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Abstract. We study the finite element approximation of the Kirchhoff plate equation on domains
with curved boundaries using the Hellan–Herrmann–Johnson (HHJ) method. We prove optimal con-
vergence on domains with piecewise Ck+1 boundary for k ≥ 1 when using a parametric (curved) HHJ
space. Computational results are given that demonstrate optimal convergence and how convergence
degrades when curved triangles of insufficient polynomial degree are used. Moreover, we show that
the lowest order HHJ method on a polygonal approximation of the disk does not succumb to the
classic Babuška paradox, highlighting the geometrically nonconforming aspect of the HHJ method.
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1. Introduction. The fourth order Kirchhoff plate bending problem presents
notorious difficulties for finite element discretization. Among the many approaches
that have been proposed, the Hellan–Herrmann–Johnson (HHJ) mixed method is one
of the most successful. In simple situations (polygonal domains and smooth solutions),
it provides stable discretization of arbitrary order and has been analyzed by many
authors [9, 11, 10, 3, 2, 15, 6, 24, 16, 21]. However, in realistic applications the plate
domain may well have a curved boundary, and additional errors arise from geometric
approximation of the domain. In this paper, we analyze the effect of this geometric
approximation and show that if handled correctly, the full discretization converges at
the same optimal rate as is achieved for polygonal plates.

The well-known Babuška paradox demonstrates that there may be difficulties
with low degree approximation of the geometry. Specifically, the paradox considers
the effect of approximating the geometry only, without further numerical error. It
considers a uniformly loaded simply supported circular plate and approximates the
solution by the exact solution of the same problem on an inscribed regular polygon.
As the number of sides of the polygon increases, the solution does not converge to the
solution on the disk. The errors arising from linear approximation of the geometry
lead to nonconvergence. However, as we shall show below, if the problem on the
polygon is solved using the lowest order HHJ method, then convergence is restored.
We further show that if higher order approximation of the geometry is combined with
HHJ discretization of higher degree, the resulting method achieves any desired order.

While, to the best of our knowledge, the effect of domain approximation has not
been studied before for the HHJ discretization of plates, its effect on the solution
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2830 D. N. ARNOLD AND S. W. WALKER

of second order problems by standard finite elements is classical. See, for instance,
[25, 22, 13, 18]. For simplicity, consider the Poisson equation −∆u = f on Ω with the
Dirichlet boundary condition u = 0 on ∂Ω. Suppose we approximate the domain using
parametric curved elements of some degree m to obtain an approximate domain Ωm

consisting of elements with maximum diameter h. To compare approximate solutions
obtained on the approximation domain to the true solution on the true domain, we
require a diffeomorphic mapping Ψ : Ωm → Ω. The error analysis then depends on
the identity [18, sect. 6]∫

Ω

∇u · ∇v =

∫
Ωm

∇ũ · ∇ṽ +

∫
Ωm

∇ũ ·
[
det(J)J−1J−T − I

]
∇ṽ,

where ũ = u ◦ Ψ (and similarly for v) and J = ∇Ψ is the Jacobian matrix. The
mapping Ψ is defined so that ‖J − I‖L∞ = O(hm), where m is the degree of the
polynomials used for the domain approximation. This leads to an O(hm) bound on
the geometric consistency error term, the second integral on the right-hand side of
the above identity. Choosing m to equal or exceed the degree of the finite elements
used to approximate the solution (isoparametric or superparametric approximation)
then ensures that full approximation order is maintained with curved elements.

Convergence for fourth order problems is less well established. In [20], the bi-
harmonic problem is split into two second order equations with curved isoparametric
elements and slightly modified boundary conditions. For plate problems, analyses of
C1 domain approximations have been considered (see [23, 12, 19, 26]).

The purpose of this paper is to give a rigorous estimate of the error between the
continuous solution on the true domain and the discrete solution on the approximate
domain. The main difficulty in this is dealing with higher derivatives of the nonlinear
map that appear in the analysis (for instance, see [7, p. 78] and [14, Thm. 4.4.3]). For
example, when mapping the Hessian, we have ∇2v = J−1

[
∇2ṽ − ∂γ ṽΓγ

]
J−T , where

Γγ is a 2× 2 matrix whose entries are the Christoffel symbols Γγαβ of the second kind
for the induced metric. These depend on second derivatives of Ψ, and, consequently,
‖Γγ‖L∞ = O(hm−1), so a naive handling of this term would yield suboptimal results
or no convergence at all for m = 1. Another related issue is the handling of jump
terms (appearing in some mesh-dependent norms) when affected by the nonlinear
map.

The crucial tools needed to overcome these difficulties is the use of a Fortin-like
operator (4.20) together with a particular optimal map (5.1) that is different from
the curved element map given in [22, 18]. The results we present here should be of
relevance to simulating plate problems on smooth and piecewise smooth domains.

We close the introduction with a brief outline of the remainder of the paper. Sec-
tion 2 reviews the Kirchhoff plate problem and the mesh-dependent weak formulation
behind the HHJ method. Section 3 provides a quick review of curved finite elements,
and section 4 shows how to extend the classic HHJ method to curved elements. Sec-
tion 5 provides the error analysis, which follows the framework of [3, 6], where we
use a formulation of the Kirchhoff plate problem based on mesh-dependent spaces
and analyze it with mesh-dependent norms. Section 6 gives numerical results, and we
conclude in section 7 with some remarks. We also collect several basic or technical
results in the supplementary materials, linked from the main article webpage.

2. Preliminaries and statements of results. We begin by recalling the Kirch-
hoff plate problem and the HHJ discretization and establishing our notations. The
domain of the plate, i.e., its undeformed midsurface, is denoted by Ω ⊂ R2 and its
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THE HHJ METHOD WITH CURVED ELEMENTS 2831

boundary by Γ := ∂Ω. Denoting the vertical displacement by w and the bending
moment tensor by σ, the plate equations [17, pp. 44–51] are

(2.1) σ = C∇2w, div div σ = f in Ω, Cτ := D [(1− ν)τ + ν tr(τ )I] ,

where ∇2w denotes the Hessian of w, the iterated divergence div div takes a matrix
field to a scalar function, f denotes the load function, and C is the constitutive tensor,
with the bending modulus D given by Et3/12(1 − ν2) in terms of Young’s modulus
E, the Poisson ratio ν, and the plate thickness t. We assume that ν ∈ (−1, 1), so C
is a symmetric positive-definite operator on the space S of symmetric 2 × 2 tensors.
For a standard material, 0 ≤ ν < 1/2.

The differential equations (2.1) are supplemented by boundary conditions on ∂Ω,
such as

w = ∂w/∂n = 0 for a clamped plate or w = σnn = 0 for a simply supported one.

Here σnn = nTσn denotes the normal-normal component of σ.
The Kirchhoff plate problem can be formulated weakly. Taking W = H̊2(Ω) or

H2(Ω)∩ H̊1(Ω) for clamped and simply supported boundary conditions, respectively,
w ∈ W is uniquely determined by the weak equations

(2.2)
(
C∇2w,∇2v

)
= 〈f, v〉 ∀v ∈ W

for any f in L2(Ω) or, more generally, in W∗. Note that we use standard notations
Hm(Ω) and H̊m(Ω) for Sobolev spaces, with the latter subject to vanishing traces.

Next, we recall the HHJ method, first in the case of a polygonal domain (or a
polygonal approximation to the true domain), and then for higher order polynomial
approximations to the domain, which is the main subject here. Let Th be a triangu-
lation of the polygonal domain Ω, and let the degree r ≥ 0 be fixed. The transverse
displacement w will be approximated in the usual Lagrange finite element space

Wh = {v ∈ H̊1(Ω) | v|T ∈ Pr+1(T ) ∀T ∈ Th},

while the bending moment tensor σ will be sought in the HHJ space

(2.3) Vh = {ϕ ∈ L2(Ω;S) | ϕ|T ∈ Pr(T ;S) ∀T ∈ Th, ϕ normal-normal continuous}.

The normal-normal continuity condition means that if two triangles T1 and T2 share a
common edge E, then nT (ϕ|T1

)n = nT (ϕ|T2
)n on E. For simply supported boundary

conditions, the space Vh also incorporates the vanishing of ϕnn on boundary edges.
Assume that σ belongs to H1(Ω; S) and f belongs to L2(Ω) (this is for simplicity;

it can be weakened). Multiplying the second equation in (2.1) by a test function
v ∈Wh and integrating over a triangle T , we obtain

(f, v)T = (div div σ, v)T = −(div σ,∇v)T = (σ,∇2v)T − 〈σn,∇v〉∂T
= (σ,∇2v)T − 〈nTσn, ∂v/∂n〉∂T − 〈tTσn, ∂v/∂t〉∂T .

Next, we sum this equation over all the triangles T . The penultimate term gives∑
T

〈nTσn, ∂v/∂n〉∂T =
∑
E∈Eh

〈σnn, J∂v/∂nK〉E .
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2832 D. N. ARNOLD AND S. W. WALKER

Here JηK denotes the jump in a quantity η across a mesh edge E, so if the edge E is
shared by two triangles T1 and T2 with outward normals n1 and n2, then J∂v/∂nK =
n1 · ∇v|T1

+ n2 · ∇v|T2
on E. For E a boundary edge, we set JηK = η|E . For

the final term above, we obtain
∑
T 〈tTσn, ∂v/∂t〉∂T = 0, since ∂v/∂t is continuous

across interior edges and the normal vector switches sign; moreover, ∂v/∂t vanishes
on boundary edges. Thus, if we define the bilinear form

bh (ϕ, v) = −
∑
T∈Th

(
ϕ,∇2v

)
T

+
∑
E∈Eh

〈ϕnn, J∂v/∂nK〉E , ϕ ∈ Vh, v ∈Wh,

we have bh (σ, v) = −〈f, v〉 for all v ∈Wh. We define as well a second bilinear form

a (τ ,ϕ) = (Kτ ,ϕ) , τ ,ϕ ∈ Vh, where Kτ :=
1

D

[
1

1− ν
τ − ν

1− ν2
tr(τ )I

]
,

with K the inverse of C. Using the first equation in (2.1) and the continuity of ∂w/∂n,
we have a (σ, τ ) + bh (τ , w) = 0 for any τ ∈ Vh. This leads us to the HHJ mixed
method, which defines σh ∈ Vh, wh ∈Wh by

(2.4)
a (σh, τ ) + bh (τ , wh) = 0 ∀τ ∈ Vh,
bh (σh, v) = −〈f, v〉 ∀v ∈Wh.

This method has been analyzed by numerous authors with different techniques. The
present analysis owes the most to [3, 6]. In particular, optimal O(hr+1) convergence
for σ in L2 and w in H1 has been established for smooth solutions.

If the plate domain Ω is not polygonal, a simple possibility is to construct a
polygonal approximate domain. For this, we let T 1

h denote a triangulation consisting
of straight-edged triangles with interior vertices belonging to Ω and boundary vertices
belonging to ∂Ω. The approximate domain Ω1 is the region triangulated by T 1

h . We
assume further that no element of T 1

h has more than one edge on the boundary of Ω1,
and we call those that have such an edge boundary triangles.

As we shall see, in the case of the lowest order HHJ elements, r = 0, such a
polygonal approximation of the geometry does not degrade the rate of convergence
of the numerical scheme (the Babuška paradox notwithstanding). For higher order
elements, however, we need to make a better approximation of the geometry in order
to obtain the approximate rate, just as is true when solving the Poisson problem with
standard Lagrange finite elements [18]. We now briefly describe the procedure (see
Figure 1), the full specification and analysis of which will occupy the remainder of
the paper. Let m ≥ 1 denote the integer degree of approximation of the geometry
(so m = 1 corresponds to the polygonal approximation). To each triangle T 1 ∈ T 1

h

we associate a curvilinear triangle Tm and a diffeomorphism FmT : T 1 → Tm which
is a polynomial map of degree m. In the case where T 1 is a boundary triangle, we
require that FmT restricts itself to the identity on the two nonboundary edges of T 1,
and in case T 1 is not a boundary triangle, we simply take Tm = T 1 and FmT to be the
identity. We require that the set of all such curvilinear triangles forms a triangulation
T mh of the domain Ωm =

⋃
T 1∈Th

FmT (T 1), which is a polynomial approximation of the

true domain of degree m. Note that the map Fm : Ω1 → Ωm given by Fm|T 1 = FmT ,
for all T 1 ∈ T 1

h , is a diffeomorphism of the polygonal approximate domain onto the
approximate domain of degree m.

Using the mapping Fm, we may transform the finite element spaces Wh and Vh
from the polygonal approximate domain to the degree m approximation Ωm. For Wh,
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THE HHJ METHOD WITH CURVED ELEMENTS 2833

Fig. 1. A straight-edged triangle T 1, degree 2 curvilinear triangle T 2, and curvilinear triangle T
exactly conforming to the boundary Γ. All three share the two straight edges, with the corresponding
boundary edges shown as dashed, dotted, and solid, respectively.

the transformation is a simple composition, but for the tensor space Vh we must use
the matrix Piola transform, which preserves normal-normal continuity. In this way,
we obtained a mixed discretization of the plate problem based on elements of degrees
r+ 1 and r for w and σ, respectively, and geometric approximation of degree m. The
integers r ≥ 0 and m ≥ 1 can be taken arbitrarily, but we show that to obtain the
same optimal rates of convergence on a curved domain, as occurs for smooth solutions
on a polygonal domain, it is sufficient to take m ≥ r+1; e.g., polygonal approximation
(m = 1) is sufficient for the lowest order HHJ elements (r = 0), but approximation
must be at least quadratic to obtain optimality when r = 1, and so forth. Numerical
experiments are included to show the necessity of this restriction.

2.1. Boundary assumptions. We shall allow for mixed boundary conditions,
clamped on part of the domain and simply supported on the rest. To this end, we
assume that Γ is piecewise smooth with a finite number of corners, where the interior
angle αi of the ith corner satisfies αi ∈ (0, 2π] (see Figure 2). In particular, Γ is
globally continuous and can be parameterized by a piecewise Ck+1 curve for some
k ≥ 1, i.e., Γ =

⋃
p∈VΓ

p ∪
⋃
ζ∈CΓ ζ, where VΓ is the set of corner vertices and CΓ is

the set of (open) Ck+1 curves that make up Γ. Moreover, we assume Γ = Γc ∪ Γs

partitions into two mutually disjoint one-dimensional components Γc (clamped) and
Γs (simply supported). Each open curve ζ ∈ CΓ belongs to only one of the sets Γc or
Γs, and each curve is maximal such that two distinct curves contained in the same
component do not meet at an angle of π. At the expense of small additional technical
and notational complications, we could allow a partition of the boundary into three
sets rather than two, imposing free boundary conditions on the third portion.

With the above partition of Γ, we have the following set of boundary conditions:

w = ∂w/∂n = 0 on Γc, w = nTσn = 0 on Γs.(2.5)

Extending the definition of the energy space W to account for these mixed boundary
conditions,

W(Ω) := {v ∈ H2(Ω) | v = 0 on Γc ∪ Γs, ∂nv = 0 on Γc},(2.6)

we have that
(
C∇2v,∇2v

)
≥ a0‖v‖H2(Ω) for all v ∈ W and some constant a0 > 0.

Consequently, there exists a unique w ∈ W satisfying the plate equations in the weak
formulation (2.2).
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2834 D. N. ARNOLD AND S. W. WALKER

n

t

α1

α2

α3

Ω

Γc

Γc
Γs

Γs

Fig. 2. Illustration of plate domain Ω. The boundary Γ decomposes as Γ = Γc ∪ Γs and
has a finite number of corners with interior angles αi; the corners may (or may not) lie at the
intersection of two boundary components. The outer unit normal vector is n, and the oriented unit
tangent vector is t.

2.2. Continuous mesh-dependent formulation. The main difficulty in solv-
ing (2.2) numerically is that W ⊂ H2(Ω), and so C1 elements are required for
a conforming discretization. We adopt the approach in [11, 3, 2, 6] and use a
mesh-dependent version of H2(Ω). We start by partitioning the domain Ω with a
mesh Th = {T} of triangles such that Ω =

⋃
T∈Th

T , where hT := diam(T ) and

h := maxT hT , and assume throughout that the mesh is quasi-uniform and shape
regular. We further assume the corners of the domain are captured by vertices of the
mesh.

Next, we have the skeleton of the mesh, i.e., the set of mesh edges Eh := ∂Th.
Let E∂,h ⊂ Eh denote the subset of edges that are contained in the boundary Γ
and respect the boundary condition partition of Γ. The internal edges are given by
E0,h := Eh \ E∂,h. Note that elements in Th, Eh may be curved. For now, we assume Γ

is piecewise smooth (at least C2) with a finite number of corners to which the mesh
conforms (see subsection 2.1 for more detailed assumptions).

The spaces in the following sections are infinite dimensional but defined in a
“broken” way with respect to the partition. Thus, we adopt standard dG notation
for writing inner products and norms over the partition, e.g.,

(f, g)Th
:=

∑
T∈Th

(f, g)T , (f, g)Eh
:=

∑
E∈Eh

(f, g)E ,

‖f‖pLp(Th) :=
∑
T∈Th

‖f‖pLp(T ), ‖f‖pLp(Eh) :=
∑
E∈Eh

‖f‖pLp(E).
(2.7)

We shall make repeated use of the following scaling/trace estimate [1, Thm. 3.10]:

‖v‖2L2(∂T ) ≤ C
(
h−1‖v‖2L2(T ) + h‖∇v‖2L2(T )

)
∀v ∈ H1(T ).(2.8)
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2.2.1. Skeleton spaces. We follow [3] in defining infinite-dimensional but mesh
dependent spaces and norms. A mesh-dependent version of H2(Ω) is given by

(2.9) H2
h(Ω) := {v ∈ H1(Ω) | v|T ∈ H2(T ) for T ∈ Th},

with the seminorm

‖v‖22,h := ‖∇2v‖2L2(Th) + h−1 ‖Jn · ∇vK‖2L2(E0,h) + h−1 ‖Jn · ∇vK‖2L2(Γc) ,(2.10)

where JηK is the jump in quantity η across mesh edge E, and n is the unit normal on
E ∈ Eh; on a boundary edge, JηK ≡ η. Next, for any ϕ ∈ H1(Ω;S), define

(2.11) ‖ϕ‖20,h := ‖ϕ‖2L2(Ω) + h
∥∥nTϕn∥∥2

L2(Eh)
,

and defineH0
h to be the completion: H0

h(Ω; S) := H1(Ω;S)
‖·‖0,h

. Note thatH0
h(Ω; S) ≡

L2(Ω;S)⊕L2(Eh;R), i.e., ϕ ∈ H0
h(Ω; S) is actually ϕ ≡ (ϕ′, ϕnn), where ϕ′ ∈ L2(Ω; S)

and ϕnn ∈ L2(Eh), with no connection between ϕ′ and ϕnn. We also have that
ϕ ∈ H1(Ω;S) ⊂ H0

h(Ω;S) implies nTϕ′n|Eh = ϕnn [3]. Furthermore, we have a
scalar-valued function version of ‖ · ‖0,h:

(2.12) ‖v‖20,h := ‖v‖2L2(Ω) + h‖v‖2L2(Eh) ∀v ∈ H1(Ω),

which satisfies the following estimate (proved in section SM1 of the supplementary
materials).

Proposition 2.1. For all v ∈ H1(Ω), ‖v‖20,h ≤ C
(
‖v‖2L2(Ω) + h2‖∇v‖2L2(Ω)

)
for

some independent constant C.

Next, we introduce the skeleton subspaces

Wh := H2
h(Ω) ∩ H̊1(Ω), Vh := {ϕ ∈ H0

h(Ω; S) | ϕnn = 0 on Γs},(2.13)

where Wh is a mesh-dependent version of (2.6) and Vh is used for the stress σ. Note
how essential and natural boundary conditions are imposed differently in (2.13) than
in (2.6). In addition, we have the following Poincaré inequality, which follows by
standard integration by parts arguments [6].

Proposition 2.2. Define |||v|||22,h := ‖∇2v‖2L2(Th) + h−1 ‖Jn · ∇vK‖2L2(E0,h). Then

|||·|||2,h is a norm on Wh. Moreover, there is a constant CP > 0, depending only on
Ω, such that

‖∇v‖L2(Ω) ≤ CP|||v|||2,h ∀v ∈ Wh.(2.14)

2.2.2. Mixed skeleton formulation. Following [3, 6], we define a broken ver-
sion of the Hessian operator. Recalling the earlier discussion, we extend bh (ϕ, v) to
all ϕ ∈ H0

h(Ω;S) and v ∈ H2
h(Ω), i.e.,

bh (ϕ, v) = −
(
ϕ′,∇2v

)
Th

+ 〈ϕnn, Jn · ∇vK〉Eh ,(2.15)

and extend a (ϕ,σ) to all τ ,ϕ ∈ H0
h(Ω; S):

a (τ ,ϕ) =
∑
T∈Th

(τ ,Kϕ)T ≡ (τ ,Kϕ)Th
.(2.16)
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2836 D. N. ARNOLD AND S. W. WALKER

Thus, we pose the following mixed weak formulation of the Kirchhoff plate problem.
Given f ∈ H−1(Ω), find σ ∈ Vh, w ∈ Wh such that

a (σ,ϕ) + bh (ϕ, w) = 0 ∀ϕ ∈ Vh,
bh (σ, v) = −〈f, v〉 ∀v ∈ Wh,

(2.17)

where 〈·, ·〉 is the duality pairing between H−1 and H̊1.

Remark 2.3. Assume for simplicity that the domain is smooth and f ∈ H−1.
Then the solution (σ, w) of (2.1) satisfies w ∈ H3 and σ ∈ H1 and the pair (σ, w)
solves (2.17). In addition, any solution of (2.17) is also a solution of (2.1), and so the
formulations are equivalent. See [6, sect. 3] for details.

3. Curved finite elements. The basic theory of curved elements was initiated
in [13] in two dimensions, with specific procedures for some low degree isoparametric
Lagrange elements. In [30, 29, 28], a theory for arbitrarily curved (two-dimensional)
elements was given, while the author of [22] gave a general procedure for arbitrary
order isoparametric elements. Later, the author of [18] generalized the theory to any
dimension and gave a method of constructing the curved elements. The following
sections give the essential parts of [18] that we need for this paper; section SM2 gives
a more complete review.

3.1. Curved triangulations. We recall the parametric approach to approxi-
mating a domain with a curved boundary by a curvilinear triangulation T mh of order
m ≥ 1, following [18]. The process begins with a conforming, shape-regular, straight-
edged triangulation T 1

h which triangulates a polygon Ω1 interpolating Ω (in the sense
that the boundary vertices of Ω1 lie on the boundary of Ω). We define T 1

∂,h to be
the set of triangles with at least one vertex on the boundary. We make the following
assumption.

Hypothesis 3.1. Each triangle in T 1
h has at most two vertices on the boundary,

and so it has at most one edge contained in Γ1.

Next, for each T 1 ∈ T 1
h , we define a map FmT : T 1 → R2 of polynomial degree

m which maps T 1 diffeomorphically onto a curvilinear triangle Tm. The map is
determined by specifying the images of the Lagrange nodes of degree m on T 1. Nodes
on an interior edge of T 1 are specified to remain fixed, while those on a boundary
edge have their image determined by interpolation of a chart defining the boundary.
Nodes interior to T 1 are mapped in an intermediate fashion through their barycentric

coordinates. See equation (14) of [18] for an explicit formula for FmT ◦ F̂ 1
T , where

F̂ 1
T is the affine map from the standard reference triangle to T 1. The maps FmT so

determined satisfy optimal bounds on their derivatives, as specified in [18, Thms. 1
and 2]. Moreover, the triangulation T mh consisting of all the curvilinear triangles
Tm = FmT (T 1), T 1 ∈ T 1

h , is itself a conforming, shape-regular triangulation that
approximates Ω by Ωm :=

⋃
Tm∈Tm

h
Tm. We also denote by Emh the set of edges of

the triangulation T mh , which is partitioned into interior edges Em0,h (all straight) and
boundary edges Em∂,h (possibly curved). Thus, Γm :=

⋃
Em∈Em∂,h

Em is an mth order

approximation of Γ. Note that, by construction, (i) F 1
T ≡ idT 1 ; (ii) if T 1 has no side

on Γ, then FmT ≡ idT 1 ; and (iii) FmT |E = idT 1 |E for all interior edges E ∈ Em0,h.
Of course, the polynomial maps FmT may be combined to define a piecewise poly-

nomial diffeomorphism Fm : Ω1 → Ωm. Moreover, two of these maps, for degrees
l and m, may be combined to give a map between the corresponding approximate
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THE HHJ METHOD WITH CURVED ELEMENTS 2837

domains. Referring to Figure 3(a), it is defined piecewise by

Φlm|T = Φlm
T : T l → Tm, where Φlm

T := FmT ◦ (F lT )−1, so Φ1m
T ≡ FmT .(3.1)

Fig. 3. (a) Mappings between linear approximate triangles and approximate triangles of higher
degree. (b) Mappings between the approximate triangles and the exact curvilinear triangle.

In order to compare the exact solution, defined on the exact domain Ω, with
an approximation defined on the approximate domain Ωm, we require a map from
the approximate domain to the true one. These can be defined elementwise in close
analogy to FmT . Specifically, given a triangle Tm ∈ T mh , we define a map Ψm

T : Tm →
R2 which maps Tm diffeomorphically onto a curvilinear triangle T exactly fitting Ω.
If Tm has no boundary edges, the map is taken to be the identity. Otherwise, Tm

has one edge Em ⊂ Γm, and the map is defined by [18, eq. (32)]. It restricts itself to
the identity on the interior edges of Tm and satisfies Propositions SM2.1 and SM2.2.
The curvilinear triangulation Th := {Ψm

T (Tm)}Tm∈T m
h

then exactly triangulates Ω.
The Ψm

T may be pieced together to give a global map Ψm : Ωm → Ω.
We may view the exact domain and the corresponding triangulation as the limiting

case of the approximate domain, and its triangulation, as m → ∞. This leads to
alternative notations Ω∞ ≡ Ω, T ∞h ≡ Th, Φl∞ ≡ Ψl, F∞T ≡ Ψ1, etc., which will
sometimes be convenient. Note that the use of the superscript infinity in the notation
for these quantities is suggestive: the exact domain can be thought of as an infinite
order approximation of itself. However, this is merely a choice of notation. We are
not asserting here some sort of convergence of the polynomial approximate domains
to the true domain.

Section SM2 of the supplementary materials gives further details on these maps,
with the main results summarized in the next theorem (proved in subsection SM2.3).

Theorem 3.2. Assume Hypothesis 3.1. Then for all 1 ≤ l ≤ m ≤ k and m =∞,
the maps FmT , F lT described above satisfy

‖∇s(F lT − idT 1)‖L∞(T 1) ≤ Ch2−s for s = 0, 1, 2,

‖∇s(FmT − F lT )‖L∞(T 1) ≤ Chl+1−s for 0 ≤ s ≤ l + 1,

1− Ch ≤ ‖[∇F lT ]−1‖L∞(T 1) ≤ 1 + Ch, ‖[∇F lT ]−1 − I‖L∞(T 1) ≤ Ch,
(3.2)

and the map Φlm satisfies the estimates

‖∇s(Φlm
T − idT l)‖L∞(T l) ≤ Chl+1−s for 0 ≤ s ≤ l + 1,

‖∇s((Φlm
T )−1 − idTm)‖L∞(Tm) ≤ Chl+1−s for 0 ≤ s ≤ l + 1,

(3.3)
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∇(Φlm − idT l)

]
◦ F l = ∇(Fm − F l) +O(hl+1),[

∇2(Φlm − idT l) · eγ
]
◦ F l = ∇2(Fm − F l) · eγ +O(hl) for γ = 1, 2,

(3.4)

where all constants depend on the piecewise Ck+1 norm of Γ.

Analyzing the geometric error of the HHJ mixed formulation is delicate (recall
section 1). Indeed, the identity (3.4) will play an important role.

We close with a basic result relating norms on different order approximations of
the same domain. The following result extends [14, Thm. 4.3.4] to the mesh-dependent
norms in subsection 2.2.1 and is proved in subsection SM2.4.

Proposition 3.3. Assume the hypothesis of Proposition 2.2. Let v ∈ H2
h(Ωm),

and define v̂ = v ◦Φ ∈ H2
h(Ωl), Φ|T := Φlm

T for any choice of l,m ∈ {1, 2, . . . , k,∞}.
Let ‖v‖2,h,m, ‖v‖0,h,m denote the norms in (2.10), (2.12) defined on Ωm. Then
‖∇2v‖L2(T m

h ) ≤ C
(
‖∇2v̂‖L2(T l

h) + hl−1‖∇v̂‖L2(T l
h)

)
, and

(3.5) ‖v‖2,h,m ≤ C
(
‖v̂‖2,h,l + hl−1‖∇v̂‖L2(Ωl)

)
, ‖v‖0,h,m ≈ C‖v̂‖0,h,l,

(3.6) ‖v‖2,h,m ≈ C‖v̂‖2,h,l if v ∈ H2
h(Ωm) ∩ H̊1(Ωm)

for some constant C > 0 depending on the domain, where we modify the norm sub-
script to indicate the order of the domain.

3.2. Curved Lagrange spaces. Let r be a positive integer and m be a positive
integer or ∞. The (continuous) Lagrange finite element space of degree r is defined
on Ωm via the mapping FmT :

(3.7) Wm
h ≡Wm

h (Ωm) := {v ∈ H̊1(Ωm) | v|T ◦ FmT ∈ Pr+1(T 1) ∀T ∈ T mh }.

For the case m =∞ (the exact domain), we simply write Wh.
If v ∈ H2

h(Ω1), then, on each triangle T 1, v is in H2 and hence continuous up
to the boundary of T 1. Globally, v ∈ H1(Ω1), and so it has a well-defined trace
on each edge. Consequently, v is continuous on Ω1 and we can define the Lagrange
interpolation operator I1

h : H2
h(Ω1)→W 1

h [3] defined on each element T 1 ∈ T 1
h by

(I1
hv)(u)− v(u) = 0 ∀ vertices u of T 1,∫

E1

(I1
hv − v)q ds = 0 ∀q ∈ Pr−1(E1), ∀E1 ∈ ∂T 1,∫

T 1

(I1
hv − v)q dS = 0 ∀q ∈ Pr−2(T 1).

(3.8)

Then, given v ∈ H2
h(Ωm), we define the global interpolation operator, Imh : H2

h(Ωm)→
Wm
h , elementwise through Imh v

∣∣
Tm ◦ FmT := I1

h(v ◦ FmT ). Note that v ◦ Fm ∈ C0(Ω1)

because v ∈ C0(Ωm) and Fm is continuous over Ω1. Approximation results for Imh are
given in subsection SM3.2. We also denote Im,sh to be the above Lagrange interpolant

on Ωm onto continuous piecewise polynomials of degree s. Thus, Im,r+1
h ≡ Imh .

4. The HHJ method. We start with a space of tensor-valued functions, defined
on curved domains, with special continuity properties, followed by a transformation
rule for the forms in (2.15) and (2.16). Next, we state the finite element approximation
spaces for (2.17), which conform to H0

h(Ωm;S) and H2
h(Ωm), and define interpolation

operators for these spaces while accounting for the effect of curved elements (recall
that 1 ≤ m ≤ k or m =∞).

D
ow

nl
oa

de
d 

10
/1

4/
20

 to
 9

6.
12

5.
26

.1
00

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE HHJ METHOD WITH CURVED ELEMENTS 2839

4.1. A tensor-valued space on curved domains. For p > 3/2, let

Mm
nn(Ωm) := {ϕ ∈ L2(Ωm;S) | ϕ|Tm ∈W 1,p(Tm;S) ∀Tm ∈ T mh ,

ϕ normal-normal continuous}.
(4.1)

Note that Mm
nn(Ωm) ⊂ H0

h(Ωm;S), with ϕnn ≡ nTϕ′n on each mesh edge.

Remark 4.1. The assumption that p > 3/2 is a technical simplification to ensure
that the trace of a function in Mm

nn(Ωm) onto the mesh skeleton Emh is in L2(Emh ).

In order to map betweenMm
nn(Ωm) andMl

nn(Ωl) (with m 6= l) such that normal-
normal continuity is preserved, we need the following transformation rule.

Definition 4.2 (matrix Piola transform). Let F : D̂ → D be an orientation-
preserving diffeomorphism between domains in R2. Given ϕ : D → S, we define its
matrix Piola transform ϕ̂ : D̂ → S by

(4.2) ϕ̂(x̂) = (detB)2B−1ϕ(x)B−T ,

where x = F(x̂), and B = B(x̂) = ∇F(x̂).

Note that (4.2) is analogous to the Piola transform for H(div,Ω) functions.
By elementary arguments (see (SM4.5)), we find that

(4.3) ϕnn ◦ F = ϕ̂nn |(∇F)t̂|−2.

We shall apply the transform when the diffeomorphism is Fm, which is piecewise
smooth and continuous with respect to the mesh. It follows that (∇F)t̂ is single-
valued at interelement edges, so ϕ is normal-normal continuous if and only if ϕ̂ is.

We close with the following norm equivalences (see (SM4.7) and (SM4.8)):

(4.4) ‖ϕ‖0,h,m ≈ ‖ϕ‖L2(Ωm) ∀ϕ ∈ V mh , ‖ϕ‖0,h,m ≈ ‖ϕ̂‖0,h,l ∀ϕ ∈ H0
h(Ωm;S)

for all 1 ≤ l,m ≤ k,∞.

4.2. Mapping forms. The following result is crucial for analyzing the geometric
error when approximating the solution on an approximate domain and also for deriving
the discrete inf-sup condition on curved elements. We define ΩS =

⋃
T∈T∂,h

T for the

“strip” domain contained in Ω. In addition, we generalize the definitions (2.16) and
(2.15) of the bilinear forms a (·, ·) and bh (·, ·) to include a superscript m to indicate
that they are defined on the approximate domain Ωm.

Theorem 4.3. Let 1 ≤ l ≤ k such that m > l, recall Φ ≡ Φlm : Ωl → Ωm from
(3.1) for 1 < m ≤ k and m = ∞, and set J := ∇Φ. For all σ,ϕ ∈ Mm

nn(Ωm) and
v ∈ H2

h(Ωm), there holds that

am (σ,ϕ) = al (σ̂, ϕ̂) +O(hl)‖σ̂‖L2(Ωl
S)‖ϕ̂‖L2(Ωl

S),(4.5)

bmh (ϕ, v) = blh (ϕ̂, v̂) +
∑

T l∈T l
∂,h

〈ϕ̂nn, n̂ · ∇ [(idT l −ΦT ) · P0∇v̂]〉∂T l

+O(hl)‖ϕ̂‖0,h,l‖∇v̂‖H1(T l
∂,h) −

∑
T l∈T l

∂,h

(
ϕ̂,∇2[(idT l −ΦT ) · P0∇v̂]

)
T l

+O(hl)
∑

El∈El∂,h

‖ϕ̂nn‖L2(El)‖∇I
l,1
h v̂‖L2(El),

(4.6)
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2840 D. N. ARNOLD AND S. W. WALKER

where σ,ϕ and σ̂, ϕ̂ are related by the matrix Piola transform (4.2) involving ΦT ,

v|T ◦ΦT = v̂, Il,1h is the Lagrange interpolation operator onto piecewise linears on Ωl,
and P0 : L2(Ωl)→ L2(Ωl) is the projection onto piecewise constants.

Proof. To derive (4.5), we use (4.2) to obtain

am (σ,ϕ) =
(
ϕγω,Kγωαβσ

αβ
)

Ωm =
∑
T l∈T l

h

(
(detJT )−1ϕ̂γω, K̂γωαβ σ̂

αβ
)
T l
,(4.7)

where [K]γωαβ ≡ Kγωαβ = 1/(2µ̄)δγαδωβ − (ν/E)δγωδαβ , with δαβ being the Kron-

ecker delta, K̂γωαβ = 1/(2µ̄)gγαgωβ − (ν/E)gγωgαβ , g := JTJ is the induced metric,
and [g]αβ ≡ gαβ . The result follows by adding and subtracting terms, noting that

‖Kγωαβ − K̂γωαβ‖L∞(Ωl) ≤ Chl, and using that ΦT = idT l for all T l /∈ T l∂,h.
As for (4.6), we start with (2.15) and write it as

bmh (ϕ, v) = −
∑

Tm∈Tm
h

[(
ϕ′,∇2v

)
Tm − 〈ϕnn,n · ∇v〉∂Tm

]
,(4.8)

noting that nTϕ′n ≡ ϕnn. It is only necessary to consider elements adjacent to the
boundary, i.e., let Tm ∈ T m∂,h. Then, mapping the first term in (4.8) from Ωm to Ωl,
we see that (

ϕ,∇2v
)
Tm =

(
(detJ)−1ϕ̂αβ ,

[
∂α∂β v̂ − ∂γ v̂Γγαβ

])
T l
,(4.9)

where Γγαβ are the Christoffel symbols of the second kind (depending on the induced

metric g). Note that Γγαβ = gµγ∂α∂β(Φ · eµ), where eµ is a canonical basis vector,

and gµγ ≡ [g−1]µγ is the inverse metric. Using the estimates in (3.3) for Φ, we can
express (4.9) as(
ϕ,∇2v

)
Tm =

(
ϕ̂,∇2v̂

)
T l +

(
[(detJ)−1 − 1]ϕ̂αβ , ∂α∂β v̂

)
T l

−
(
ϕ̂αβ , ∂γ v̂ ∂α∂β(Φ · eγ)

)
T l −

(
ϕ̂αβ , ∂γ v̂(qµγ − δµγ)∂α∂β(Φ · eµ)

)
T l

=
(
ϕ̂,∇2v̂

)
T l −

(
ϕ̂αβ∇v̂, ∂α∂βΦ

)
T l +O(hl)‖ϕ̂‖L2(T l)‖∇v̂‖H1(T l),

where we introduced qµγ = (detJ)−1gµγ , and note that ‖qµγ − δµγ‖L∞(T l) ≤ Chl for

all T l ∈ T lh . Furthermore, using the piecewise projection P0|T l : L2(T l) → R onto
constants, we have that(

ϕ̂αβ∇v̂, ∂α∂βΦ
)
T l =

(
ϕ̂αβP0∇v̂, ∂α∂βΦ

)
T l

+
(
ϕ̂αβ [∇v̂ − P0∇v̂], ∂α∂β(Φ− idT l)

)
T l

≤
(
ϕ̂αβP0∇v̂, ∂α∂βΦ

)
T l + Chl‖ϕ̂‖L2(T l)‖∇2v̂‖L2(T l),

(4.10)

further noting that
(
ϕ̂αβP0∇v̂, ∂α∂βΦ

)
T l =

(
ϕ̂,∇2[(Φ− idT l) · P0∇v̂]

)
T l .

Next, consider the second term in (4.8). Express ∂Tm =: Em1 ∪Em2 ∪ Ẽm, where

Ẽm is the curved side, and map from ∂Tm to ∂T l:

〈ϕnn,n · ∇v〉∂Tm =

〈
detJ

|Jt̂|2
ϕ̂nn, n̂ · g−1∇v̂

〉
Ẽl

+
〈
ϕ̂nn, n̂ · J−T∇v̂

〉
El

1∪El
2
,(4.11)

where n̂ is the unit normal on ∂T l and we used (4.3). Mapping the noncurved edges
is simpler because ΦT = idT l on El1 ∪ El2, so Em ≡ El and n ≡ n̂. For convenience,
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THE HHJ METHOD WITH CURVED ELEMENTS 2841

define R = J−1(detJ)|Jt̂|−2, which implies, by (3.3), that ‖R−I2×2‖L∞(Ẽl) ≤ C1h
l.

Since g−1 = J−1J−T , we get

〈ϕnn,n · ∇v〉∂Tm =
〈
ϕ̂nn, n̂ · J−T∇v̂

〉
∂T l + ‖n̂ · [R− I]J−T ‖L∞(Ẽl)

× ‖ϕ̂nn‖L2(Ẽl)

[
‖∇v̂ −∇Il,1h v̂‖L2(Ẽl) + ‖∇Il,1h v̂‖L2(Ẽl)

]
=
〈
ϕ̂nn, n̂ · J−T∇v̂

〉
∂T l +O(hl)h1/2‖ϕ̂nn‖L2(Ẽl)‖∇

2v̂‖L2(T l)

+O(hl)‖ϕ̂nn‖L2(Ẽl)‖∇I
l,1
h v̂‖L2(Ẽl)

(4.12)

for all T l ∈ T l∂,h, where Il,1h satisfies, by (2.8), (SM3.6), and (SM3.7),

h1/2‖∇v̂ −∇Il,1h v̂‖L2(∂T l)

≤C
(
‖∇(v̂ − Il,1h v̂)‖L2(T l) + h‖∇2(v̂ − Il,1h v̂)‖L2(T l)

)
≤ Ch‖∇2v̂‖L2(T l).

(4.13)

Furthermore,〈
ϕ̂nn, n̂ · J−T∇v̂

〉
∂T l =

〈
ϕ̂nn, n̂ · [J−T − I]∇v̂

〉
∂T l + 〈ϕ̂nn, n̂ · ∇v̂〉∂T l ,

and expanding further, and using (3.3), gives〈
ϕ̂nn, n̂ · [J−T − I]∇v̂

〉
∂T l =

〈
ϕ̂nn, n̂ · J−T [I− JT ]∇v̂

〉
∂T l

=
〈
ϕ̂nn, n̂ · [I− JT ]∇v̂

〉
∂T l +

〈
ϕ̂nn, n̂ · [J−T − I][I− JT ]∇v̂

〉
∂T l

=
〈
ϕ̂nn, n̂ · [I− JT ](P0∇v̂)

〉
∂T l +

〈
ϕ̂nn, n̂ · [J−T − I][I− JT ]∇v̂

〉
∂T l

+
〈
ϕ̂nn, n̂ · [I− JT ](∇v̂ − P0∇v̂)

〉
∂T l

≤
〈
ϕ̂nn, n̂ · [I− JT ](P0∇v̂)

〉
∂T l + Chlh1/2‖ϕ̂nn‖L2(∂T l)h

1/2‖∇v̂‖L2(∂T l)

+ Chl−1h1/2‖ϕ̂nn‖L2(∂T l)h
1/2‖∇v̂ − P0∇v̂‖L2(∂T l).

(4.14)

Combining with (4.14), noting that P0 satisfies an estimate similar to (4.13), and
using (2.8) again, we obtain〈

ϕ̂nn, n̂ · [J−T − I]∇v̂
〉
∂T l = 〈ϕ̂nn, n̂ · ∇ [(idT l −Φ) · (P0∇v̂)]〉∂T l

+O(hl)
(
h1/2‖ϕ̂nn‖L2(∂T l)

)
‖∇v̂‖H1(T l).

(4.15)

Combining the above results and summing over all Tm ∈ T m∂,h completes the proof.

A simple consequence of Theorem 4.3 is

bmh (ϕ, v) = blh (ϕ̂, v̂) +O(hl−1)‖ϕ̂‖0,h,l‖∇v̂‖2,h,l.(4.16)

4.3. The HHJ curved finite element space. We can use (4.2) to build the
global, conforming, HHJ finite element space (on curved elements) by mapping from
a reference element (see subsection SM4.2 of the supplementary materials for details);
i.e., V mh ≡ V mh (Ωm) ⊂Mm

nn(Ωm) is defined by

V mh (Ωm) := {ϕ ∈Mm
nn(Ωm) | ϕ|T ◦ FmT := (det∇FmT )−2(∇FmT )ϕ̂(∇FmT )T ,

ϕ̂ ∈ Pr(T 1;S) ∀Tm ∈ T mh }.
(4.17)

Note that V mh is isomorphic to V 1
h for 1 ≤ m ≤ k and m =∞.
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We also have the following tensor-valued interpolation operator Π1
h :M1

nn(Ω1)→
V 1
h [11, 3], defined on each element T 1 ∈ T 1

h by∫
E1

nT
[
Π1
hϕ−ϕ

]
n q ds = 0 ∀q ∈ Pr(E1), ∀E1 ∈ ∂T 1,∫

T 1

[
Π1
hϕ−ϕ

]
: η dS = 0 ∀η ∈ Pr−1(T 1;S).

(4.18)

Recall Theorem 4.3, and set ΦT ≡ Φ1m
T := FmT : T 1 → Tm, with JT := ∇ΦT . Now,

given ϕ ∈ Mm
nn(Ωm), we define the global interpolation operator, Πm

h :Mm
nn(Ωm)→

V mh , elementwise through

Πm
h ϕ
∣∣
Tm ◦ΦT = (detJT )−2JT

(
Π1
hϕ̂
)
JTT ,(4.19)

where ϕ̂ := (detJT )2J−1
T (ϕ ◦ ΦT )J−TT (i.e., see (4.2)). The operator Πm

h satisfies
many basic approximation results which can be found in subsection SM4.3.

On affine elements, we have a Fortin-like property involving b1h (·, ·) [11, 3, 6]:

b1h
(
ϕ−Π1

hϕ, θhvh
)

= 0 ∀ϕ ∈M1
nn(Ω1), vh ∈W 1

h ,

b1h
(
θhϕh, v − I1

hv
)

= 0 ∀ϕh ∈ V 1
h , v ∈ H2

h(Ω1),
(4.20)

which holds for any piecewise constant function θh defined on T 1
h ; in [11, 3, 6], it is

assumed that θh ≡ 1. However, (4.20) does not hold on curved elements, but instead
we have the following result.

Lemma 4.4. Let 1 ≤ m ≤ k, or m = ∞, and set r ≥ 0 to be the degree of HHJ
space V mh and r + 1 to be the degree of the Lagrange space Wm

h . Moreover, assume
V mh and Wm

h impose no boundary conditions. Then the following estimates hold:

|bmh (ϕh, v − Imh v)| ≤ C‖ϕh‖L2(Ωm
S )

×
(
‖∇(v − Imh v)‖L2(Ωm

S ) + h‖∇2(v − Imh v)‖L2(Tm
∂,h)

)
,

|bmh (ϕ−Πm
h ϕ, vh)| ≤ C‖ϕ−Πm

h ϕ‖H0
h(Ωm

S )‖∇vh‖L2(Ωm
S )

(4.21)

for all ϕ ∈ Mnn(Ωm), vh ∈ Wm
h and all ϕh ∈ V mh , v ∈ H2

h(Ωm), where C is an
independent constant. Note that C = 0 if m = 1.

Proof. Consider the map ΦT : T l → Tm defined in Theorem 4.3 with approx-
imation properties given by (3.3). Let v ∈ H2

h(Ωm); so, by definition, there exists
v̂ ∈ H2

h(Ωl) such that v◦ΦT = v̂ on each T l ∈ T lh . By Proposition 3.3, ‖∇2v‖L2(T m
h ) ≈

C
(
‖∇2v̂‖L2(T l

h) + hl−1‖∇v̂‖L2(T l
h)

)
. Moreover, given ϕ ∈ Mnn(Ωm), there exists

ϕ̂ ∈Mnn(Ωl) given by ϕ◦ΦT := (det∇ΦT )−2(∇ΦT )ϕ̂(∇ΦT )T (cf. (4.2)). By (4.4),
‖ϕ‖0,h,m ≈ ‖ϕ̂‖0,h,l.

Next, we estimate the “problematic” terms in (4.6). First, we have(
ϕ̂,∇2[(idT l −ΦT ) · P0∇v̂]

)
T l ≤ Chl−1‖ϕ̂‖L2(T l)‖∇v̂‖L2(T l),(4.22)

where we used the optimal mapping properties in (3.3). In addition, we have

〈ϕ̂nn, n̂ · ∇ [(idT l −ΦT ) · P0∇v̂]〉∂T l ≤ Chl‖ϕ̂nn‖L2(∂T l)‖P0∇v̂‖L2(∂T l)

≤ Chl−1h1/2‖ϕ̂nn‖L2(∂T l)‖∇v̂‖L2(T l)

(4.23)
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THE HHJ METHOD WITH CURVED ELEMENTS 2843

by the inverse estimate ‖P0∇v̂‖L2(∂T l) ≤ Ch−1/2‖P0∇v̂‖L2(T l). Last,

O(hl)‖ϕ̂nn‖L2(El)‖∇I
l,1
h v̂‖L2(El) ≤ Chl−1h1/2‖ϕ̂nn‖L2(El)‖∇v̂‖L2(T l)(4.24)

for all El ∈ E l∂,h (again using an inverse estimate and stability of the interpolant).
Plugging (4.22)–(4.24) into (4.6) yields

|bmh (ϕ, v)| ≤
∣∣blh (ϕ̂, v̂)

∣∣+ Chl−1‖ϕ̂‖0,h,l
(
‖∇v̂‖L2(Ωl

S) + h‖∇2v̂‖L2(T l
∂,h)

)
.(4.25)

For the first estimate in (4.21), set l = 1, replace v with v−Imh v, set ϕ = ϕh ∈ V mh ,
and use (4.20) and (4.4) to get

|bmh (ϕh, v − Imh v)| ≤ C‖ϕ̂h‖L2(Ω1
S)

(
‖∇(v̂ − I1

hv̂)‖L2(Ω1
S) + h‖∇2(v̂ − I1

hv̂)‖L2(T 1
∂,h)

)
.

(4.26)

Then use equivalence of norms (see Proposition 3.3 and (4.4)).
For the second estimate, replace ϕ with ϕ−Πm

h ϕ, set v = vh ∈Wm
h , use (4.20),

and use an inverse inequality to get

|bmh (ϕ−Πm
h ϕ, vh)| ≤ C‖ϕ̂−Π1

hϕ̂‖0,h,1‖∇v̂h‖L2(Ω1
S),(4.27)

followed by an equivalence of norms argument.

4.4. The HHJ mixed formulation. We pose (2.17) on Ωm with continuous
skeleton spaces denoted by Vmh ≡ Vmh (Ωm) and Wm

h ≡ Wm
h (Ωm). Fixing the polyno-

mial degree r ≥ 0, the conforming finite element spaces are

(4.28) V mh ⊂ Vmh , Wm
h ⊂ Wm

h .

The conforming finite element approximation to (2.17) is as follows. Given f ∈
H−1(Ωm), find σh ∈ V mh , wh ∈Wm

h such that

am (σh,ϕ) + bmh (ϕ, wh) = 0 ∀ϕ ∈ V mh ,

bmh (σh, v) = −〈f, v〉Ωm ∀v ∈Wm
h .

(4.29)

The well-posedness of (4.29) is established in the next section; i.e., we prove the classic
LBB conditions [7]. With this, we have the following a priori estimate:

(4.30) ‖wh‖2,h,m + ‖σh‖0,h,m ≤ C‖f‖H−1(Ωm).

Note that LBB conditions for (4.29) for the case m = 1 were originally shown in [6].

4.4.1. Well-posedness. Obviously, we have

(4.31) am (σ,ϕ) ≤ A0‖σ‖L2(Ωm)‖ϕ‖L2(Ωm) ∀σ,ϕ ∈ H0
h(Ωm;S) ⊃ V mh ,

|bmh (ϕ, v) | ≤ B0‖ϕ‖0,h,m‖v‖2,h,m ∀ϕ ∈ V mh , v ∈Wm
h ,(4.32)

and we have coercivity of am (·, ·), which is a curved element version of [3, Thm. 2].

Lemma 4.5. Assume the domain Ωm ⊂ R2 is piecewise smooth, consisting of
curved elements as described in section 3. Then there is a constant α0 > 0, indepen-
dent of h and m, such that

am (σ,σ) ≥ min(|K|)‖σ‖2L2(Ωm) ≥ α0‖σ‖20,h ∀σ ∈ V mh , ∀h > 0,(4.33)

where α0 depends on K.

Proof. Clearly, am (σ,σ) ≥ C0‖σ‖2L2(Ωm), where C0 depends on Kγωαβ . Further-

more, by (4.4), ‖σ‖L2(Ωm) ≥ C−1‖σ‖0,h, so then α0 := C0/C
2.

D
ow

nl
oa

de
d 

10
/1

4/
20

 to
 9

6.
12

5.
26

.1
00

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2844 D. N. ARNOLD AND S. W. WALKER

4.4.2. Inf-sup. Next, we have a curved element version of the inf-sup condition
in [6, Lem. 5.1].

Lemma 4.6. Assume the domain Ωm ⊂ R2 is piecewise smooth, consisting of
curved elements as described in section 3. Then there is a constant β0 > 0, indepen-
dent of h and m, such that for all h sufficiently small

sup
ϕ∈Vm

h

|bmh (ϕ, v) |
‖ϕ‖0,h,m

≥ β0‖v‖2,h,m ∀v ∈Wm
h , ∀h > 0.(4.34)

Proof. We start with the case m = 1 in [6, Lem. 5.1]:

sup
ϕ̂∈V 1

h

|b1h (ϕ̂, v̂) |
‖ϕ̂‖0,h,1

≥ C0‖v̂‖2,h,1 ∀v̂ ∈W 1
h , ∀h > 0(4.35)

on the piecewise linear domain Ω1 with triangulation T 1
h and holds for any degree

r ≥ 0 of the HHJ space.
Consider the map ΦT : T 1 → Tm from Theorem 4.3 with approximation prop-

erties given by (3.3). Let v ∈ Wm
h ; so, by definition, there exists v̂ ∈ W 1

h such that
v ◦ΦT = v̂ on each T 1 ∈ T 1

h . By (3.6), ‖v‖2,h,m ≈ ‖v̂‖2,h,1. By (4.2) (using ΦT ), for
any ϕ ∈ V mh , there exists ϕ̂ ∈ V 1

h , such that ‖ϕ‖0,h,m ≈ ‖ϕ̂‖0,h,1, by (4.4).
We will use (4.6) to estimate |bmh (ϕ, v)| when l = 1. Upon recalling the norm

(2.10), because of boundary conditions, we have that the last term in (4.6) bounds as

O(h)
∑

E1∈E1
∂,h

‖ϕ̂nn‖L2(E1)‖n̂ · ∇I1,1
h v̂‖L2(E1) ≤ Ch‖ϕ̂‖0,h,1‖v̂‖2,h,1.(4.36)

Moreover, applying basic estimates to (4.6) yields

bmh (ϕ, v) ≥ b1h (ϕ̂, v̂)− Ch‖ϕ̂‖0,h,1‖v̂‖2,h,1 − C‖ϕ̂‖L2(Ω1
S)‖∇v̂‖L2(Ω1

S).(4.37)

Since ‖∇v̂‖L2(Ω1
S) ≤ ‖∇v̂‖L∞(Ω1)‖1‖L2(Ω1

S) ≤ ‖∇v̂‖L∞(Ω1)|Γ|1/2h1/2, by the quasi-

uniform mesh assumption, and ‖∇v̂‖2L∞(Ω1) ≤ C(1+lnh)(‖v̂‖22,h,1 +‖∇v̂‖2L2(Ω1)) (see

[8, eq. (4)]), we get

bmh (ϕ, v) ≥ b1h (ϕ̂, v̂)− Ch1/2−ε‖ϕ̂‖0,h,1‖v̂‖2,h,1(4.38)

for some small ε > 0. Dividing by ‖ϕ‖0,h,m and using equivalence of norms, we get

bmh (ϕ, v)

‖ϕ‖0,h,m
≥ b1h (ϕ̂, v)

‖ϕ̂‖0,h,1
− Ch1/2−ε‖v̂‖2,h,1.(4.39)

Taking the supremum, using (4.35) and equivalence of norms, proves (4.34) when h
is sufficiently small.

Remark 4.7. By (2.14), (4.34) holds with ‖v‖2,h,m replaced by |v|H1(Ωm) with a
different inf-sup constant.

Therefore, (4.31), (4.32), (4.33), and (4.34) imply by the standard theory of mixed
methods that (4.29) is well-posed in the mesh-dependent norms.
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5. Error analysis. We now prove convergence of the HHJ method while ac-
counting for the approximation of the domain using the theory of curved elements
described in section 3. The main difficulties are dealing with higher derivatives of
the nonlinear map and handling the jump terms in the mesh-dependent norms when
affected by a nonlinear map. The key ingredients here are Theorem 3.2, (4.20), and

the following crucial choice of optimal map: let F̃mT : T 1 → Tm, for all T 1 ∈ T 1
h and

1 ≤ m ≤ k, be given by

FmT ≡ F̃mT := I1,m
h FT ≡ I

1,m
h Ψ1

T ,(5.1)

where I1,m
h is the Lagrange interpolation operator in (3.8) onto degree m polynomials,

and we abuse notation by writing FmT ≡ F̃mT .

Remark 5.1. Note that F̃mT is an optimal map because of the approximation

properties of I1,m
h ; hence, the results of Theorem 3.2 apply to F̃mT . This choice is

necessary to guarantee optimal convergence of the HHJ method when m = r + 1. If
m > r + 1, the standard Lenoir map suffices.

In deriving the error estimates, we use the following regularity result for the
Kirchhoff plate problem (see [5, Thm. 2], [6, Table 1]).

Theorem 5.2. Assume Ω satisfies the assumptions in subsection 2.1, and let
f ∈ H−1(Ω). Then the weak solution w ∈ W of (2.2) always satisfies w ∈ W 3,p(Ω)
for some value of p ∈ (p0, 2], where 1 ≤ p0 < 2 depends on the angles at the corners
of Ω.

For technical reasons, we also assume p > 3/2 in Theorem 5.2 (recall Remark 4.1).
Higher regularity (e.g., w ∈ H3(Ω)) is achieved if the corner angles are restricted. In
addition, if f ∈ L2(Ω), then w ∈ H4(Ω). See [5, 6] for more details.

5.1. Estimate the PDE error. We start with an error estimate that ignores
the geometric error; i.e., the continuous and discrete problems are posed on the exact
domain.

Theorem 5.3. Adopt the boundary assumptions in subsection 2.1. Let σ ∈ V
and w ∈ W solve (2.17) on the true domain Ω, and assume w ∈ W t,p(Ω), so then
σ ∈ W t−2,p(Ω; S), t ≥ 3, 3/2 < p ≤ 2 (recall Theorem 5.2). Furthermore, let r ≥ 0
be the degree of Vh, and let σh ∈ Vh, wh ∈ Wh be the discrete solutions of (4.29) on
Ω. Then we obtain

‖σ − σh‖0,h + ‖∇(w − wh)‖L2(Ω) ≤ Chmin(r+2,t−1)−2/p,

when r ≥ 1: ‖w − wh‖2,h ≤ Chmin(r+1,t−1)−2/p,

when r = 0: ‖∇(w − wh)‖L2(Ω) ≤ Ch,
(5.2)

where C > 0 depends on f , the domain Ω, and the shape regularity of the mesh.

Proof. With coercivity and the inf-sup condition in hand, the proof is a standard
application of error estimates for mixed methods and is given in section SM6 of the
supplementary materials.

Note that the last line of (5.2) generalizes [6, Thm. 5.1] to curved domains.

5.2. Estimate the geometric error. We now approximate the domain using
curved, Lagrange mapped triangle elements.
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Lemma 5.4. Recall the map Ψm : Ωm → Ω, with Ψm
T := Ψm|T , from subsec-

tion 3.1, and adopt (5.1). For convenience, set J = ∇Ψm. Adopt the boundary
assumptions in subsection 2.1. Let σ̂h ∈ V mh , ŵh ∈ Wm

h be the discrete solutions of

(4.29), with f replaced by f̃ := f ◦Ψm(detJ). Take (σh, wh) from Theorem 5.3, and
let σ̃h ∈ V mh , w̃h ∈ Wm

h be the mapped discrete solutions onto Ωm using (4.2). In
other words, σh ◦Ψm = (detJ)−2Jσ̃hJ

T and w̃h = wh ◦Ψm, defined elementwise.
Similarly, we map the test functions ϕh ∈ Vh, vh ∈Wh to ϕ̂h ∈ V mh , v̂h ∈Wm

h . Then
we obtain the error equations for the geometric error:

(5.3) am (σ̃h − σ̂h, ϕ̂h) + bmh (ϕ̂h, w̃h − ŵh) + bmh (σ̃h − σ̂h, v̂h) = E0(ϕ̂h, v̂h)

for all (v̂h, ϕ̂h) ∈Wm
h × V mh , where

(5.4) |E0(ϕ̂h, v̂h)| ≤ Chq (‖ϕ̂h‖0,h,m + ‖v̂h‖2,h,m) ‖f‖H−1(Ω),

where q = m when m = r + 1; otherwise, q = m− 1.

Proof. We will use (4.6) with m, l replaced by ∞, m, respectively. First, note
that (idΩm − Ψm) · P0∇v̂h ∈ H2

h(Ωm) because (idTm − Ψm
T ) is zero at all internal

edges and is identically zero on all elements not in T m∂,h. Upon noting vh ∈ H̊1(Ω)
and (4.36), straightforward manipulation gives

bh (ϕh, vh) = bmh (ϕ̂h, v̂h) + bmh (ϕ̂h, (idΩm −Ψm) · P0∇v̂h)

+O(hm)‖ϕ̂h‖0,h,m‖v̂h‖2,h,m.
(5.5)

Taking advantage of (3.4), we get

bh (ϕh, vh) = bmh (ϕ̂h, v̂h) + b1h (ϕ̌h, (F
m − F ) · P0∇v̂h)

+O(hm)‖ϕ̂h‖0,h,m‖v̂h‖2,h,m,
(5.6)

where ϕ̌h ∈ V 1
h and Fm := I1,m

h F , by (5.1). If m = r+ 1, the Fortin property (4.20)
yields b1h (ϕ̌h, (F

m − F ) · P0∇v̂h) = 0. If m 6= r + 1, then a straightforward estimate
shows that b1h (ϕ̌h, (F

m − F ) · P0∇v̂h) ≤ Chm−1‖ϕ̂h‖0,h,m‖v̂h‖2,h,m, where we used
equivalence of norms (3.6) and (4.4).

Therefore, using (4.5) and (4.16), the first line in (4.29) (with m =∞) maps to

am (σ̃h, ϕ̂h) + bmh (ϕ̂h, w̃h) = I1 ∀ϕ̂h ∈ V mh ,(5.7)

where 1 ≤ m ≤ k and C > 0 is a constant depending only on Ω such that

I1 ≤ Chq‖ϕ̂h‖L2(Ωm
S )

(
‖σ̃h‖L2(Ωm

S ) + ‖w̃h‖2,h,m
)
,(5.8)

where q was defined earlier. The second equation in (4.29) (with m =∞) maps to

bmh (σ̃h, v̂h) = −〈f ◦Ψm(detJ), v̂h〉Ωm + I2 ∀v̂h ∈Wm
h ,(5.9)

where, for some constant C > 0 depending only on Ω,

I2 ≤ Chq‖σ̃h‖L2(Ωm
S )‖v̂h‖2,h,m.(5.10)

Then subtracting (4.29) (with 1 ≤ m ≤ k) for the solution (σ̂h, ŵh) from the above
equations, combining everything, and noting the a priori estimate (4.30) gives (5.3)
and (5.4).
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Theorem 5.5. Adopt the hypothesis of Lemma 5.4. Then the following error
estimate holds:

‖σ̃h − σ̂h‖0,h,m + ‖w̃h − ŵh‖2,h,m ≤ Chq‖f‖H−1(Ω)(5.11)

for some uniform constant C > 0.

Proof. From (5.3), choose v̂h = 0 and use Lemma 4.6 to get

β0‖w̃h − ŵh‖2,h,m ≤ sup
ϕ̂h∈Vm

h

|bmh (ϕ̂h, w̃h − ŵh) |
‖ϕ̂h‖0,h,m

≤ sup
ϕ̂h∈Vm

h

|am (σ̃h − σ̂h, ϕ̂h) |+ |E0(ϕ̂h, 0)|
‖ϕ̂h‖0,h,m

≤ CA0‖σ̃h − σ̂h‖0,h,m + Chq‖f‖H−1(Ω),

(5.12)

where we used the norm equivalence (4.4). Next, choose ϕ̂h = σ̃h − σ̂h and v̂h =
−(w̃h − ŵh) in (5.3) to get

α0‖σ̃h−σ̂h‖2L2(Ωm) ≤ a
m (σ̃h − σ̂h, σ̃h − σ̂h)

≤ Chq (‖σ̃h − σ̂h‖0,h,m + ‖w̃h − ŵh‖2,h,m) ‖f‖H−1(Ω)

≤ Chq
(
‖σ̃h − σ̂h‖0,h,m + Chq‖f‖H−1(Ω)

)
‖f‖H−1(Ω)

≤ C(hq)2‖f‖2H−1(Ω) + Chq‖σ̃h − σ̂h‖L2(Ωm)‖f‖H−1(Ω)

≤ C(hq)2‖f‖2H−1(Ω) +
α0

2
‖σ̃h − σ̂h‖2L2(Ωm),

(5.13)

where we used (5.12), norm equivalence (4.4), and a weighted Cauchy inequality.
Then, by combining the above results, we get the assertion.

5.3. Estimate the total error. We will combine Theorems 5.3 and 5.5 to get
the total error.

Theorem 5.6 (general error estimate). Adopt the hypotheses of Theorem 5.3
and Lemma 5.4. If m ≥ r + 1, then

‖σ − σ̂h ◦ (Ψm)−1‖0,h + ‖∇(w − ŵh ◦ (Ψm)−1)‖L2(Ω) ≤ Chmin(r+2,t−1)−2/p,

r ≥ 1: ‖w − ŵh ◦ (Ψm)−1‖2,h ≤ Chmin(r+1,t−1)−2/p,

r = 0: ‖∇(w − ŵh ◦ (Ψm)−1)‖L2(Ω) ≤ Ch,
(5.14)

where C > 0 depends on f , the domain Ω, and the shape regularity of the mesh.

Proof. By the triangle inequality and using the properties of the map Ψm, we
have

‖σ − σ̂h ◦ (Ψm)−1‖0,h ≤ ‖σ − σ̃h ◦ (Ψm)−1‖0,h
+ ‖σ̃h ◦ (Ψm)−1 − σ̂h ◦ (Ψm)−1‖0,h

≤ ‖σ − σh‖0,h+‖σh − σ̃h ◦ (Ψm)−1‖0,h + C‖σ̃h − σ̂h‖0,h,m.
(5.15)

Focusing on the middle term, we have

‖σh − σ̃h ◦ (Ψm)−1‖0,h ≤ ‖σh ◦Ψm − σ̃h‖0,h,m
≤ ‖(detJ)−2Jσ̃hJ

T − σ̃h‖0,h,m ≤ Chr+1‖σ̃h‖0,h,m ≤ Chr+1‖f‖H−1(Ω).
(5.16)
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Combining everything, we get

‖σ − σ̂h ◦ (Ψm)−1‖0,h ≤ C max
(
hr+1, hmin(r+2,t−1)−2/p

)
,(5.17)

where C > 0 depends on f . Taking a similar approach for the other terms involving
w − ŵh ◦ (Ψm)−1 delivers the estimates.

Corollary 5.7. Adopt the hypothesis of Theorem 5.6, but assume Γ is globally
smooth and f , w, and σ are smooth. If r ≥ 0 is the degree of Vh, then

‖σ − σ̂h ◦ (Ψm)−1‖0,h + ‖∇(w − ŵh ◦ (Ψm)−1)‖L2(Ω)

+h‖w − ŵh ◦ (Ψm)−1‖2,h ≤ Chr+1,
(5.18)

where C > 0 depends on w, the domain Ω, and the shape regularity of the mesh.

Remark 5.8. From Theorem 5.5, if m < r + 1, the error is suboptimal, i.e., is
O(hm−1) for a smooth solution. However, this only occurs in T∂,h; in the rest of the

mesh, it is O(hr+1). Since the mesh is quasi-uniform, a straightforward estimate gives
that the error measured over the entire domain is O(hm−1/2). This is verified in the
simply supported numerical example in subsection 6.2.2, as well as in both examples
in subsections 6.3.1 and 6.3.2.

5.4. Inhomogeneous boundary conditions. We now explain how to extend
the above theory to handle nonvanishing boundary conditions. First, construct a
function g ∈W t,p(Ω), such that the displacement satisfies w = g on Γ and ∂nw = ∂ng
on Γc, and construct a function ρ ∈ W t−2,p(Ω;S), such that the normal-normal
moment satisfies nTσn = nTρn on Γs, where t ≥ 3, 3/2 < p ≤ 2 (recall Theorem 5.2).

Then (2.17) is replaced by the problem of determining (σ, w) = (σ̊ + ρ, ẘ + g),
with σ̊ ∈ Vh, ẘ ∈ Wh (i.e., with homogeneous boundary conditions) such that

a (σ̊,ϕ) + bh (ϕ, ẘ) = −a (ρ,ϕ)− bh (ϕ, g) + (ϕnn,n · ∇g)Γc
∀ϕ ∈ Vh,

bh (σ̊, v) = −〈f, v〉Ω − bh (ρ, v) ∀v ∈ Wh.
(5.19)

Note that the right-hand side in the first equation of (5.19) simplifies to −a (ρ,ϕ)−
b̊h (ϕ, g), where b̊h (ϕ, v) := bh (ϕ, v)−(ϕnn,n · ∇v)Γc

(i.e., it has no boundary term).
Similarly, the corresponding (intermediate) discrete problem (4.29), on the exact

domain, is replaced by finding (σh, wh) = (σ̊h+ρh, ẘh+gh), with σ̊h ∈ Vh, ẘh ∈Wh

such that

a (σ̊h,ϕh) + bh (ϕh, ẘh) = −a (ρh,ϕh)− b̊h (ϕh, gh)

− (ϕnn
h ,n · ∇gh)Γc

+ (ϕnn
h ,n · ∇g)Γc

∀ϕh ∈ Vh,
bh (σ̊h, vh) = −〈f, vh〉Ω − bh (ρh, vh) ∀vh ∈Wh,

(5.20)

where ρh = Phρ, and Ph : H0
h(Ω)→ Vh is the L2(Ω) projection; i.e., ρh satisfies

(ρh − ρ,ϕh)Th
+
〈
nT [ρh − ρ]n, ϕnn

h

〉
Eh

= 0 ∀ϕh ∈ Vh,(5.21)

and gh = Ihg. An error estimate between the solutions of (5.19) and (5.20), analogous
to Theorem 5.3, follows similarly with the following additional steps. First, estimate
bh (ρ− ρh, vh) ≤ ‖ρ − ρh‖0,h‖vh‖2,h, note that ‖ρ − ρh‖0,h ≤ ‖ρ − Πhρ‖0,h, and
use the approximation properties of Πh in subsection SM4.3 of the supplementary
materials. Next, estimate b̊h (ϕh, g − gh) and (ϕnn

h ,n · ∇(g − gh))Γc
with (4.21).
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Finally, the discrete problem on the discrete domain is to find (σ̂h, ŵh) = (˚̂σh +

ρ̂h, ˚̂wh + ĝh), with ˚̂σh ∈ V mh , ˚̂wh ∈Wm
h such that

am
(

˚̂σh, ϕ̂h

)
+ bmh

(
ϕ̂h, ˚̂wh

)
= −am (ρ̂h, ϕ̂h)− b̊mh (ϕ̂h, ĝh)

−
(
ϕ̂nn
h , n̂ · [∇ĝh − ξ̃]

)
Γm

c

∀ϕ̂h ∈ V mh ,

bmh

(
˚̂σh, v̂h

)
= −

〈
f̃, v̂h

〉
Ωm
− bmh (ρ̂h, v̂h) ∀v̂h ∈Wm

h ,

(5.22)

where ρ̂h := Pmh ρ̃, with ρ̃ given by ρ◦Ψm|T = (detJT )−2JT ρ̃J
T
T , JT = ∇Ψm|T , and

Pmh : H0
h(Ωm)→ V mh is the L2(Ωm) projection on Ωm, ĝh := Imh g̃, with g̃ := g ◦Ψm,

and ξ̃ = (∇g) ◦ Ψm. To obtain a result analogous to Theorem 5.6, we need to
generalize Lemma 5.4. The argument is mostly the same as the proof of Lemma 5.4,
except there is an additional step to show that

(5.23) am (ρ̃− ρ̂h, ϕ̂h) + b̊mh (ϕ̂h, g̃ − ĝh) + bmh (ρ̃− ρ̂h, v̂h) = E1(ϕ̂h, v̂h)

for all (v̂h, ϕ̂h) ∈Wm
h × V mh , where

(5.24) |E1(ϕ̂h, v̂h)| ≤ Chq (‖ϕ̂h‖0,h,m + ‖v̂h‖2,h,m)
(
‖ρ‖W 1,p(Ω;S) + ‖g‖W 3,p(Ω)

)
,

where q = m when m = r+1; otherwise, q = m−1. This also follows the same outline,
but we note the following. (1) Estimating b̊mh (ϕ̂h, g̃ − ĝh) with (4.6) is simpler because
the last boundary term in (4.6) does not appear; then use Lemma 4.4. (2) Noting
that ĝh = gh ◦Ψm, (ϕnn

h ,n · ∇(gh − g))Γc
is mapped to (ϕ̂nn

h , n̂ · ∇(ĝh − g̃))Γm
c

(plus

residual terms) and is compared against
(
ϕ̂nn
h , n̂ · [∇ĝh − ξ̃]

)
Γm

c

. (3) Finally, estimate(
ϕ̂nn
h , n̂ · [∇g̃ − ξ̃]

)
Γm

c

using arguments similar to those in the proof of Theorem 4.3.

With this and the obvious generalization of Theorem 5.5, we obtain the following.

Theorem 5.9 (inhomogeneous boundary conditions). Adopt the hypotheses of
Theorem 5.6, except assume that (σ, w) solves (5.19) and (σ̂h, ŵh) solves (5.22). If
m ≥ r + 1, then (σ, w) and (σ̂h, ŵh) satisfy the same estimates as in (5.14).

We also obtain a corollary directly analogous to Corollary 5.7.

6. Numerical results. We present numerical examples computed on a disk,
as well as on a nonsymmetric domain. The discrete domains were generated by a
successive uniform refinement scheme, with curved elements generated using a variant
of the procedure in [18, sect. 3.2]. As above, the finite element spaces Vh and Wh are of
degrees r and r+1, respectively, where r ≥ 0, and the geometric approximation degree
is denoted by m. All computations were done with the MATLAB/C++ finite element
toolbox FELICITY [27], where we used the “backslash” command in MATLAB to
solve the linear systems.

From (5.1), recall that Fm := I1,m
h Ψ1, which is plausible to implement but in-

convenient. Instead, we first compute Fm+1 using the procedure in [18, sect. 3.2];
then we define Fm := I1,m

h Fm+1, which is easy to implement because they are stan-
dard Lagrange spaces. Moreover, the accuracy is not affected. As for the boundary
data, ĝh, ξ̃, and ρ̂h only need to be computed on the boundary Γm; in fact, only the
boundary part of the L2 projection Pmh needs to be computed.
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6.1. Practical error estimates. For convenience, the errors we compute are
‖∇(w−ŵh)‖L2(Ωm), |w−ŵh|H2(T m

h ), ‖σ−σ̂h‖L2(Ωm), and h1/2‖nTh (σ−σ̂h)nh‖L2(Emh ),
where the exact solution has been extended by analytic continuation. These errors
can be related to the ones in (5.18) by basic arguments and a triangle inequality.
Essentially, we need to bound the error between (σh, wh) and (σ̃h, w̃h) in a sense
clarified by the following result.

Proposition 6.1. Let fh be a piecewise (possibly mapped) polynomial defined
over Th, and let Ψm : Ωm → Ω be the piecewise element mapping from subsection 3.1.
Assume fh has a bounded extension to Ωm. Then

‖∇s(fh − fh ◦Ψm)‖L2(Ωm) ≤ Chm‖∇sfh‖L2(Ω̃m) for s = 0, 1,

‖fh − fh ◦Ψm‖H2
h(Ωm) ≤ Chm−1‖fh‖H2

h(Ω̃m),
(6.1)

where Ω̃m =
⋃
Tm∈T m

h
conv(Tm) and conv(Tm) is the convex hull of Tm.

6.2. Unit disk domain. The disk has an unexpected symmetry with respect
to curved elements. When approximating Γ by polynomials of degree m = 2q, the
approximation order is actually m = 2q + 1. This is because each circular arc of Γ,
when viewed as a graph over a flat edge in E1

∂,h, is symmetric about the midpoint of
the edge. Thus, since the Lagrange interpolation nodes are placed symmetrically on
the edge, the resulting interpolant must be of even degree. In other words, Ω2, Ω4

have the same approximation order as Ω3, Ω5, respectively. Our numerical results
reflect this.

6.2.1. The homogeneous clamped disk. In this example, the exact solution
with clamped boundary conditions on Γ, written in polar coordinates, is taken to be

(6.2) w(r, θ) = sin2(πr).

Table 1 shows the estimated orders of convergence (EoC), which were computed by
evaluating the ratio of the errors between the last two meshes in a sequence of suc-
cessively, uniformly refined meshes. The optimal orders of convergence, based on
the degree of the elements, is r + 1 for the three quantities |ŵh|H1 , |σ̂h|L2 , and
h1/2|σ̂nn

h |L2(Emh ) and is r for |ŵh|H2
h
; note that we use the abbreviation |ŵh|H1 ≡

|w − ŵh|H1(Ωm), etc. The convergence is better than expected, in that we do not
see reduced order convergence when m = r, possibly due to the clamped boundary
conditions and/or the choice of exact solution (also recall the symmetry discussion
earlier). We do see reduced convergence when m = r − 1.

6.2.2. The homogeneous simply supported disk. The exact solution with
simply supported boundary conditions on Γ, written in polar coordinates, is

(6.3) w(r, θ) = cos((3/2)πr).

Table 2 shows the EoC. The convergence order is consistent with the error estimate
in (5.18) (accounting for the symmetry of the disk). For example, when m = r = 1,
we see O(h1/2) for σ̂h (see Remark 5.8). The convergence rate for ŵh is not reduced,
but it is not optimal. When m = r = 3, σ converges with O(h5/2) (consistent with
Remark 5.8), yet ŵh performs better. The “improved” error convergence for ŵh could
be due to the particular choice of exact solution.
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Table 1
EoC for the clamped disk. NT is the number of triangles in the final mesh after multiple

uniform refinements. Asterisks indicate suboptimal orders, and italics indicate the case m = r + 1,
for which optimality is proven in this paper.

NT m r |ŵh|H1 |ŵh|H2
h

|σ̂h|L2 h1/2|σ̂nn
h |L2(Em

h
)

217 1 0 1.0002 0.0000 0.9997 1.0007
215 1 1 2.0006 0.9998 1.9978 2.0312
215 1 2 2.0052* 1.9980* 1.5121* 1.5022*
215 2 1 2.0002 0.9990 1.9976 2.0317
215 2 2 2.9984 1.9985 2.9994 2.9934
213 2 3 4.0039 3.0007 3.9907 4.0853
215 3 2 2.9984 1.9985 2.9994 2.9934
213 3 3 4.0039 3.0007 3.9906 4.0746
213 3 4 4.9862 3.9881 3.8387* 3.5173*
213 4 3 4.0038 3.0006 3.9908 4.0975
213 4 4 4.9868 3.9883 5.0022 4.9824
213 5 4 4.9868 3.9883 5.0022 4.9823

Table 2
EoC for the simply supported disk. NT is the number of triangles in the final mesh after

multiple uniform refinements. Asterisks indicate suboptimal orders, and italics indicate m = r + 1.

NT m r |ŵh|H1 |ŵh|H2
h

|σ̂h|L2 h1/2|σ̂nn
h |L2(Em

h
)

217 1 0 1.0002 0.0000 0.9997 1.0016
215 1 1 1.0827* 0.6840* 0.4976* 0.4835*
215 1 2 1.0297* 0.4920* 0.4926* 0.4775*
215 2 1 1.9997 0.9996 1.9988 2.0202
215 2 2 3.0001 1.9987 2.9974 2.9918
213 2 3 3.9793 2.9819 2.5704* 2.4795*
215 3 2 3.0001 1.9987 2.9976 2.9930
213 3 3 3.9789 2.9820 2.5780* 2.4783*
213 3 4 3.5159* 2.5344* 2.5008* 2.4952*
213 4 3 3.9896 2.9916 4.0010 4.0354
213 4 4 5.0107 4.0067 4.9846 4.9747
213 5 4 5.0107 4.0067 4.9849 4.9772

6.3. Three-leaf domain. The boundary of Ω is parameterized by

(6.4) x(t) = [1 + 0.4 cos(3t)] cos(t), y(t) = [1 + (0.4 + 0.22 sin(t)) cos(3t)] sin(t)

for 0 ≤ t ≤ 2π (see Figure 4). This domain does not have the additional symmetry of
the disk.

6.3.1. Inhomogeneous clamped boundary conditions. The exact solution
is taken to be

(6.5) w(x, y) = sin(2πx) cos(2πy),

with the corresponding boundary conditions. Table 3 shows the EoC. The order of
convergence is reduced, as expected, for σ̂h; e.g., when m = 4, the convergence rate
goes down (from O(h4) to O(h3.5)) when r increases from r = 3 to r = 4. One would
expect the convergence rate to at least stay the same. The reason for this is connected
to estimating the term (5.6) in the proof of Lemma 5.4, where if m 6= r+ 1, then the
geometric error is O(hm−1). So, in the example above, the error should go down to
O(h3). However, this geometric error is concentrated in the elements adjacent to the
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Fig. 4. Illustration of the three-leaf domain. The numerical solution ŵh approximating (6.5)
is shown.

boundary only, so it is only O(h3.5); see Remark 5.8. Recall that when m = r+1, the
Fortin property (4.20) applies, and the geometric error is O(hm). When m > r + 1,
then O(hm−1) = O(hr+1), which is sufficient (see the hypothesis of Theorem 5.9).
However, the convergence order of ŵh is better than expected, although it is reduced
when m = r − 1.

Table 3
EoC for the clamped three-leaf domain. NT is the number of triangles in the final mesh after

multiple uniform refinements. Asterisks indicate suboptimal orders, and italics indicate m = r + 1.

NT m r |ŵh|H1 |ŵh|H2
h

|σ̂h|L2 h1/2|σ̂nn
h |L2(Em

h
)

368640 1 0 1.0009 0.0000 0.9993 1.0072
92160 1 1 1.8821* 0.8326* 0.5016* 0.4787*
92160 1 2 1.5191* 0.5045* 0.4966* 0.4809*
92160 2 1 2.0009 1.0010 1.9942 2.0633
92160 2 2 2.9808 1.9271* 1.5048* 1.5069*
23040 2 3 2.5621* 1.5496* 1.5001* 1.5195*
92160 3 2 2.9996 2.0000 2.9983 2.9908
23040 3 3 3.9900 2.9619 2.5301* 2.4545*
23040 3 4 3.5672* 2.5239* 2.4872* 2.4317*
23040 4 3 3.9972 2.9985 3.9933 4.1447
23040 4 4 4.9893 3.9460 3.5022* 3.5105*
23040 5 4 4.9989 4.0003 4.9959 4.9710
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6.3.2. Inhomogeneous simply supported boundary conditions. The ex-
act solution is taken to be

(6.6) w(x, y) = sin(2πx) cos(2πy)

with the corresponding boundary conditions. Table 4 shows the EoC. The convergence
order is consistent with the error estimate in (5.18). When m = r = 1, we see O(h1/2)
for σ̂h (see Remark 5.8). The convergence rate for ŵh is not reduced, but it is not
optimal. When m = r = 3, σ converges with O(h5/2) (consistent with Remark 5.8),
yet ŵh performs better. The “improved” error convergence for ŵh could be due to
the particular choice of exact solution.

Table 4
EoC for the simply supported three-leaf domain. NT is the number of triangles in the final

mesh after multiple uniform refinements. Asterisks indicate suboptimal orders, and italics indicate
m = r + 1.

NT m r |ŵh|H1 |ŵh|H2
h

|σ̂h|L2 h1/2|σ̂nn
h |L2(Em

h
)

368640 1 0 1.0007 0.0000 0.9995 1.0048
92160 1 1 1.1860* 0.8325* 0.4992* 0.4680*
92160 1 2 0.9950* 0.4968* 0.4912* 0.4669*
92160 2 1 2.0009 1.0010 1.9944 2.0575
92160 2 2 2.9810 1.9271* 1.5055* 1.6780*
23040 2 3 2.5891* 1.5470* 1.5055* 1.9092*
92160 3 2 2.9996 2.0000 2.9985 2.9837
23040 3 3 3.9901 2.9617 2.5296* 2.3845*
23040 3 4 3.5682* 2.5217* 2.4828* 2.3819*
23040 4 3 3.9972 2.9985 3.9939 4.1086
23040 4 4 4.9893 3.9457 3.5029* 3.8619*
23040 5 4 4.9989 4.0003 4.9961 4.9544

7. Final remarks. We have shown that the classic HHJ method can be ex-
tended to curved domains using parametric approximation of the geometry to solve
the Kirchhoff plate problem on a curved domain. Moreover, optimal convergence rates
are achieved so long as the degree of geometry approximation m exceeds the degree of
polynomial approximation r by at least 1 (recall that the degree of the Lagrange space
is r+ 1). Smaller values of m generally lead to some deterioration of the convergence
rates, although our estimates are not always sharp in this situation.

In particular, we have shown that solving the simply supported plate problem
on a curved domain using polygonal approximation of the domain and lowest order
HHJ elements gives optimal first order convergence, the well-known Babuška paradox
notwithstanding [4]. Perhaps surprisingly, if the triangulation is sufficiently fine, the
HHJ method computed on the fixed polygon will yield a good approximation of the
exact solution of the plate problem on the smooth domain, not a good approximation
of the exact solution on the polygonal domain. One explanation of the Babuška
paradox is that the polygonal approximating domains do not converge to the true
domain in the sense of curvature, with curvature being crucial to the simply supported
boundary conditions. However, our results show that the HHJ method does not
require convergence of the curvatures. In this sense, we might refer to the HHJ
method as geometrically nonconforming.
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