𝑆). We let ‖𝑣‖2𝐿2(𝑆) =
⟨︀
𝑣, 𝑣

⟩︀
𝑆

. We simply write
⟨︀
· , ·

⟩︀
when the

domain 𝑆 is understood from the context.

2.2. Simplicial complexes and co-boundaries

Let Ω ⊂ R𝑛 be a bounded domain and let Tℎ be a simplicial triangulation of Ω consisting of 𝑛-simplices. We
assume the shape regularity condition

ℎ𝜎

𝜌𝜎
≤ 𝐶𝑆 , 𝜎 ∈ Tℎ,
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where 𝜌𝜎 is the diameter of the largest inscribed ball in 𝜎, ℎ𝜎 is the diameter of 𝜎, and 𝐶𝑆 > 0 is the shape
regularity constant. Closely related to the triangulation Tℎ is the associated simplicial complex 𝛥(Tℎ) consisting
of all the simplices of Tℎ and all their subsimplices of dimension 0 through 𝑛. We denote by 𝛥𝑘(Tℎ), or simply
𝛥𝑘 when the triangulation is clear, the collection of all the simplices in 𝛥(Tℎ) of dimension 𝑘. If 𝑥0, . . . , 𝑥𝑘 ∈ R𝑛

are the vertices of 𝜎 ∈ 𝛥𝑘, we may write [𝑥0, . . . , 𝑥𝑘] for 𝜎, the closed convex hull of the vertices. Often we need
to endow a simplex with an orientation. This is a choice of ordering of the vertices with two orders differing by
an even permutation giving the same orientation. If we select an ordering of all the vertices of Tℎ, this implies
a default orientation for each of the simplices in 𝛥(Tℎ).

Let 𝑥1, . . . , 𝑥𝑁 be such an enumeration of the vertices of the mesh and let 𝜆1, . . . , 𝜆𝑁 be the continuous
piecewise linear functions such that 𝜆𝑖(𝑥𝑗) = 𝛿𝑖𝑗 . For 𝜎 = [𝑥𝑖0 , . . . , 𝑥𝑖𝑛 ] ∈ 𝛥𝑛 we define the bubble function

𝑏𝜎 := 𝜆𝑖0𝜆𝑖1 · · ·𝜆𝑖𝑛 ,

a non-negative piecewise polynomial with support equal to 𝜎. To any simplex 𝜎 = [𝑥𝑖0 , . . . , 𝑥𝑖𝑘
] ∈ 𝛥(Tℎ) we

also associate the Whitney 𝑘-form 𝜑𝜎 ∈ 𝐻𝛬𝑘(Ω) defined as

𝜑𝜎 := 𝑘!
𝑘∑︁

𝑗=0

(−1)𝑗𝜆𝑖𝑗
𝑑𝜆𝑖0 ∧ · · · ̂︂𝑑𝜆𝑖𝑗

∧ · · · ∧ 𝑑𝜆𝑖𝑘
.

For 𝜎 ∈ 𝛥(Tℎ) we define the star of 𝜎 as

st(𝜎) =
⋃︁

𝜏∈stℎ(𝜎)

𝜏, where stℎ(𝜎) = { 𝜏 ∈ 𝛥𝑛 : 𝜎 ⊂ 𝜏 },

i.e., the union of all 𝑛-simplices containing 𝜎. The extended star of 𝜎 is given by

es(𝜎) =
⋃︁

𝜏∈esℎ(𝜎)

𝜏, where esℎ(𝜎) = { 𝜏 ∈ 𝛥𝑛 : 𝜎 ∩ 𝜏 ̸= ∅ },

the union of 𝑛-simplices intersecting 𝜎. As in [9], we assume that es(𝜎) is contractible for all 𝜎 in 𝛥(Tℎ), as is
usually the case.

Associated with the simplicial complex are a chain complex and cochain complex. The space of 𝑠-chains is
the vector space

C𝑘 := {
∑︁

𝜎∈𝛥𝑘

𝑎𝜎𝜎 : 𝑎𝜎 ∈ R }

where 𝜎 is given the default orientation and the same simplex with the opposite orientation is identified with
−𝜎. The boundary map 𝜕𝑘 : C𝑘 → C𝑘−1 is defined for 𝜎 = [𝑥0, . . . , 𝑥𝑘] ∈ 𝛥𝑘 by

𝜕𝑘𝜎 =
𝑘∑︁

𝑗=0

(−1)𝑗 [𝑥0, . . . , ̂︀𝑥𝑗 , . . . , 𝑥𝑘].

The dual space of C𝑘 is the space C𝑘 of cochains. The basis 𝛥𝑘 for chains, leads to the dual basis 𝜎*, 𝜎 ∈ 𝛥𝑘,
for cochains, defined by

𝜎*(𝜏) = 𝛿𝜎𝜏 , 𝜎, 𝜏 ∈ 𝛥𝑘

(using the Kronecker delta). The coboundary operator d𝑘 : C𝑘 → C𝑘+1 is defined by duality in the usual way:

d𝑘𝑋(𝜏) = 𝑋(𝜕𝑘+1𝜏), 𝜏 ∈ C𝑘+1, 𝑋 ∈ C𝑘. (2.2)

For the coboundary operator applied to a basis cochain we find that

d𝑘[𝑥0𝑥1 . . . 𝑥𝑘]* =
∑︁

𝑥∈𝛥0
[𝑥 𝑥0𝑥1...𝑥𝑘]∈𝛥𝑘+1

[𝑥 𝑥0𝑥1 . . . 𝑥𝑘]*. (2.3)
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2.3. The FEEC forms

For integers 0 ≤ 𝑘 ≤ 𝑛 and 𝑟 > 0, the space of trimmed polynomial 𝑘-forms of degree 𝑟 on R𝑛 is

P−𝑟 𝛬𝑘(R𝑛) = P𝑟−1𝛬
𝑘(R𝑛) + 𝜅P𝑟−1𝛬

𝑘+1(R𝑛)

where 𝜅 is the Kozul operator (see [2]). For a simplex 𝜏 in R𝑛 of any dimension, the trimmed space on 𝜏 is
given by restriction: P−𝑟 𝛬𝑘(𝜏) = { tr𝜏𝑣 : 𝑣 ∈ P−𝑟 𝛬𝑘(R𝑛) }. Associated to any triangulation Tℎ of R𝑛 and to the
integers 𝑘 and 𝑟 we then have the global trimmed finite element space P−𝑟 𝛬𝑘(Tℎ), which is defined as

P−𝑟 𝛬𝑘(Tℎ) = { 𝑣 ∈ 𝐻𝛬𝑘 : 𝑣|𝑇 ∈ P−𝑟 𝛬𝑘(𝑇 ),∀𝑇 ∈ 𝛥𝑛 }.

The Whitney forms 𝜑𝜎, 𝜎 ∈ 𝛥𝑘, form a basis of P−1 𝛬𝑘(Tℎ). The space P−𝑟 𝛬𝑘(Tℎ) decomposes into a kernel
portion and its orthogonal complement:

ZP−𝑟 𝛬𝑘(Tℎ) := { 𝑣 ∈ P−𝑟 𝛬𝑘(Tℎ) : 𝑑𝑘𝑣 = 0 },
Z⊥P−𝑟 𝛬𝑘(Tℎ) := {𝑤 ∈ P−𝑟 𝛬𝑘(Tℎ) :

⟨︀
𝑤, 𝑣

⟩︀
= 0,∀𝑣 ∈ ZP−𝑟 𝛬𝑘(Tℎ) }.

For a 𝑘-form 𝑣 that is smooth enough to admit an 𝐿1 trace on some 𝜎 ∈ 𝛥(Tℎ), the de Rham map defines
the 𝑘-cochain R𝑘𝑣 by

R𝑘𝑣(𝜎) =
∫︁

𝜎

tr𝜎𝑣, 𝜎 ∈ 𝛥𝑘.

From Stokes theorem we easily see that

R𝑘(𝑑𝑘−1𝑣)(𝜎) = R𝑘−1𝑣(𝜕𝑘𝜎). (2.4)

The Whitney interpolant 𝑊 𝑘 : C𝑘 → 𝐻𝛬𝑘(Ω) is defined in term of the Whitney forms by 𝑊 𝑘(𝜎*) = 𝜑𝜎, so

𝑊 𝑘(𝑋) =
∑︁

𝜎∈𝛥𝑘

𝑋(𝜎)𝜑𝜎.

The following properties of the Whitney interpolant are crucial (see [16], (4), (5) in pg. 139)

R𝑘𝑊 𝑘𝑋 = 𝑋, 𝑋 ∈ C𝑘, (2.5a)

𝑑𝑘𝑊 𝑘(𝑋) = 𝑊 𝑘+1(d𝑘𝑋), 𝑋 ∈ C𝑘, (2.5b)
supp 𝜑𝜎 ⊂ st(𝜎), 𝜎 ∈ 𝛥𝑘. (2.5c)

In particular, (2.5a) gives for 𝜎 ∈ 𝛥𝑠

R𝑘𝜑𝜎(𝜏) = 𝛿𝜎𝜏 , 𝜎, 𝜏 ∈ 𝛥𝑘. (2.6)

It is easily shown that
‖𝜑𝜎‖𝐿2(st(𝜎)) ≤ 𝐶𝑊 ℎ

𝑛
2−𝑘
𝜎 , 𝜎 ∈ 𝛥𝑘, (2.7)

where ℎ𝜎 is the local mesh size near 𝜎. (We may define ℎ𝜎 precisely as the diameter of 𝜎 if 𝑠 > 0 and as the
diameter of st(𝜎) if 𝜎 is a vertex.)

Now that we have introduced the Whitney and de Rham maps we can define the canonical projection, Π𝑘
1

onto the Whitney forms, which is given by
Π𝑘

1 := 𝑊 𝑘R𝑘.

Since we are assuming that es(𝜎) is contractible for all 𝜎 ∈ 𝛥(Tℎ), the local spaces P−𝑟 𝛬ℓ(es(𝜎)) form an
exact sequence; see [1, 2, 9].
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Proposition 2.1. Assume es(𝜎) is contractible. For any 𝜎 ∈ 𝛥(Tℎ) and 𝑟 ≥ 1 the following sequence is exact:

R
⊂

−−→ P−𝑟 𝛬0(esℎ(𝜎))
𝑑0

−−→ P−𝑟 𝛬1(esℎ(𝜎))
𝑑1

−−→ · · ·
𝑑𝑛−1

−−→ P−𝑟 𝛬𝑛(esℎ(𝜎)) −−→ 0. (2.8)

We will also need a discrete Poincaré inequality on the extended star es(𝜎).

Proposition 2.2. There exists a constant 𝐶𝑃 such that for all 𝜎 ∈ 𝛥(Tℎ) one has

‖𝑣‖𝐿2(es(𝜎)) ≤ 𝐶𝑃 ℎ𝜎‖𝑑ℓ𝑣‖𝐿2(es(𝜎)), 𝑣 ∈ Z⊥P−𝑟 𝛬ℓ(esℎ(𝜎)). (2.9)

To prove this one uses the equivalence of norms on a finite dimensional space, together with a compactness
argument and scaling by dilation. See ([2], Sect. 5.4) and ([9], Sect. 5) for similar arguments.

The following proposition can be found Costabel and McIntosh ([5], Thm. 4.9(c)). It is proven using a
generalized Bogovskii operator.

Proposition 2.3. Let 𝐷 be a bounded, contractible, Lipschitz domain. Let 𝑢 ∈ 𝐻𝛿𝛬
𝑘(𝐷) satisfy 𝛿𝑘𝑢 = 0, and

also
∫︀

𝐷
𝑢 vol𝑛 = 0 if 𝑘 = 0. Then there exists 𝜌 ∈ 𝐻1𝛬𝑘+1(𝐷) such that 𝛿𝑘+1𝜌 = 𝑢. Moreover,

|𝜌|𝐻1(𝐷) ≤ 𝐶𝐷‖𝑢‖𝐿2(𝐷). (2.10)

Using Friedrich’s inequality (see [12]) we have that ‖𝜌‖𝐿2(𝐷) ≤ 𝐶diam(𝐷)𝐶𝐷‖𝑢‖𝐿2(𝐷). In [5] the authors do
not track the constant 𝐶𝐷. However, in [13] it is shown that if 𝐷 is star-shaped with respect to a ball of similar
diameter then the constant 𝐶𝐷 can be bounded. Moreover, in Theorem 33 of [13] bounds for the constants in
slightly more general cases are given. However, for arbitrary 𝜎 ∈ 𝛥(Tℎ), the patch es(𝜎) need not be star-shaped
with respect to a ball and we cannot show that in general it satisfies the conditions of ([13], Thm. 33). Therefore,
we assume that the constants 𝐶es(𝜎) are uniformly bounded.

Assumption 2.4. Proposition 2.3 is true when 𝐷 = es(𝜎) for all 𝜎 ∈ 𝛥(Tℎ) with constants 𝐶es(𝜎) uniformly
bounded.

Using that diam(es(𝜎)) ≤ 𝐶ℎ𝜎, we obtain the following result, which will use below.

Proposition 2.5. Let 𝜎 ∈ 𝛥(Tℎ). Assume the hypotheses of Proposition 2.3 with 𝐷 = es(𝜎) and also Assump-
tion 2.4. Then there exists a constant 𝐶𝛿 > 0 such that

‖𝜌‖𝐿2(es(𝜎)) ≤ 𝐶𝛿ℎ𝜎‖𝑢‖𝐿2(es(𝜎)), (2.11)

where 𝜌 is the function defined in Proposition 2.3.

3. Main result

We now present the main result of the paper.

Theorem 3.1. The operator 𝜋𝑘
𝑟 : 𝐿2𝛬𝑘(Ω) → P−𝑟 𝛬𝑘(Tℎ) defined below in (5.2) is a projection. It commutes

with the exterior derivative:
𝑑𝑘𝜋𝑘

𝑟 𝑢 = 𝜋𝑘+1
𝑟 𝑑𝑘𝑢, 𝑢 ∈ 𝐻𝛬𝑘(Ω). (3.1)

Moreover, if the mesh is shape regular and Assumption 2.4 holds, then we have the local 𝐿2 estimates

‖𝜋𝑘
1𝑢‖𝐿2(𝑇 ) ≤ 𝐶‖𝑢‖𝐿2(es(𝑇 )), 𝑇 ∈ 𝛥𝑛, (3.2a)

‖𝜋𝑘
𝑟 𝑢‖𝐿2(𝑇 ) ≤ 𝐶‖𝑢‖𝐿2(es2(𝑇 )), 𝑇 ∈ 𝛥𝑛, 𝑟 ≥ 2, (3.2b)

where
es2(𝜎) =

⋃︁
𝑇⊂es(𝜎)
𝑇∈𝛥𝑛

es(𝑇 ).

The construction of the operator 𝜋𝑘
𝑟 and proof of the theorem is carried out in the remaining part of the paper.

In the next section we begin with the construction in the lowest order case.
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4. Projection for the lowest order case 𝑟 = 1

In order to motivate our construction of an 𝐿2-bounded projection, we recall the canonical projection which
maps an element 𝑢 ∈ 𝛬𝑘(Ω) to

Π𝑘
1𝑢 = 𝑊 𝑘R𝑘𝑢 =

∑︁
𝜎∈𝛥𝑘

R𝑘𝑢(𝜎)𝜑𝜎 ∈ P−1 𝛬𝑘(Tℎ). (4.1)

In order that R𝑘𝑢(𝜎) be well defined, tr𝜎𝑢 must be defined and integrable. This is not the case for general
𝑢 ∈ 𝐿2𝛬𝑘(Ω) when 𝑘 < 𝑛. To obtain a projection that is well defined for 𝑢 ∈ 𝐿2𝛬𝑘(Ω), we replace R𝑘𝑢(𝜎) with⟨︀
Z𝑘

𝑟 (𝜎), 𝑢
⟩︀

for a suitable Z𝑘
𝑟 (𝜎) ∈ 𝐿2𝛬𝑘(Ω). (The subscript 𝑟, which refers to the polynomial degree, is introduced

for the higher-order projections introduced in the next section.) In this section we state the properties required
of the differential form Z𝑘

𝑟 (𝜎) and, assuming that such a form exists, develop an 𝐿2-bounded projection into the
Whitney forms. We will verify the existence of a suitable form Z𝑘

𝑟 (𝜎) in Section 6.
Precisely, we shall show that for each 𝑟 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛 there exist a linear operator Z𝑘

𝑟 : C𝑘 → 𝐻𝛿𝛬
𝑘(Ω)

which satisfies ⟨︀
Z𝑘

𝑟 (𝜎), 𝑢
⟩︀

= R𝑘𝑢(𝜎), 𝑢 ∈ P−𝑟 𝛬𝑘(Tℎ), 𝜎 ∈ 𝛥𝑘, (4.2a)

𝛿𝑘Z𝑘
𝑟 (𝜎) = Z𝑘−1

𝑟 (𝜕𝑘𝜎), 𝜎 ∈ 𝛥𝑘, (4.2b)

supp Z𝑘
𝑟 (𝜎) ⊂ es(𝜎), 𝜎 ∈ 𝛥𝑘, (4.2c)

‖Z𝑘
𝑟 (𝜎)‖𝐿2(es(𝜎)) ≤ 𝐶𝑍ℎ

−𝑛
2 +𝑘

𝜎 , 𝜎 ∈ 𝛥𝑘. (4.2d)

Definition 4.1. We define 𝑃 𝑘
𝑟 : 𝐿2𝛬𝑘(Ω) → P−1 𝛬𝑘(Tℎ) as

𝑃 𝑘
𝑟 𝑢 :=

∑︁
𝜎∈𝛥𝑘

⟨︀
Z𝑘

𝑟 (𝜎), 𝑢
⟩︀
𝜑𝜎.

It follows directly from (4.2a) and (4.1) that 𝑃 𝑘
𝑟 is an extension of Π𝑘

1 |P−𝑟 𝛬𝑘(Tℎ):

Lemma 4.2. For any 𝑟 ≥ 1, the operator 𝑃 𝑘
𝑟 : 𝐿2𝛬𝑘(Ω) → P−1 𝛬𝑘(Tℎ) satisfies

𝑃 𝑘
𝑟 𝑢 = Π𝑘

1𝑢, 𝑢 ∈ P−𝑟 𝛬𝑘(Tℎ). (4.3)

Moreover, the operators 𝑃 𝑘
𝑟 form bounded commuting projections:

Theorem 4.3. The operator 𝑃 𝑘
𝑟 : 𝐿2𝛬𝑘(Ω) → P−1 𝛬𝑘(Tℎ) is a projection and the following commuting property

holds:
𝑑𝑘𝑃 𝑘

𝑟 𝑢 = 𝑃 𝑘+1
𝑟 𝑑𝑘𝑢, 𝑢 ∈ 𝐻𝛬𝑘(Ω). (4.4)

Moreover, if the mesh is shape-regular and Assumption 2.4 holds, we obtain the following bound:

‖𝑃 𝑘
𝑟 𝑢‖𝐿2(𝑇 ) ≤ 𝐶‖𝑢‖𝐿2(es(𝑇 )), 𝑇 ∈ 𝛥𝑛, 𝑢 ∈ 𝐿2𝛬𝑘(Ω). (4.5)

Finally, ∫︁
𝜎

tr𝜎𝑃 𝑘
𝑟 𝑢 =

∫︁
𝜎

tr𝜎𝑢, 𝜎 ∈ 𝛥𝑘, 𝑢 ∈ P−𝑟 𝛬𝑘(Tℎ). (4.6)

Proof. The fact that 𝑃 𝑘
𝑟 is a projection follows from (4.3) and the fact that Π𝑘

1 is a projection.
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To prove (4.5), let 𝑇 ∈ 𝛥𝑛. Since #{𝜎 ∈ 𝛥𝑘 : 𝜎 ⊂ 𝑇 } = 𝑐1 :=
(︀
𝑛+1
𝑘+1

)︀
, we have

‖𝑃 𝑘
𝑟 𝑢‖2𝐿2(𝑇 ) = ‖

∑︁
𝜎∈𝛥𝑘
𝜎⊂𝑇

⟨︀
Z𝑘

𝑟 (𝜎), 𝑢
⟩︀
𝜑𝜎‖2𝐿2(𝑇 ) ≤ 𝑐1

∑︁
𝜎∈𝛥𝑘
𝜎⊂𝑇

|
⟨︀
Z𝑘

𝑟 (𝜎), 𝑢
⟩︀
|2‖𝜑𝜎‖2𝐿2(𝑇 )

≤ 𝑐1

∑︁
𝜎∈𝛥𝑘
𝜎⊂𝑇

‖𝑢‖2𝐿2(es(𝜎))‖Z
𝑘
𝑟 (𝜎)‖2𝐿2(es(𝜎))‖𝜑𝜎‖2𝐿2(𝑇 )

≤ 𝑐1𝐶𝑊 𝐶𝑍

∑︁
𝜎∈𝛥𝑘
𝜎⊂𝑇

‖𝑢‖2𝐿2(es(𝜎)) ≤ 𝑐2
1𝐶𝑊 𝐶𝑍‖𝑢‖2𝐿2(es(𝑇 )),

where we used (2.7), (4.2d). To prove (4.4) it suffices to prove

R𝑘+1(𝑑𝑘𝑃 𝑘
𝑟 𝑢)(𝜏) = R𝑘+1(𝑃 𝑘+1

𝑟 𝑑𝑘𝑢)(𝜏), 𝜏 ∈ 𝛥𝑘+1. (4.7)

To this end, let 𝜏 ∈ 𝛥𝑘+1 and use (2.6) to re-write the right-hand side as

R𝑘+1(𝑃 𝑘+1
𝑟 𝑑𝑘𝑢)(𝜏) =

∑︁
𝜌∈𝛥𝑘+1

⟨︀
Z𝑘+1

𝑟 (𝜌), 𝑑𝑘𝑢
⟩︀
R𝑘+1𝜑𝜌(𝜏) =

⟨︀
Z𝑘+1

𝑟 (𝜏), 𝑑𝑘𝑢
⟩︀
.

To treat the left-hand side we write
𝜕𝜏 = 𝜎0 + · · ·+ 𝜎𝑘+1, (4.8)

where the 𝜎𝑖 ∈ 𝛥𝑘 are the 𝑘-faces of 𝜏 . By (2.3), d𝑘𝜎*𝑖 is the sum of terms 𝜂* where 𝜂 runs over the (𝑘 + 1)-
simplices which contain 𝜎𝑖 (taken with proper orientation), and, in particular, includes 𝜏 . Using again (2.6) we
see that

R𝑘+1(𝑊 𝑘+1(d𝑘𝜎*𝑖 ))(𝜏) = 1, 0 ≤ 𝑖 ≤ 𝑘 + 1, (4.9)

while, if 𝜎 ∈ 𝛥𝑘 and 𝜎 is not contained in the boundary of 𝜏 , then

R𝑘+1(𝑊 𝑘+1(d𝑘𝜎*))(𝜏) = 0. (4.10)

Therefore,

R𝑘+1(𝑑𝑘𝑃 𝑘
𝑟 𝑢)(𝜏) =

∑︁
𝜎∈𝛥𝑘

⟨︀
Z𝑘

𝑟 (𝜎), 𝑢
⟩︀
R𝑘+1(𝑑𝑘𝜑𝜎)(𝜏)

=
∑︁

𝜎∈𝛥𝑘

⟨︀
Z𝑘

𝑟 (𝜎), 𝑢
⟩︀
R𝑘+1(𝑊 𝑘+1(d𝑘𝜎*))(𝜏) by (2.5b)

=
𝑘+1∑︁
𝑖=0

⟨︀
Z𝑘

𝑟 (𝜎𝑖), 𝑢
⟩︀

by (4.9), (4.10)

=
⟨︀
Z𝑘

𝑟 (𝜕𝑘+1𝜏), 𝑢
⟩︀

by (4.8)

=
⟨︀
𝛿𝑘+1Z

𝑘+1
𝑟 (𝜏), 𝑢

⟩︀
by (4.2b)

=
⟨︀
Z𝑘+1

𝑟 (𝜏), 𝑑𝑘𝑢
⟩︀

by (2.1)

Thus, (4.7) holds. Finally, (4.6) follows from (4.3) and the definition of Π𝑘
1 . �

We see that 𝜋𝑘
1 := 𝑃 𝑘

1 is our desired projection in the lowest-order case. In the next section we will obtain the
projection in the higher order case 𝑟 > 1 as a correction to 𝑃 𝑘

𝑟 .
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5. Higher-order elements

5.1. Idea of the construction

Next we discuss the strategy for constructing the projection in the general case. The first step is to decompose
the space P−𝑟 𝛬𝑘(Tℎ) using the projection Π𝑘

1 . For each 𝑟 ≥ 1 we have

P−𝑟 𝛬𝑘(Tℎ) = Π𝑘
1P−𝑟 𝛬𝑘(Tℎ)⊕ (𝐼 −Π𝑘

1)P−𝑟 𝛬𝑘(Tℎ) = P−1 𝛬𝑘(Tℎ)⊕𝑀𝑘
𝑟 ,

where we have set 𝑀𝑘
𝑟 = (𝐼 −Π𝑘

1)P−𝑟 𝛬𝑘(Tℎ). Note that

𝑀𝑘
𝑟 = {𝑣 ∈ P−𝑟 𝛬𝑘(Tℎ) : Π𝑘

1𝑣 = 0} = { 𝑣 ∈ P−𝑟 𝛬𝑘(Tℎ) :
∫︁

𝜎

tr𝜎𝑣 = 0,∀𝜎 ∈ 𝛥𝑘 }. (5.1)

In particular, 𝑀𝑘
1 = 0. Also, using Stokes theorem we easily see that the spaces 𝑀𝑘

𝑟 with 𝑟 fixed and 𝑘
increasing form a sub-complex of the complex formed by the P−𝑟 𝛬𝑘(Tℎ). The key step is to construct a projection
𝑄𝑘

𝑟 : 𝐿2𝛬𝑘(Ω) → 𝑀𝑘
𝑟 that is local, 𝐿2-bounded and commutes with the exterior derivative

𝑑𝑘𝑄𝑘
𝑟𝑢 = 𝑄𝑘+1

𝑟 𝑑𝑘𝑢, 𝑢 ∈ 𝐻𝛬𝑘(Ω).

Then we define 𝜋𝑘
𝑟 : 𝐿2𝛬𝑘(Ω) → P−𝑟 𝛬𝑘(Tℎ) for all 𝑟 ≥ 1 as

𝜋𝑘
𝑟 𝑢 := 𝑃 𝑘

𝑟 𝑢 + 𝑄𝑘
𝑟 (𝑢− 𝑃 𝑘

𝑟 𝑢), 𝑢 ∈ 𝐿2𝛬𝑘(Ω). (5.2)

If 𝑢 ∈ P−𝑟 𝛬𝑘(Tℎ) then 𝑢− 𝑃 𝑘
𝑟 𝑢 ∈ 𝑀𝑘

𝑟 by (4.6) and hence 𝜋𝑘
𝑟 𝑢 = 𝑢, so 𝜋𝑘

𝑟 is indeed a projection. Moreover, one
can easily show that it commutes with the exterior derivative.

5.2. Alternative degrees of freedom for 𝑣 ∈ P−𝑟 𝛬𝑘(𝜏 )

We now turn to the key step of constructing the projection 𝑄𝑘
𝑟 . For this, it is useful to use degrees of freedom

(dofs) for the space P−𝑟 𝛬𝑘(Tℎ) different than the canonical degrees of freedom described in [2]. Instead we will
use dofs developed by Demkowicz and collaborators [6], a generalization of the ones found in Melenk et al. [14].

Let 𝜏 be any simplex and consider the polynomial differential form spaces P−𝑟 𝛬𝑘(𝜏) and P̊−𝑟 𝛬𝑘(𝜏) = { 𝑣 ∈
P−𝑟 𝛬𝑘(𝜏) : tr𝜕𝜏𝑣 = 0 } where 𝑘 ≤ dim 𝜏 . We have the following exact sequence

0 −−→ P̊−𝑟 𝛬0(𝜏)
𝑑

−−→ P̊−𝑟 𝛬1(𝜏)
𝑑

−−→ · · · P̊−𝑟 𝛬dim 𝜏−1(𝜏)
𝑑

−−→ P̊−𝑟 𝛬dim 𝜏 (𝜏)

∫︀
𝜏

−−→ R −−→ 0. (5.3)

Letting

P̆−𝑟 𝛬𝑘(𝜏) =

{︃
P̊−𝑟 𝛬𝑘(𝜏), 𝑘 < dim 𝜏,

{ 𝑣 ∈ P̊−𝑟 𝛬𝑘(𝜏) :
∫︀

𝜏
𝑣 = 0 }, 𝑘 = dim 𝜏,

we obtain the exact sequence:

0 −−→ P̆−𝑟 𝛬0(𝜏)
𝑑

−−→ P̆−𝑟 𝛬1(𝜏)
𝑑

−−→ · · ·
𝑑

−−→ P̆−𝑟 𝛬dim 𝜏 (𝜏) −−→ 0 (5.4)

Next, we decompose P̊−𝑟 𝛬𝑘(𝜏) into the kernel of 𝑑 and the space orthogonal to the kernel:

P̊−𝑟 𝛬𝑘(𝜏) = ZP̊−𝑟 𝛬𝑘(𝜏)⊕ Z⊥P̊−𝑟 𝛬𝑘(𝜏), (5.5)

where

ZP̊−𝑟 𝛬𝑘(𝜏) := { 𝑧 ∈ P̊−𝑟 𝛬𝑘(𝜏) : 𝑑𝑧 = 0 },
Z⊥P̊−𝑟 𝛬𝑘(𝜏) := { 𝜂 ∈ P̊−𝑟 𝛬𝑘(𝜏) :

⟨︀
𝜂, 𝑧

⟩︀
𝜏

= 0,∀𝑧 ∈ ZP̊−𝑟 𝛬𝑘(𝜏) }.
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Note that ZP̊−𝑟 𝛬𝑘(𝜏) = P̊−𝑟 𝛬𝑘(𝜏) when dim 𝜏 = 𝑘. Similarly, P̆−𝑟 𝛬𝑘(𝜏) decomposes into ZP̆−𝑟 𝛬𝑘(𝜏) and
Z⊥P̆−𝑟 𝛬𝑘(𝜏).

We know that ([2], Thm. 4.14)

dim P̊−𝑟 𝛬𝑘(𝜏) = dim P𝑟+𝑘−dim 𝜏−1𝛬
dim 𝜏−𝑘(𝜏). (5.6)

In particular, P̊−𝑟 𝛬𝑘(𝜏) = 0 if dim 𝜏 < 𝑘 or if dim 𝜏 ≥ 𝑟 + 𝑘. Therefore, by ([2], Thm. 4.13) that

dim P−𝑟 𝛬𝑘(𝑇 ) =
∑︁

𝜏∈𝛥(𝑇 )

dim P̊−𝑟 𝛬𝑘(𝜏). (5.7)

In order to introduce the dofs efficiently we define the bilinear form

⟨⟨𝑢, 𝑣⟩⟩𝜏 =
⟨︀
P𝜏𝑢, P𝜏𝑣

⟩︀
𝜏

+
⟨︀
𝑑𝑢, 𝑑𝑣

⟩︀
𝜏
, 𝑢, 𝑣 ∈ 𝐻Λ𝑘(𝜏),

where P𝜏 is the 𝐿2-orthogonal projection onto ZP̊−𝑟 𝛬𝑘(𝜏) given by⟨︀
P𝜏𝑢, 𝑤

⟩︀
𝜏

=
⟨︀
𝑢, 𝑤

⟩︀
𝜏
, 𝑤 ∈ ZP̊−𝑟 𝛬𝑘(𝜏).

Note that ⟨⟨ · , · ⟩⟩𝜏 is an inner product on the space P̊−𝑟 𝛬𝑘(𝜏).
We now give the dofs for P−𝑟 𝛬𝑘(𝑇 ) and prove their unisolvence.

Lemma 5.1. Let 𝑇 be a simplex. Then, 𝑤 ∈ P−𝑟 𝛬𝑘(𝑇 ) is determined by

⟨⟨tr𝜏𝑤, 𝑦⟩⟩𝜏 , 𝑦 ∈ P̊−𝑟 𝛬𝑘(𝜏), 𝜏 ∈ 𝛥(𝑇 ). (5.8)

Note that (5.8) is vacuous unless 𝑘 ≤ dim 𝜏 < 𝑟 + 𝑘.

Proof. By (5.7) the total number of dofs in (5.8) is the same as the dimension of P−𝑟 𝛬𝑘(𝑇 ). Suppose that the
dofs (5.8) of 𝑤 vanish. We must show that 𝑤 = 0. We can do this by induction on dim 𝑇 . The base case
dim 𝑇 = 0 is trivial. By the induction step tr𝜏𝑤 = 0 for all 𝜏 ⊂ 𝛥(𝑇 ) with 𝜏 ̸= 𝑇 which in particular implies
that 𝑤 ∈ P̊−𝑟 𝛬𝑘(𝑇 ). Thus, choosing 𝜏 = 𝑇 and 𝑦 = 𝑤 in (5.8) gives that ⟨⟨𝑤, 𝑤⟩⟩𝑇 = 0. Since ⟨⟨ · , · ⟩⟩𝑇 is an
inner-product on P̊−𝑟 𝛬𝑘(𝑇 ), this implies that 𝑤 = 0 �

As a corollary we immediately obtain dofs for the global finite element space P−𝑟 𝛬𝑘(Tℎ).

Corollary 5.2. A differential 𝑘 form 𝑤 ∈ P−𝑟 𝛬𝑘(Tℎ) is uniquely determined by

⟨⟨tr𝜏𝑤, 𝑦⟩⟩𝜏 , 𝑦 ∈ P̊−𝑟 𝛬𝑘(𝜏), 𝜏 ∈ 𝛥(Tℎ).

Remark 5.3. Let dim 𝜏 = 𝑘. Then the volume form of 𝜏 , vol𝜏 , belongs to P̊−𝑟 𝛬𝑘(𝜏) for all 𝑟 ≥ 1 and thus∫︀
𝜏

𝑤 =
⟨︀
𝑤, vol𝜏

⟩︀
𝜏

= ⟨⟨tr𝜏𝑤, vol𝜏 ⟩⟩𝜏 is always a dof of 𝑤 ∈ P−𝑟 𝛬𝑘(Tℎ). If 𝑟 = 1 then these are the only dofs given
in Corollary 5.2 and they coincide with the canonical dofs in the case 𝑟 = 1.

In fact, based on this remark we have the following corollary.

Corollary 5.4. A differential 𝑘 form 𝑤 ∈ 𝑀𝑘
𝑟 is uniquely determined by

⟨⟨tr𝜏𝑤, 𝑦⟩⟩𝜏 , 𝑦 ∈ P̆−𝑟 𝛬𝑘(𝜏), 𝜏 ∈ 𝛥(Tℎ).
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5.3. Discrete extensions

In this subsection we define some key spaces and extension operators. A differential form 𝑤 ∈ P−𝑟 𝛬𝑘(Tℎ) is
determined by the dofs given in Corollary 5.2. For 𝜎 ∈ 𝛥(Tℎ), we define 𝐺𝑘

𝑟 (𝜎) as the space of all 𝑤 ∈ P−𝑟 𝛬𝑘(Tℎ)
for which all those dofs vanish except those associated to the simplex 𝜎. We note that 𝐺𝑘

𝑟 (𝜎) = 0 if dim 𝜎 < 𝑘
or dim 𝜎 ≥ 𝑟 + 𝑘. In any case, if 𝑤 ∈ 𝐺𝑘

𝑟 (𝜎), then supp 𝑤 ⊂ st(𝜎).
A simple consequence of Lemma 5.1 is the following:

Lemma 5.5. Let 𝑣 ∈ 𝐺𝑘
𝑟 (𝜎), and suppose that 𝜏 ∈ 𝛥(Tℎ) does not contain 𝜎. Then,

tr𝜏𝑣 = 0. (5.9)

In particular, this occurs when dim 𝜏 < dim 𝜎 or dim 𝜏 = dim 𝜎 but 𝜏 ̸= 𝜎.

Next we define an operator from 𝐸𝜎 : 𝐻𝛬𝑘(𝜎) → 𝐺𝑘
𝑟 (𝜎) as follows. For any 𝜌 ∈ 𝐻𝛬𝑘(𝜎) let 𝐸𝜎𝜌 ∈ 𝐺𝑘

𝑟 (𝜎)
satisfy

⟨⟨tr𝜎𝐸𝜎𝜌, 𝑦⟩⟩𝜎 = ⟨⟨𝜌, 𝑦⟩⟩𝜎, 𝑦 ∈ P̊−𝑟 𝛬𝑘(𝜎). (5.10)

Note that 𝐸𝜎 maps a 𝑘-form on 𝜎 to a piecewise polynomial 𝑘-form on Ω. In view of Lemma 5.1, we see that

𝑣 = 𝐸𝜎tr𝜎𝑣, 𝑣 ∈ 𝐺𝑘
𝑟 (𝜎). (5.11)

The next result shows that the operator 𝐸𝜎 is an extension operator if we restrict ourselves to P̊−𝑟 𝛬𝑘(𝜎) and
that it commutes the exterior derivative if we further restrict ourselves to P̆−𝑟 𝛬𝑘(𝜎).

Lemma 5.6. Let 𝜎 ∈ ∆(Tℎ), 0 ≤ 𝑘 ≤ 𝑛 and 𝑟 ≥ 1. Then,

tr𝜎𝐸𝜎𝜌 = 𝜌, 𝜌 ∈ P̊−𝑟 𝛬𝑘(𝜎), (5.12)

𝑑𝐸𝜎𝜌 = 𝐸𝜎𝑑𝜌, 𝜌 ∈ P̆−𝑟 𝛬𝑘(𝜎). (5.13)

Proof. We prove (5.12) first. Using (5.9) we have that tr𝜎𝐸𝜎𝜌 ∈ P̊−𝑟 𝛬𝑘(𝜎). Then, 𝜑 = tr𝜎𝐸𝜎𝜌 − 𝜌 ∈ P̊−𝑟 𝛬𝑘(𝜎)
and it satisfies

⟨⟨𝜑, 𝑦⟩⟩𝜎 = 0, 𝑦 ∈ P̊−𝑟 𝛬𝑘(𝜎).

From this we conclude that 𝜑 ≡ 0 which proves (5.12).
Next we turn to the proof of (5.13). Let 𝜌 ∈ P̆−𝑟 𝛬𝑘(𝜎) and set 𝑤 = 𝑑𝐸𝜎𝜌 − 𝐸𝜎𝑑𝜌 ∈ P−𝑟 𝛬𝑘+1(Tℎ). We will

show that

⟨⟨tr𝜏𝑤, 𝑦⟩⟩𝜏 = 0, 𝑦 ∈ P̊−𝑟 𝛬𝑘+1(𝜏), 𝜏 ∈ 𝛥(Tℎ). (5.14)

This in turn implies that 𝑤 ≡ 0 by Lemma 5.8. We consider separately the cases 𝜏 ̸= 𝜎 and 𝜏 = 𝜎.
Case 1 : 𝜏 ̸= 𝜎. Since 𝐸𝜎𝑑𝜌 ∈ 𝐺𝑘+1

𝑟 (𝜎) and 𝜏 ̸= 𝜎 we have

⟨⟨tr𝜏𝑤, 𝑦⟩⟩𝜏 = ⟨⟨tr𝜏𝑑𝐸𝜎𝜌, 𝑦⟩⟩𝜏 =
⟨︀
tr𝜏𝑑𝐸𝜎𝜌, P𝜏𝑦

⟩︀
𝜏
,

where we used that 𝑑 ∘ 𝑑 = 0. We only need to consider the case dim 𝜏 ≥ 𝑘 + 1 since otherwise P̊−𝑟 𝛬𝑘+1(𝜏) = 0.
If dim 𝜏 > 𝑘 + 1 then by the exact sequence (5.3) we have that P𝜏𝑦 = 𝑑𝑚 for some 𝑚 ∈ Z⊥P̊−𝑟 𝛬𝑘(𝜏). Hence,⟨︀

tr𝜏𝑑𝐸𝜎𝜌, P𝜏𝑦
⟩︀

𝜏
=

⟨︀
tr𝜏𝑑𝐸𝜎𝜌, 𝑑𝑚

⟩︀
𝜏

= ⟨⟨tr𝜏𝐸𝜎𝜌, 𝑚⟩⟩𝜏 = 0, (5.15)

where we used that P𝜏𝑚 = 0 and then that 𝐸𝜎𝜌 ∈ 𝐺𝑘
𝑟 (𝜎). On the other hand, if dim 𝜏 = 𝑘 + 1, then we chose

𝑐 ∈ R so that
∫︀

𝜏
(P𝜏𝑦−𝑐 vol𝜏 ) = 0. Thus, again by the exactness of exact sequence (5.3) we have P𝜏𝑦−𝑐 vol𝜏 = 𝑑𝑚

for some 𝑚 ∈ Z⊥P̊−𝑟 𝛬𝑘(𝜏). Hence, using (5.15) we have⟨︀
tr𝜏𝑑𝐸𝜎𝜌, P𝜏𝑦

⟩︀
𝜏

=
⟨︀
tr𝜏𝑑𝐸𝜎𝜌, 𝑑𝑚

⟩︀
𝜏

+ 𝑐

∫︁
𝜏

tr𝜏𝑑𝐸𝜎𝜌 = 𝑐

∫︁
𝜏

tr𝜏𝑑𝐸𝜎𝜌.
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Then, if we write 𝜕𝜏 =
∑︀ℓ

𝑖=1 𝜂𝑖 where 𝜂𝑖 ∈ 𝛥𝑘(Tℎ) we have using Stokes formula∫︁
𝜏

tr𝜏𝑑𝐸𝜎𝜌 =
ℓ∑︁

𝑖=1

∫︁
𝜂𝑖

tr𝜂𝑖𝐸𝜎𝜌.

If 𝜂𝑖 ̸= 𝜎 then
∫︀

𝜂𝑖
tr𝜂𝑖

𝐸𝜎𝜌 = 0 since 𝐸𝜎𝜌 ∈ 𝐺𝑘
𝑟 (𝜎) where we used Remark 5.3. If 𝜂𝑖 = 𝜎 then using, (5.10), and

Remark 5.3 we get
∫︀

𝜎
tr𝜎𝐸𝜎𝜌 =

∫︀
𝜎

tr𝜎𝜌 = 0 where we used our hypothesis that 𝜌 ∈ P̆−𝑟 𝛬𝑘(𝜎). Thus, we have
shown (5.14) in the case 𝜏 ̸= 𝜎.

Case 2 : 𝜏 = 𝜎. Using the definition of 𝐸𝜎, (5.10), and (5.12) we have

⟨⟨tr𝜎𝑤, 𝑦⟩⟩𝜎 = ⟨⟨tr𝜎(𝑑𝐸𝜎𝜌− 𝐸𝜎𝑑𝜌), 𝑦⟩⟩𝜎 = ⟨⟨𝑑(tr𝜎𝐸𝜎𝜌− 𝜌), 𝑦⟩⟩𝜎 = 0.

�

In order to define the projections it is helpful to identify an orthonormal basis for P̆−𝑟 𝛬𝑘(𝜎) which we will
denote by p𝑘

𝑟 (𝜎). For 0 ≤ 𝑘 ≤ dim 𝜎 we let z𝑘,⊥
𝑟 (𝜎) be a basis of Z⊥P̊−𝑟 𝛬𝑘(𝜎) satisfying

⟨⟨𝑝, 𝑞⟩⟩𝜎 = 𝛿𝑝𝑞, 𝑝, 𝑞 ∈ z𝑘,⊥
𝑟 (𝜎). (5.16)

For 1 ≤ 𝑘 ≤ dim 𝜎, we define z𝑘
𝑟 (𝜎) := { 𝑑𝑝 : 𝑝 ∈ z𝑘−1,⊥

𝑟 (𝜎) } and if 𝑘 = 0 define z0𝑟(𝜎) = ∅. Finally, we define

p𝑘
𝑟 (𝜎) := z𝑘

𝑟 (𝜎) ∪ z𝑘,⊥
𝑟 (𝜎). (5.17)

That this is a basis of P̆−𝑟 𝛬𝑘(𝜎) follows from the exactness of (5.3). Indeed, it is an orthonormal basis with
respect to the inner product ⟨⟨ · , · ⟩⟩𝜎:

⟨⟨𝑝, 𝑞⟩⟩𝜎 = 𝛿𝑝𝑞, 𝑝, 𝑞 ∈ p𝑘
𝑟 (𝜎). (5.18)

We can use these orthonormal functions to give a representation formula for any 𝑀𝑘
𝑟 . This follows from

(5.18), Corollary 5.4, the definition of 𝐸𝜎 and (5.12).

Lemma 5.7. Any 𝑢 ∈ 𝑀𝑘
𝑟 can be uniquely written as

𝑢 =
∑︁

𝜎∈𝛥(Tℎ)

∑︁
𝑔∈p𝑘

𝑟 (𝜎)

⟨⟨tr𝜎𝑢, 𝑔⟩⟩𝜎𝐸𝜎𝑔. (5.19)

5.4. The projection 𝑄𝑘𝑟

In this section we construct the projection 𝑄𝑘
𝑟 : 𝐿2𝛬𝑘(Ω) → 𝑀𝑘

𝑟 and show that it is bounded and commutes
with the exterior derivative. Following (5.19) it takes the form:

𝑄𝑘
𝑟𝑢 :=

∑︁
𝜎∈𝛥(Tℎ)

∑︁
𝑔∈p𝑘

𝑟 (𝜎)

⟨︀
𝑢, U𝑘

𝑟 (𝜎, 𝑔)
⟩︀
𝐸𝜎𝑔, 𝑢 ∈ 𝐿2𝛬𝑘(Ω).

Therefore we first construct the 𝑘 forms U𝑘
𝑟 (𝜎, 𝑔) and establish their key properties. As usual, let 0 ≤ 𝑘 ≤ 𝑛 and

𝑟 ≥ 1 be integers. The 𝑘-forms U𝑘
𝑟 are linear operators of the second argument

U𝑘
𝑟 (𝜏) : P̆−𝑟 𝛬𝑘(𝜏) → 𝐻𝛿𝛬

𝑘(Ω), 𝑔 ↦→ U𝑘
𝑟 (𝜏, 𝑔),

to be defined for each 𝜏 ∈ ∆(Tℎ). To define U𝑘
𝑟 (𝜏) we make use of the space 𝑀𝑘

𝑟 (stℎ(𝜏)) = { 𝑣|st(𝜏) : 𝑣 ∈ 𝑀𝑘
𝑟 },

defined by (5.1) with the triangulation Tℎ replaced by the subtriangulation stℎ(𝜏). We will also use the function

b𝜏 :=
∑︁

𝜎∈stℎ(𝜏)

𝑏𝜎, (5.20)
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which is the superposition of the bubble functions on the 𝑛-simplices comprising stℎ(𝜏). Clearly it is supported
in st(𝜏) and vanishes on any simplex in Tℎ of dimension less than 𝑛.

Turning to the definition of U𝑘
𝑟 (𝜏), we note that if dim 𝜏 < 𝑘, then P̆−𝑟 𝛬𝑘(𝜏) vanishes and so U𝑘

𝑟 (𝜏) = 0. For
𝑘 ≤ dim 𝜏 we define U𝑘

𝑟 (𝜏) separately on ZP̆−𝑟 𝛬𝑘(𝜏) and Z⊥P̆−𝑟 𝛬𝑘(𝜏), namely we define

U𝑘
𝑟 (𝜏, 𝑔) = b𝜏𝛽, 𝑔 ∈ ZP̆−𝑟 𝛬𝑘(𝜏),

where 𝛽 ∈ 𝑀𝑘
𝑟 (stℎ(𝜏)) is the unique solution to⟨︀

b𝜏𝛽, 𝑢
⟩︀
st(𝜏)

=
⟨︀
𝑔, tr𝜏𝑢

⟩︀
𝜏
, 𝑢 ∈ 𝑀𝑘

𝑟 (stℎ(𝜏)), (5.21)

and
U𝑘

𝑟 (𝜏, 𝑔) = 𝛿𝑘+1U
𝑘+1
𝑟 (𝜏, 𝑑𝑔), 𝑔 ∈ Z⊥P̆−𝑟 𝛬𝑘(𝜏).

The following lemma establishes the properties of U𝑘
𝑟 (𝜏).

Lemma 5.8. For every 𝜏 ∈ 𝛥(Tℎ) the following properties hold:⟨︀
𝑢, U𝑘

𝑟 (𝜏, 𝑔)
⟩︀

= ⟨⟨tr𝜏𝑢, 𝑔⟩⟩𝜏 , 𝑔 ∈ P̆−𝑟 𝛬𝑘(𝜏), 𝑢 ∈ 𝑀𝑘
𝑟 , (5.22a)

𝛿𝑘+1U
𝑘+1
𝑟 (𝜏, 𝑑𝑔) = U𝑘

𝑟 (𝜏, 𝑔), 𝑔 ∈ Z⊥P̆−𝑟 𝛬𝑘(𝜏), (5.22b)

supp U𝑘
𝑟 (𝜏, 𝑔) ⊂ st(𝜏), 𝑔 ∈ P̆−𝑟 𝛬𝑘(𝜏), (5.22c)

‖U𝑘
𝑟 (𝜏, 𝑑𝑚)‖𝐿2(st(𝜏)) ≤ 𝐶𝑈ℎ(dim 𝜏−𝑛)/2

𝜏 , 𝑚 ∈ z𝑘−1,⊥
𝑟 (𝜏). (5.22d)

Proof. We see that (5.22b) and (5.22c) follow immediately from the definition of U. Let us prove (5.22a) first
in the case 𝑔 ∈ ZP̆−𝑟 𝛬𝑘(𝜏). In this case 𝑑𝑔 = 0 and 𝑔 = P𝜏𝑔 and so⟨︀

𝑢, U𝑘
𝑟 (𝜏, 𝑔)

⟩︀
=

⟨︀
𝑔, tr𝜏𝑢

⟩︀
𝜏

=
⟨︀
P𝜏𝑔,P𝜏 (tr𝜏𝑢)

⟩︀
𝜏

= ⟨⟨tr𝜏𝑢, 𝑔⟩⟩𝜏 ,

where we used (5.21). On the other hand, suppose that 𝑔 ∈ Z⊥P̆−𝑟 𝛬𝑘(𝜏). Then we note that 𝑑𝑔 ∈ ZP̆−𝑟 𝛬𝑘+1(𝜏)
and so by the previous case

⟨︀
𝑑𝑢, U𝑘

𝑟 (𝜏, 𝑑𝑔)
⟩︀

= ⟨⟨tr𝜏𝑑𝑢, 𝑑𝑔⟩⟩𝜏 for any 𝑢 ∈ 𝑀𝑘
𝑟 since 𝑑𝑢 ∈ 𝑀𝑘+1

𝑟 . Thus, for 𝑢 ∈ 𝑀𝑘
𝑟

we can use the definition of U and integration by parts to get⟨︀
𝑢, U𝑘

𝑟 (𝜏, 𝑔)
⟩︀

=
⟨︀
𝑢, 𝛿𝑘+1U

𝑘
𝑟 (𝜏, 𝑑𝑔)

⟩︀
=

⟨︀
𝑑𝑢, U𝑘

𝑟 (𝜏, 𝑑𝑔)
⟩︀

= ⟨⟨tr𝜏𝑑𝑢, 𝑑𝑔⟩⟩𝜏 .

Using that 𝑑 ∘ 𝑑𝑔 = 0, P𝜏𝑑𝑔 = 𝑑𝑔 and P𝜏𝑔 = 0 we get

⟨⟨tr𝜏𝑑𝑢, 𝑑𝑔⟩⟩𝜏 =
⟨︀
P𝜏 (tr𝜏𝑑𝑢), P𝜏𝑑𝑔

⟩︀
𝜏

=
⟨︀
𝑑tr𝜏𝑢, 𝑑𝑔

⟩︀
𝜏

= ⟨⟨tr𝜏𝑢, 𝑔⟩⟩𝜏 .

This proves (5.22a). The estimate (5.22d) follows from a scaling argument. �

Before proving the main result of this section we will need the following estimate that follows from the
definition of 𝐸𝜏 and a scaling argument

1
ℎ𝜏
‖𝐸𝜏 (𝑚)‖𝐿2(st(𝜏)) + ‖𝐸𝜏 (𝑑𝑚)‖𝐿2(st(𝜏)) ≤ ℎ(𝑛−dim 𝜏)/2

𝜏 , 𝑚 ∈ z𝑘−1,⊥
𝑟 (𝜏). (5.23)

Lemma 5.9. The operator 𝑄𝑘
𝑟 : 𝐿2𝛬𝑘(Ω) → 𝑀𝑘

𝑟 is a projection and the following commuting property holds

𝑑𝑘𝑄𝑘
𝑟𝑢 = 𝑄𝑘+1

𝑟 𝑑𝑘𝑢, 𝑢 ∈ 𝐻𝛬𝑘(Ω). (5.24)

Moreover,
‖𝑄𝑘

𝑟𝑢‖𝐿2(𝑇 ) ≤ 𝐶‖𝑢‖𝐿2(es(𝑇 )), 𝑇 ∈ 𝛥𝑛. (5.25)



LOCAL 𝐿2-BOUNDED COMMUTING PROJECTIONS IN FEEC 2181

Proof. The fact that 𝑄𝑘
𝑟 is a projection follows from (5.19), (5.22a). To prove (5.24) we use (5.13) and (5.17) to

get
𝑑𝑄𝑘

𝑟𝑢 =
∑︁

𝜎∈𝛥(Tℎ)

∑︁
𝑔∈p𝑘

𝑟 (𝜎)

⟨︀
U𝑘

𝑟 (𝜎, 𝑔), 𝑢
⟩︀
𝐸𝜎(𝑑𝑔) =

∑︁
𝜎∈𝛥(Tℎ)

∑︁
𝑔∈z𝑘,⊥

𝑟 (𝜎)

⟨︀
U𝑘

𝑟 (𝜎, 𝑔), 𝑢
⟩︀
𝐸𝜎(𝑑𝑔).

On the other hand, using integration integration by parts we obtain

𝑄𝑘+1
𝑟 𝑑𝑢 =

∑︁
𝜎∈𝛥(Tℎ)

∑︁
𝑚∈p𝑘+1

𝑟 (𝜎)

⟨︀
U𝑘+1

𝑟 (𝜎, 𝑚), 𝑑𝑢
⟩︀
𝐸𝜎𝑚 =

∑︁
𝜎∈𝛥(Tℎ)

∑︁
𝑚∈p𝑘+1

𝑟 (𝜎)

⟨︀
𝛿U𝑘+1

𝑟 (𝜎, 𝑚), 𝑢
⟩︀
𝐸𝜎𝑚.

If use (5.22b) then we see that 𝛿U𝑘+1
𝑟 (𝜎, 𝑚) = 0 when 𝑚 ∈ z𝑘+1,⊥

𝑟 (𝜎). Hence,

𝑄𝑘+1
𝑟 𝑑𝑢 =

∑︁
𝜎∈𝛥(Tℎ)

∑︁
𝑚∈z𝑘+1

𝑟 (𝜎)

⟨︀
𝛿U𝑘+1

𝑟 (𝜎, 𝑚), 𝑢
⟩︀
𝐸𝜎𝑚 =

∑︁
𝜎∈𝛥(Tℎ)

∑︁
𝑔∈z𝑘,⊥

𝑟 (𝜎)

⟨︀
𝛿U𝑘+1

𝑟 (𝜎, 𝑑𝑔), 𝑢
⟩︀
𝐸𝜎(𝑑𝑔).

We now see that (5.24) follows from another application of (5.22b). Finally, one can easily establish (5.25) using
(5.23) and (5.22d). �

5.5. The final projection

Having defined 𝑄𝑘
𝑟 , the projection 𝜋𝑘

𝑟 : 𝐿2𝛬𝑘(Ω) → P−𝑟 𝛬𝑘(Tℎ) is defined by (5.2). As pointed out there, it is
indeed a projection operator. Moreover, since 𝑀𝑘

1 = 0, the operator 𝑄𝑘
1 vanishes and so 𝜋𝑘

1 coincides with 𝑃 𝑘
1 .

We can now prove our main result, Theorem 3.1.

Proof of Theorem 3.1. From (5.24) and (4.4) we obtain the commutativity:

𝑑𝑘𝜋𝑘
𝑟 𝑢 = 𝑑𝑘𝑃 𝑘

𝑟 𝑢 + 𝑑𝑘𝑄𝑘
𝑟 (𝑢− 𝑃 𝑘

𝑟 𝑢) = 𝑃 𝑘+1
𝑟 𝑑𝑘𝑢 + 𝑄𝑘+1

𝑟 (𝑑𝑘𝑢− 𝑃 𝑘+1
𝑟 𝑑𝑘𝑢) = 𝜋𝑘+1

𝑟 𝑑𝑘𝑢.

The result (3.2) follows from (5.25) and (4.5). �

6. Construction of Z𝑘
𝑟

It remains to construct the linear operators Z𝑘
𝑟 : C𝑘 → 𝐻𝛿𝛬

𝑘(Ω) satisfying the properties (4.2a)–(4.2d) whose
existence was asserted in Section 4. We will again use a superposition of bubble functions as in (5.20), but now
defined with respect to the extended star of a simplex:

b𝜏 =
∑︁

𝜎∈esℎ(𝜏)

𝑏𝜎.

Thus b𝜏 is supported in es(𝜏) and vanishes on any simplex in Tℎ of dimension less than 𝑛.

Lemma 6.1. Let 𝜎 ∈ 𝛥𝑘 and let 𝐿 : Z⊥P−𝑟 𝛬𝑘(esℎ(𝜎)) → R be a linear functional. Then the following problem
has a unique solution:

Find 𝑣 ∈ Z⊥P−𝑟 𝛬𝑘(esℎ(𝜎)) satisfying⟨︀
b𝜎𝑑𝑘𝑣, 𝑑𝑘𝑢

⟩︀
= 𝐿(𝑢), 𝑢 ∈ Z⊥P−𝑟 𝛬𝑘(esℎ(𝜎)). (6.1)

Proof. This is a square linear system and therefore we only have to prove uniqueness. Suppose that⟨︀
b𝜎𝑑𝑘𝑢, 𝑑𝑘𝑢

⟩︀
= 0 for some 𝑢 ∈ Z⊥P−𝑟 𝛬𝑘(esℎ(𝜎)). Then, given the property of b𝜎 we have that for each 𝜏 ∈ 𝛥𝑛

with 𝜏 ⊂ es(𝜎) we have that 𝑑𝑘𝑢 vanishes on 𝜏 . Hence, 𝑑𝑘𝑢 vanishes on es(𝜎) or 𝑢 ∈ ZP−𝑟 𝛬𝑘(esℎ(𝜎)). Thus, 𝑢
must be zero. �
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We also need the following bound that follows from inverse estimates:

R𝑘(𝑢)(𝜎) ≤ 𝐶ℎ
−𝑛

2 +𝑘
𝜎 ‖𝑢‖𝐿2(es(𝜎)), 𝑢 ∈ P−𝑟 𝛬𝑘(esℎ(𝜎)). (6.2)

Finally, we will need the following result which follows from a scaling argument:

‖
√︀

b𝜎𝑑𝜌‖𝐿2(es(𝜎)) ≤ 𝐶‖b𝜎𝑑𝜌‖𝐿2(es(𝜎)), 𝜌 ∈ P−𝑟 𝛬𝑘(esℎ(𝜎)). (6.3)

Theorem 6.2. Assume that the mesh is shape regular and assume that Assumption (2.4) holds. For 0 ≤ 𝑘 ≤ 𝑛,
there exists a linear operator Z𝑘

𝑟 : C𝑘 → 𝐻𝛿𝛬
𝑘(Ω) satisfying (4.2a)–(4.2d).

Proof. The proof is by induction on 𝑘. To initialize we need to define Z0
𝑟(𝜎) ∈ 𝐻𝛿𝛬

𝑘(Ω) for 𝜎 ∈ 𝛥0 and 𝑟 ≥ 1.
The 0-simplex 𝜎 consists of a single vertex, say 𝑝. Let 𝜂 = 𝜒es(𝜎)/| es(𝜎)| denote the characteristic function of
es(𝜎) normalized to have integral unity. Hence,

⟨︀
𝑢, 𝜂

⟩︀
= 𝑢(𝑝) for any constant function 𝑢. Invoking Lemma 6.1,

we define 𝑣 ∈ Z⊥P−𝑟 𝛬0(esℎ(𝜎)) by⟨︀
b𝜎𝑑0𝑣, 𝑑0𝑢

⟩︀
= 𝑢(𝑝)−

⟨︀
𝜂, 𝑢

⟩︀
, 𝑢 ∈ Z⊥P−𝑟 𝛬0(esℎ(𝜎)). (6.4)

Note that ZP−𝑟 𝛬0(esℎ(𝜎)) consists of constant functions, so both the left-hand side and right-hand side of the
equation in (6.4) vanish for 𝑢 ∈ ZP−𝑟 𝛬0(esℎ(𝜎)). Hence⟨︀

b𝜎𝑑0𝑣, 𝑑0𝑢
⟩︀

= 𝑢(𝑝)−
⟨︀
𝜂, 𝑢

⟩︀
, 𝑢 ∈ P−𝑟 𝛬0(esℎ(𝜎)). (6.5)

We now define
Z0

𝑟(𝜎) := 𝜂 + 𝛿1

(︀
b𝜎𝑑0𝑣

)︀
. (6.6)

To finish the initial step of the induction we verify that the operator Z0
𝑟 has the desired properties (4.2a)–

(4.2d). For 𝑢 ∈ P−𝑟 𝛬0(Tℎ), we have by (6.6), (2.1), and (6.5) that⟨︀
Z0

𝑟(𝜎), 𝑢
⟩︀

=
⟨︀
𝜂 + 𝛿1

(︀
b𝜎𝑑0𝑣

)︀
, 𝑢

⟩︀
=

⟨︀
𝜂, 𝑢

⟩︀
+

⟨︀
b𝜎𝑑0𝑣, 𝑑0𝑢

⟩︀
= 𝑢(𝑝),

which is (4.2a) in the case 𝑘 = 0. For 𝑘 = 0 both sides of (4.2b) trivially vanish, and the locality condition
(4.2c) is clear. Finally, to prove (4.2d) we note that

‖𝜂‖𝐿2(es(𝜎)) ≤ 𝐶ℎ−𝑛/2
𝜎 . (6.7)

Moreover, by (6.5) we have

‖
√︀

b𝜎𝑑0𝑣‖2𝐿2(es(𝜎)) ≤ |𝑣(𝑝)|+ ‖𝜂‖𝐿2(es(𝜎))‖𝑣‖𝐿2(es(𝜎))

≤ ℎ
−𝑛

2
𝜎 ‖𝑣‖𝐿2(es(𝜎)) inverse estimate and (6.7)

≤ ℎ
−𝑛

2 +1
𝜎 ‖𝑑0𝑣‖𝐿2(es(𝜎)) by (2.9).

Hence, using (6.3) we get
‖
√︀

b𝜎𝑑0𝑣‖𝐿2(es(𝜎)) ≤ 𝐶ℎ
−𝑛

2 +1
𝜎 .

By another inverse estimate we have

‖𝛿1

(︀
b𝜎𝑑0𝑣

)︀
‖𝐿2(es(𝜎)) ≤ 𝐶ℎ

−𝑛
2

𝜎 .

This combined with (6.7) shows (4.2d) for the case 𝑘 = 0.
To complete the induction, we suppose that we have constructed Zℓ

𝑟 satisfying (4.2a)–(4.2d) for any ℓ < 𝑘,
and we construct Z𝑘

𝑟 . Let 𝜎 ∈ 𝛥𝑘 be arbitrary. By Proposition 2.3 we have the existence of 𝜂 ∈ 𝐻𝛿𝛬
𝑘(es(𝜎))

such that

𝛿𝑘𝜂 = Z𝑘−1
𝑟 (𝜕𝑘𝜎) on es(𝜎). (6.8)
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Here we used that 𝛿𝑘−1Z
𝑘−1
𝑟 (𝜕𝑘𝜎) = Z𝑘−2

𝑟 (𝜕𝑘−1𝜕𝑘𝜎) = 0 if 𝑘 ≥ 2 which follows from our induction hypothesis
and (4.2b) and also

⟨︀
Z0

𝑟(𝜕1𝜎), 1
⟩︀
es(𝜎)

= 0 if 𝑘 = 1.
We then define

Z𝑘
𝑟 (𝜎) := 𝜂 + 𝛿𝑘+1(b𝜎𝑑𝑘𝑣), (6.9)

where 𝑣 ∈ Z⊥P−𝑟 𝛬𝑘(esℎ(𝜎)) solves (by Lem. 6.1)⟨︀
b𝜎𝑑𝑘𝑣, 𝑑𝑘𝑢

⟩︀
= R𝑘𝑢(𝜎)−

⟨︀
𝜂, 𝑢

⟩︀
, 𝑢 ∈ Z⊥P−𝑟 𝛬𝑘(esℎ(𝜎)). (6.10)

Note if 𝑢 ∈ ZP−𝑟 𝛬𝑘(esℎ(𝜎)) then the left-hand side of (6.10) vanishes. Moreover, by Proposition 2.8 there exists
𝑤 ∈ P−𝑟 𝛬𝑘−1(esℎ(𝜎)) such that 𝑑𝑘−1𝑤 = 𝑢. Hence,

R𝑘𝑢(𝜎)−
⟨︀
𝜂, 𝑢

⟩︀
= R𝑘𝑑𝑘−1𝑤(𝜎)−

⟨︀
𝜂, 𝑑𝑘−1𝑤

⟩︀
= R𝑘−1𝑤(𝜕𝜎)−

⟨︀
𝛿𝑘𝜂, 𝑤

⟩︀
by (2.4), (2.1)

= R𝑘−1𝑤(𝜕𝜎)−
⟨︀
Z𝑘−1

𝑟 (𝜕𝜎), 𝑤
⟩︀

by (6.8)
= 0 by our induction hypothesis.

Thus, we have ⟨︀
b𝜎𝑑𝑘𝑣, 𝑑𝑘𝑢

⟩︀
= R𝑘𝑢(𝜎)−

⟨︀
𝜂, 𝑢

⟩︀
, 𝑢 ∈ P−𝑟 𝛬𝑘(esℎ(𝜎)). (6.11)

We complete the induction by proving that indeed Z𝑘
𝑟 (𝜎) has the desired properties. By (6.8), (6.9) and

the fact that 𝛿𝑘𝛿𝑘+1 = 0 we have that (4.2b) holds. Clearly (4.2c) holds. We next prove (4.2a) holds. Let
𝑢 ∈ P−𝑟 𝛬𝑘(Tℎ), then ⟨︀

Z𝑘
𝑟 (𝜎), 𝑢

⟩︀
=

⟨︀
𝜂 + 𝛿𝑘+1(b𝜎𝑑𝑘𝑣, 𝑢

⟩︀
by (6.9)

=
⟨︀
𝜂, 𝑢

⟩︀
+

⟨︀
b𝜎𝑑𝑘𝑣, 𝑑𝑘𝑢

⟩︀
by (2.1)

= R𝑘𝑢(𝜎) by (6.11).

To prove (4.2d) we note by (2.11) that

‖𝜂‖𝐿2(es(𝜎)) ≤ 𝐶𝛿ℎ𝜎‖Z𝑘−1
𝑟 (𝜕𝜎)‖𝐿2(es(𝜎)).

By our induction hypothesis (4.2d) we have

‖Z𝑘−1
𝑟 (𝜕𝜎)‖𝐿2(es(𝜎)) ≤ 𝐶 ℎ

−𝑛
2 +𝑘−1

𝜎 .

Thus,
‖𝜂‖𝐿2(es(𝜎)) ≤ 𝐶ℎ

−𝑛
2 +𝑘

𝜎 . (6.12)
Using (6.10) we get

‖
√︀

b𝜎𝑑𝑘𝑣‖2𝐿2(es(𝜎)) ≤ |R
𝑘𝑣|+ ‖𝜂‖𝐿2(es(𝜎))‖𝑣‖𝐿2(es(𝜎))

≤ 𝐶ℎ
−𝑛

2 +𝑘
𝜎 ‖𝑣‖𝐿2(es(𝜎)) by (6.12), (6.2)

≤ 𝐶ℎ
−𝑛

2 +𝑘+1
𝜎 ‖𝑑𝑘𝑣‖𝐿2(es(𝜎)). by (2.9)

Therefore, using (6.3) we have
‖
√︀

b𝜎𝑑𝑘𝑣‖𝐿2(es(𝜎)) ≤ 𝐶ℎ
−𝑛

2 +𝑘+1
𝜎 .

If we now use an inverse estimate we get

‖𝛿𝑘+1

(︀
b𝜎𝑑𝑘𝑣

)︀
‖𝐿2(es(𝜎)) ≤

𝐶

ℎ𝜎
‖b𝜎𝑑𝑘𝑣

⃦⃦
𝐿2(es(𝜎))

≤ 𝐶

ℎ𝜎
‖
√︀

b𝜎𝑑𝑘𝑣
⃦⃦

𝐿2(es(𝜎))
≤ 𝐶ℎ

−𝑛
2 +𝑘

𝜎 . (6.13)

Combining (6.12) and (6.13) gives (4.2d). �
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[8] A. Ern, T. Gudi, I. Smears and M. Vohraĺık, Equivalence of local-and global-best approximations, a simple stable local
commuting projector, and optimal hp approximation estimates in h(div). Preprint: arXiv:1908.08158 (2019).

[9] R. Falk and R. Winther, Local bounded cochain projections. Math. Comput. 83 (2014) 2631–2656.

[10] R.S. Falk and R. Winther, Double complexes and local cochain projections. Numer. Methods Partial Differ. Equ. 31 (2015)
541–551.

[11] L. Gastaldi and R.H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to
second order elliptic equations. ESAIM: M2AN 23 (1989) 103–128.

[12] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer (2015).

[13] J. Guzmán and A.J. Salgado, Estimation of the continuity constants for Bogovskii and regularized Poincaré integral operators.
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