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Abstract

This thesis proposes a new family of finite elements, called generalized Regge finite el-

ements, for discretizing symmetric matrix-valued functions and symmetric 2-tensor fields.

We demonstrate its effectiveness for applications in computational geometry, mathemati-

cal physics, and solid mechanics. Generalized Regge finite elements are inspired by Tullio

Regge’s pioneering work on discretizing Einstein’s theory of general relativity. We analyze

why current discretization schemes based on Regge’s original ideas fail and point out new

directions which combine Regge’s geometric insight with the successful framework of finite

element analysis. In particular, we derive well-posed linear model problems from general

relativity and propose discretizations based on generalized Regge finite elements. While the

first part of the thesis generalizes Regge’s initial proposal and enlarges its scope to many

other applications outside relativity, the second part of this thesis represents the initial steps

towards a stable structure-preserving discretization of the Einstein’s field equation.
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Chapter 1

Introduction

We describe a new family of finite elements called generalized Regge finite elements, for

discretizing symmetric matrix-valued functions (coordinate formulation) and symmetric 2-

tensor fields (coordinate-free formulation). We demonstrate its effectiveness for applications

in computational geometry and solid mechanics. As the name suggests, this new finite ele-

ment family is a generalization of the classical Regge finite element, which has its roots in

a discretization of Einstein’s theory of General Relativity called Regge Calculus. We claim

that Regge Calculus fails as a numerical method and study why such failure occur. Fur-

ther, we derive well-posed linear models problems from General Relativity and propose their

discretizations based on generalized Regge finite elements.

1.1 From Regge Calculus to Regge finite elements: a brief in-

troduction

The starting point is a mesh like the one in Figure 1.1.

Figure 1.1: A triangulated surface

Apparently, part of this mesh is not flat, even though it is built from a finite number of

flat triangles. This “non-flatness” can be quantified by looking at the sum of angles around

1



each vertex. Around an apparently flat vertex, the sum of angles around it is exactly 2π, as

shown in Figure 1.2.

Figure 1.2: Flat: sum of angles equals 2π.

However, around an apparently nonflat vertex, the sum of angles around it is either

greater or smaller than 2π, as shown in Figure 1.3.

Figure 1.3: Nonflat: sum of angles does not equal 2π.

At each vertex, the difference between the sum of angles around it and 2π is called the

angle deficit at that vertex. In 1961, Tullio Regge in his influential paper [96] generalized

the notion of angle deficit to higher dimensions and linked it to the smooth notion of scalar

curvature in differential geometry. He further derived a discrete formulation of Einstein’s

geometric theory for gravity based on simplicial meshes and angle deficits and speculated

that such discrete models can be used on computers to approximate the notoriously difficult

Einstein’s field equation. Later literature referred to this discretization as Regge Calculus.

In many ways, this started the field of studying geometry on the computer. We will see that

Regge’s discrete geometric model is a special case of the generalized Regge elements proposed

in this thesis. In fact, generalized Regge elements are so named to acknowledge their roots

in Regge Calculus.

Regge’s work exemplifies the geometrical view of Regge elements. The geometric object

of interest is an n-dimensional polytope obtained by gluing together flat simplices along iso-

2



metric boundary faces. For example, the surface in Figure 1.1 is a polygon obtained by gluing

together flat triangles along edges of the same lengths. Since flat simplices are determined up

to isometry by their edge lengths, they can be equivalently described as a mesh along with an

assignment of lengths to the edges. This view is intuitive and transparent to implement on

a computer. It remains the dominant view in the physics literature on numerical simulation

using Regge Calculus (for a recent review, see [61]) and quantum gravity (for a recent review,

see [116]). The geometric view is perfectly fine as a discrete model of geometry on its own.

However, it becomes inadequate when it is considered as an approximation to some smooth

geometric object. The more advanced analytical view of Regge elements was first spelled out

in detail in the work of Cheeger-Müller-Schrader [24, 25]. The main observation was that

specifying the lengths of all edges is equivalent to prescribing on the mesh a piecewise con-

stant metric such that shared faces are isometric. This “filling in”, interpolating numbers

assigned to edges to a symmetric 2-tensor field on the entire mesh, leads to much more struc-

ture. For example, given a smooth surface and a sequence of triangulations, the quality of

approximation by these piecewise constant metrics can be assessed by comparing them to the

pullbacks of the smooth metric. With this view, Cheeger-Müller-Schrader further proved that

certain curvatures, including Regge’s discrete scalar curvature, on these non-smooth metrics

converge to the their smooth counterparts in a subtle way, when a suitable sequence of Regge

finite elements are used to approximate a smooth Riemannian metric. The analytic view still

dominates in the current mathematics literature on discrete geometry.

This idea of “filling in” to gain more structure is very powerful and has many parallels

in the history of mathematics. A particularly relevant example is Whitney’s idea of interpo-

lating simplicial cochains to piecewise linear differential forms [115]. This led to significant

advances in differential topology and geometric measure theory. More important to applied

mathematics, Whitney’s work led to the recent development of Finite Element Exterior Cal-

culus (FEEC) [8, 10], which generalizes these piecewise linear forms to higher polynomial

degrees and studies their approximation properties and use in finite element methods in a

Hilbert space framework. FEEC has been proven to be an effective framework for the numer-

ical solution of differential equations in electromagnetism and solid mechanics. This thesis

in a way tries to make the leap similar to the one from Whitney forms to FEEC for Regge

calculus.

This leads to the finite element view of Regge elements pioneered by Christiansen [28,29].

It adds another layer of structure on top of the analytical one: Regge elements are not only

just piecewise constant functions on a mesh, but also form a discrete Hilbert space which

in a subtle sense discretizes a continuous Hilbert space, namely the function space of L2-

3



symmetric covariant 2-tensor fields with H−1 distributional linearized Riemann curvature.

This makes the rigorous numerical analysis possible. Indeed it is easier to study conver-

gence in a Hilbert spaces context than to show an assignment of numbers to edges somehow

converges to a smooth solution to a partial differential equation.

The finite element view is the starting point of this thesis. First, we generalize Regge’s

initial proposal to piecewise polynomials of all degrees. Second, we apply the resulting fi-

nite elements to various applications other than numerical relativity. Third, we derive lin-

ear model problems from general relativity and propose discretizations based on generalized

Regge elements. Fourth, we study the failure of the space-time Regge Calculus as a way to

discretize Einstein’s field equation and show that the methods proposed in this thesis does

not suffer from the same problems.

1.2 Outline

The rest of the thesis can be roughly divided into 3 parts.

Part 1 consists of Chapter 2 alone. We give a precise definition of generalized Regge finite

element family and prove many of its basic properties including unisolvency of the degrees

of freedom and optimal approximation rates. We also give two implementable bases, one of

which is used in the author’s implementation of generalized Regge elements for 2D and 3D

in the open-source Python finite element software FEniCS.

Part 2 consists of Chapter 3 and Chapter 4. Here we study applications of generalized

Regge elements outside of numerical relativity, in computational geometry and solid mechan-

ics.

In Chapter 3, we demonstrate that elements of generalized Regge finite elements, when

interpreted as discrete non-smooth Riemannian metrics, retain many geometric properties

of smooth Riemannian metrics. Further they can serve as effective discrete approximations

to smooth Riemannian metrics. In particular, we propose and implement a robust algorithm

for computing geodesics on these discrete metrics and analyze the error when the discrete

metric is an approximation to some smooth metric.

In Chapter 4, we look at applications of generalized Regge finite elements in solid me-

chanics. In particular, we propose discretizations of the biharmonic equation and linear elas-

ticity equation in all dimensions using generalized Regge elements and demonstrate their

effectiveness via numerical examples. We will also note how these two applications are re-

lated to numerical relativity.

Part 3 consists of Chapter 5 and 6. We shift our focus to numerical relativity. We have two
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goals in mind. First, we give three strong reasons why Regge Calculus fails as a numerical

method for solving Einstein’s field equation in General Relativity. Second, we show that all

these three issues have parallels in other contexts of finite element analysis. Further, these

similar problems have been solved in the finite element literature in their corresponding

domains. So one reasonable way moving forward is to adapt these known effective solutions

to general relativity. We claim that this is possible through the use of generalized Regge finite

elements for certain regularized system of differential equations derived from Einstein’s field

equation which does not treat space and time on the same footing. The full program is a huge

undertaking and this thesis only serves as a starting point in that direction.

In Chapter 5, we look at basic problems in numerical relativity. For simplicity, we derive

linearized problems which still capture features of the equation essential for its discretiza-

tion. In particular, we see that the Einstein field equation, which Regge Calculus directly

discretizes, needs regularization due to weak hyperbolicity. This weak hyperbolicity is well-

known in numerical relativity literature, but it is not so far recognized as a fatal problem for

Regge Calculus. We then propose linear models problems regularizing the linearized Einstein

equation. Moreover, we prove that these problems are well-posed and propose discretizations

based on generalized Regge elements.

In Chapter 6, we study the failure of Regge Calculus as a numerical method. In particu-

lar, we study two modes of failure in detail under the finite element framework, namely the

infinite dimensional kernel of the curvature operator and the space-time scheme. We also

discuss their parallels in the finite element literature and the corresponding solutions. This

shows why the space-time unregularized approach should be abandoned in favor of regular-

ized (1+3) approach in Chapter 5.
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Chapter 2

Generalized Regge finite element

The generalized Regge finite element family is the central object of this thesis. It is defined on

simplicial meshes of dimension n ≥ 1 for symmetric covariant 2-tensor fields. At each point, a

covariant 2-tensor field takes two vectors at that point and returns a number. Hence, under

the usual coordinate identifications, equivalently, it is a finite element family for symmetric

n-by-n matrix-valued functions. In this chapter, its definition and various basic properties

are studied in detail.

We use REGr to denote the generalized Regge finite elements of degree r, which we will

define for integer r ≥ 0. To fix the ideas, we start with a directly implementable description of

REGr in coordinates. The reader should be reminded that the underlying object is coordinate-

free. The more abstract definitions convenient for mathematical analysis will be the subject

of Section 2.1. For a k-simplex f , let P r( f ) be the space of polynomials of degree r or less in k

variables as functions on f . For r < 0, it is understood that P r( f )= {0}. For any line segment

L in Rn and any symmetric matrix u ∈Rn×n, define:

uL := tT ut

where t ∈ Rn is the coordinate difference between the end-points of L. Clearly the sign of t

does not affect the value and uL is well-defined.

In 1D, a 1-by-1 matrix is a just scalar. On a line segment L, the shape functions of

REGr(L) is P r(L). The degrees of freedom are integrals of uL against P r(L). The degrees of

freedom can be implemented by evaluating uL for any function u on L at the points marked

by the center of the green bars in Figure 2.1.

Figure 2.1: Degrees of freedom in 1D for r = 0,1,2, . . ..
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In this case, uL is just the value of u times the squared Euclidean length of L. Note that all

the points marked by the green bars are in the interior of L. Hence REGr is the same as the

Discontinuous Lagrange elements on L.

In 2D, let T be a triangle in R2. The shape functions for REGr(T) consist of symmetric

2-by-2 matrix-valued functions whose 3 components are in P r(T). Let {E1,E2,E3} be the

three edges of T. Since each E i is a line segment, using the notation before, each uE i is a

well-defined scalar-valued function on the entire triangle. The degrees of freedom are: for

any symmetric 2-by-2 matrix-valued function u,1D degrees of freedom on the restriction of u to each E i,

for i = 1,2,3, integral of uE i against P r−1(T) on T.

The degrees of freedom associated with T can be implemented by evaluating uE i at the center

of the blue triangles in Figure 2.2 for i = 1,2,3. Note that all the degrees of freedom associated

with T are interior to T and that the first one of these showed up for degree r = 1.

Figure 2.2: Degrees of freedom in 2D for r = 0,1,2, . . ..

In 3D, let H be a tetrahedron in R3. The shape functions for REGr(H) consist of symmetric

3-by-3 matrix-valued functions whose components are in P r(H). Let {E i}6i=1 be the six edges

and {Ti}4i=1 be the four triangular faces of H. This time, each uE i is a scalar-valued function

on the entire tetrahedron. The degrees of freedom in 3D are: for any symmetric 3-by-3

matrix-valued function u,
1D degrees of freedom on the restriction of u to each E i,

2D degrees of freedom on the restriction of u to each T j,

for i = 1, . . . ,6, integral of uE i against P r−2(H) on H.

The degrees of freedom can be implemented by evaluating uE i at the center of the red tetra-

hedron in Figure 2.3 for i = 1, . . . ,6. Again, all degrees of freedom associated with H are

interior to H. The first one shows up in degree r = 2. The pattern for further interior degrees

of freedom are depicted in Figure 2.4.
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Figure 2.3: Degrees of freedom in 3D for r = 0,1,2, . . ..

Figure 2.4: Interior degrees of freedom in 3D for r = 2,3,4, . . ..

The general pattern for REGr in dimension n ≥ 4 is clear. A detailed description of this

set of degrees of freedom can be found in Section 2.4.

The space REGr unifies and generalizes several discrete structures previously known in a

wide variety of fields. The lowest degree element REG0 in all dimensions n ≥ 1, called Regge

finite elements, are well-known in the relativity, geometry, and finite element literature [24,

25, 28, 29, 96]. In dimension n = 2, one can consistently rotate all the edge tangent vectors

to normal vectors of the triangle. Under this, 2D REGr becomes the well-known Hellan-

Herrmann-Johnson finite element [13, 20] for the biharmonic equation. In 2D, REG1 is also

equivalent to Pechstein-Schöberl’s lowest degree normal-normal stress finite element [89,

100, 101] for the linear elasticity equation. These connections will be further studied and

generalized later in the chapter on applications to solid mechanics.

We highlight several fundamental results concerning properties of REGr proved in this

chapter:

• (Theorem 2.1) The set of degrees of freedom for REGr is unisolvent.

• (Theorem 2.3) REGr on a mesh is characterized by tangential-tangential continuity: for

u ∈ REGr of a mesh, for any simplex f of dimension ≥ 1 in the mesh and for any two

vectors v and w parallel to f , vT u(x)w is single-valued at any point x ∈ f . Moreover

a piecewise polynomial symmetric covariant 2-tensor field has tangential-tangential

continuity if and only if it belongs to REGr. This turns out to be the key property for

its use in applications.

• (Theorem 2.2 and Theorem 2.4) REGr is both local and affine. This makes it the canon-
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ical finite element with respect to tangential-tangential continuity in the language

of [52]. These two properties make REGr easy to implement and analyze.

• (Theorem 2.5 and Theorem 2.6) The canonical interpolant of REGr, induced by the

degrees of freedom, has the optimal approximation properties.

This chapter is organized as follows. First, in Section 2.1, we give a coordinate-free def-

inition of REGr. In Section 2.2, we give a constructive proof of the characterization and

unisolvency of REGr. In Section 2.3, we study the affine properties of REGr and prove the

optimal approximation theorems. We end the chapter with Section 2.4 describing two sets

of concrete degrees of freedom for REGr. They form the basis of author’s implementation of

REGr in the open source software FEniCS as part of this thesis.

2.1 Definition of generalized Regge family

In this section, we define the generalized Regge family precisely.

First, we clarify what is a mesh. In Rm, the convex hull of (n+1) points {v0, . . . ,vn} of gen-

eral position is called an n-simplex c = [v0, . . . ,vn]. Necessarily, m ≥ n. This generalizes the

notion of line segments (1-simplices), triangles (2-simplices), and tetrahedron (3-simplices)

to all dimensions. Each vi is called a vertex of c. The convex hull of any (k+1) vertices is

a k-simplex by itself and is called a k-face of c. By convention, in an n-cell, 1-faces are also

called edges, (n−2)-faces are also called bones, (n−1)-faces are also called facets, and n-faces

are also called cells. A mesh T is a finite collection of simplices in Rm satisfying:

• Any face of a simplex in T is a simplex in T .

• The intersection of any two simplices in T is a face of both simplices.

• The union of all simplices in T is a topological submanifold of dimension n in Rm.

The integer m is called the geometric dimension of T while n is called the topological dimen-

sion of T . This nomenclature has its roots in the representation of a mesh on a computer as

a list of coordinates for the vertices. In this thesis, mostly m = n. In this case T is said to be

a mesh of dimension n. Many alternative definitions of a mesh exist in the literature. This

one is chosen for the ease and clarity of exposition and is developed from the definition of a

geometric simplicial complex in [84, Section 7]. The manifold determined by T , called the

carrier of T , is denoted by |T |. Let M be any manifold (possibly with boundary). If T is a

mesh with |T | diffeomorphic to M, then T is called a triangulation of M.

9



Figure 2.5: Mesh and non-meshes in 2D

Second, we review the notion of tensor fields in differential geometry [113, Chapter 2].

Let M be a smooth manifold. For any point p ∈ M, a covariant k-tensor at p is a real k-linear

form on the tangent space TpM. A covariant k-tensor field on M is a function on M assigning

to each point p ∈ M a covariant k-tensor at p. A covariant 2-tensor field is called symmetric

when its value at each point is a symmetric bilinear form. In this thesis, the space of all

smooth symmetric covariant 2-tensor fields on M is especially important and is denoted by

S (M). Let N be another smooth manifold and φ : M → N a smooth function. At every point

p ∈ M, the differential (dφ)p is a linear map from TpM to Tφ(p)N defined by the property

that for any smooth f : U →R on a neighborhood U of φ(p) and any v ∈ TpM:

[(dφ)pv]( f ) := v( f ◦φ).

This induces a map (φ∗)p from covariant k-tensors at φ(p) ∈ N to covariant k-tensors at

p ∈ M: for any covariant k-tensor g at φ(p) ∈ N and any k vectors (u1, . . . ,uk) in TpM,

[(φ∗)p g](u1, . . . ,uk) := g(dφp(u1), . . . ,dφp(uk)). (2.1)

Since dφ is well-defined over any point p ∈ M, any covariant k-tensor field g on N defines a

covariant k-tensor field φ∗g on M by applying (φ∗)p in a pointwise fashion. This φ∗g is called

the pullback of g under φ. In particular, φ∗ : S (N)→S (M) for any smooth φ. In this thesis,

the manifolds M and N are frequently simplices, which have boundary. In this case, the

functions are only required to be smooth in the interior and continuous up to the boundary.

Now let c be an n-simplex and f a k-face in c. Define ι f→c to be the inclusion of f in c. In

most situations, the cell c is clear from the context and the notation is shortened to just ι f . By

definition, for any g ∈ S (c), its pullback ι∗f g ∈ S ( f ) assigns to each point p ∈ f a symmetric

bilinear form on vectors tangent to f . Hence ι∗f g is also called the tangential-tangential part

of g at face f in the finite element literature [28,29]. The term tangential-tangential part is

preferred in this thesis to single out the pullback for covariant 2-tensors.

Third, we develop some notations for polynomial spaces on simplices. For a n-simplex c,

let P r(c) be the space of polynomials of degree r or less on c as before. It is well-known [30,
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Equation (2.2.2)] that

dimP r(c)=
(
n+ r

n

)
.

For the Euclidean space Rn, the tangent space at different points are identified in a natural

way and there is a canonical sense of constant vector fields (for the pedantic, take Rn with

vector addition as a Lie group and then constant fields are left-invariant [113]). Any n-

simplex c is defined as a subset of the Euclidean space. So the notion of constant vector fields

on c is well-defined. Let Sn be the space of symmetric covariant 2-tensors at the origin in Rn

and

P rS (c) :=P r(c)⊗Sn. (2.2)

Equivalently, P rS (c) can be characterized as the collection of all symmetric covariant 2-

tensor fields on c whose values on pairs of constant vector fields are polynomials of degree r

or less. The space Sn is isomorphic to the space of symmetric n-by-n matrices. Hence,

dimSn =
(
n+1

2

)
, dimP rS (c)=

(
n+ r

n

)(
n+1

2

)
. (2.3)

Let T be any mesh of topological dimension n. A piecewise polynomial symmetric covariant

2-tensor fields of degree r or less is a function assigning to each cell c of T an element of

P rS (c). These can be combined linearly in the obvious fashion. We denote the vector space

of all piecewise polynomial symmetric covariant 2-tensor fields by P rS (T ). Elements of

P rS (T ) can be interpreted as symmetric covariant 2-tensor fields on the carrier |T | of the

mesh, which might be multi-valued on cell boundaries. It should be noted that one cannot

define P rS (M) on a general smooth manifold M. However, for any triangulation T of M,

P rS (T ) is still well-defined.

Fourth, we review the definition of finite elements. A simplicial finite element is a triple

(c,V ,Σ). The first component c is a simplex. The second component V is a finite-dimensional

function space on c. The last component Σ = {(r f ,Σ f )} f⊂c is a collection of ordered pairs

indexed by faces f of c, where for each face f , r f is a map from V to some function space

Vf on f and Σ f is a subspace of the dual space V ′
f . This Σ is further required to satisfy the

unisolvency condition:

V ′ = ⊕
f⊂c

{u 7→ l(r f (u)) | l ∈Σ f }.

In a finite element (c,V ,Σ), the simplex c is called the domain, elements of V are called shape

functions, and elements of Σ are called degrees of freedom. When specifying a finite element,

the unisolvency is usually the part which requires a non-trivial proof. This definition is based

on the classical definition of Ciarlet [30, Section 2.3] with one difference. Traditionally, the
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set of degrees of freedom is simply given as a basis for the dual space. This, on one hand,

specifies too much as their spans are enough to determine the crucial inter-element continu-

ity properties of the finite element [8, Section 4]. For a particular software implementation, a

basis B f can be fixed for each Σ f . Then
⋃

f B f leads to a dual basis which can be used to map

an element of V to a numeric array on a computer. This choice, however, does not affect its

mathematical analysis. On the other hand, the classical definition does not make explicit the

important aspect of finite elements that these basis are associated with faces of the simplex

so they can be patched together on a mesh through the assembly process [10, Section 2.1].

A single finite element is rarely of any interest. A much more useful notion is a finite

element family F, which is a function defined on a collection D(F) of simplices and associates

to each simplex c ∈ D(F) a finite element F(c). Given a mesh T , a finite element family F

is called assemblable on T if all the cells of T are in D(F) and whenever two cells c1 and

c2 intersect at a face f , both F(c1) and F(c2) give the same r f (V ) and Σ f on f . In such a

situation, a finite element space on T , denoted by F(T ), can be obtained through the finite

element assembly process: F(T ) is the collection of functions u on T possibly multi-valued

on cell boundaries such that:

• the restriction u|c to each cell c is a shape function of F(c),
• if any two cells c1 and c2 share a face f then l ◦ r f (u|c1)= l ◦ r f (u|c2) for all l ∈Σ f .

Figure 2.6: REG1 assembly on a 3-triangle mesh.

A pictorial depiction of the assembly of REG1 is given in Figure 2.6.

Finally, the generalized Regge finite element can be defined precisely. On an n-simplex c in

Rn, the generalized Regge finite element of degree r, is given by the space of shape functions:

P rS (c) (2.4a)
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and degrees of freedom assigned to each k-face f of c with k ≥ 1:

r f := ι∗f : P rS (c)→P rS ( f ), Σ f := {u 7→
∫

f
u : q | q ∈P r−k+1S ( f ), (2.4b)

where the colon : denotes the Frobenius inner product on Sk. It will be proven in Theorem 2.1

that this set of degrees of freedom is unisolvent. In fact, any inner product on Sk can be used

in place of the Frobenius one and the resulting finite element will be the same.

We count the dimensions of the space and the degrees of freedom. The dimensions of P r

and P rS are already computed in (2.3). On one hand,

dimV = dimP rS (c)=
(
n+ r

r

)(
n+1

2

)
.

On the other hand, it is an elementary count that the number of k-faces in an n-simplex is

#{k-faces of c}=
(
n+1
k+1

)
.

Hence the total number of degrees of freedom is:

n∑
k=1

(#{k-faces of c})(dimP r−k+1S ( f ))=
n∑

k=1

(
n+1
k+1

)(
r+1

k

)(
k+1

2

)
.

As a consequence of the unisolvency (Theorem 2.1), the following identity must hold:(
n+ r

r

)(
n+1

2

)
=

n∑
k=1

(
n+1
k+1

)(
k+1

2

)(
r+1

k

)
. (2.5)

This identity can be verified independently as well. First, clearly(
n+1
k+1

)(
k+1

2

)
= (n+1)!

(k+1)!(n−k)!
(k+1)!

2!(k−1)!
= (n+1)!

2!(n−1)!
(n−1)!

(n−k)!(k−1)!
=

(
n+1

2

)(
n−1
n−k

)
.

Then,
n∑

k=1

(
n−1
n−k

)(
r+1

k

)
=

(
n+ r

n

)
can be derived from comparing the coefficients of x in the identity

(1+ x)n−1(1+ x)r+1 = (1+ x)n+r.

We finally define REGr, the generalized Regge finite element family of degree r. For any

r ≥ 0, it is a function space defined on all simplices c of dimension n ≥ 1 which assigns the

Regge finite element of degree r on c to each c.

Proposition 2.1. For any fixed r ≥ 0, REGr is assemblable on any mesh T of topological

dimension n ≥ 1.
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Proof. The conditions for assemblability are checked one by one. Each cell of T is of dimen-

sion n so it is in the domain of REGr. Suppose two cells c1 and c2 intersect at a k-face f .

Then,

ι∗f→c1
P rS (c1)=P rS ( f )= ι∗f→c2

P rS (c2).

Finally, it is clear from the definition (2.4b) that Σ f only depends on f and hence is the same

in both REGr(c1) and REGr(c2). Hence REGr is assemblable on T .

The resulting assembled space is denoted by REGr(T ).

2.2 Basic properties

We establish the basic properties of generalized Regge elements in this section. We outline

the main results below and give the detailed proofs in the subsections.

The first result shows REGr is well-defined.

Theorem 2.1 (Unisolvency). The set of degrees of freedom (2.4b) is unisolvent.

The second result shows that REGr satisfies the locality property defined in [52].

Theorem 2.2 (Locality). Let f be a k-face in an n-simplex c with k ≥ 1 and u ∈ P rS (c).

Then ι∗f u is completely determined by the subset of degrees of freedom associated with f and

its faces.

The third result characterizes REGr as a special subspace of piecewise polynomial sym-

metric covariant 2-tensor fields:

Theorem 2.3 (Characterization). Let T be a mesh of topological dimension n ≥ 1. Suppose

u ∈ P rS (T ) is a piecewise polynomial covariant symmetric 2-tensor. Then u ∈ REGr(T ) if

and only if ι∗f u is single-valued at each interior k-face f of the mesh with k ≥ 1.

On an simplex c, we call the subspace of P rS (c) with vanishing tangential-tangential

parts tangential-tangential bubble functions and denote it by P̊ rS (c). The fourth result

concerns the structure of these bubble functions.

Proposition 2.2. Let c be an n-simplex. The dual space to the space of tangential-tangential

bubble functions is:

[P̊ rS (c)]′ =
{

u 7→
∫

c
u : q | q ∈P r−n+1S (c)

}
.

In particular,

dimP̊ rS (c)= dimP r−n+1S (c)=
(
n+1

2

)(
r+1

n

)
.
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In the rest of the section, we prove these four theorems using a construction known as

the geometric decomposition. It gives an explicit basis for REGr on a simplex indexed by its

faces. Similar decompositions are useful both theoretically [9] and for software implementa-

tions [63].

In order to state the geometric decomposition, we need some notations. Fix an arbitrary

n-simplex c = [v0 . . .vn]. Let {λ j}n
j=0 be the barycentric coordinates on c: λi are linear func-

tions determined by λi(v j) = δi j. A multi-index α ∈N0:n is an array α = (α0, . . . ,αn) of (n+1)

non-negative integers αi ≥ 0. Set

λα :=λα0
0 · · ·λαn

n , |α| :=
n∑

i=0
αi.

The support �α� of α is defined to be

�α� := {i ∈ {0, . . . ,n} |αi ≥ 1}, (2.6)

For a face f = [v f0 . . .v fk ], the index set I( f ) contains the indices for the vertices of f is

I( f ) := { f0, . . . , fk}. (2.7)

Under this notation, the (unnormalized) Bernstein basis Br(c) for P r(c) is given by [76]:

Br(c) := {λα |α ∈N0:n, |α| = r}.

Given two 1-forms l1, l2 on c = [v0 . . .vn], their symmetric tensor product l1 ¯ l2 is a sym-

metric covariant 2-tensor given by

(g1 ¯ g2)(u1,u2) := 1
2

[g1(u1)g2(u2)+ g1(u2)g2(u1)],

for all pairs of vectors u1 and u2. On c, each edge [viv j] can be associated with a covariant

2-tensor:

dλi ¯dλ j ∈Sn.

Note that because {λi} are linear functions, their differentials are constants. In the above,

the usual identification of constants and constant functions are assumed. Due to the tensor

product structure (2.2) of P rS (c), for any p ∈ P r(c) and any edge [viv j] of c, pdλi ¯ dλ j ∈
P rS (c).

We prove the following bases for P rS (c) and P̊ rS (c).

Proposition 2.3 (Basis). Let c = [v0 . . .vn] be an n-simplex and {λ j}n
j=0 be the barycentric

coordinates. Define e(c) to be the collection of all the edges of c. Then,

Br
S (c) := {λαdλi ¯dλ j |α ∈N0:n, |α| = r, [viv j] ∈ e(c)}
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forms a basis for P rS (c) and

B̊r
S (c) := {λαdλi ¯dλ j | [viv j] ∈ e(c), α ∈N0:n, |α| = r, �α�∪ {i, j}= I(c)}

forms a basis for P̊ rS (c).

We need an extension operator to take polynomials on a face of a simplex to the simplex.

Let f = [v f0 . . .v fk ] be any k-face of c. This f is a k-simplex on its own and has its own

barycentric coordinates {λ f
f i

}
k

i=0
. Further, Br( f ) defined using these {λ f

f i
} forms a basis for

P r( f ). There is a canonical map Er
f→c : P r( f ) → P r(c), called the barycentric extension [9,

Section 2.2], which simply replaces any appearance of λ f
f j

with λc
f j

in the expansion of any

P r( f ) in basis Br( f ). For example, if f = [v0v1v2], then

E2
f→c(λ f

1λ
f
2 )=λc

1λ
c
2.

The dependency of Er on r is significant. Recall that
∑
λi = 1. So a polynomial of degree k

has a different representation in Br for each r ≥ k. In the above, if E3
f→c were applied, the

result becomes

E3
f→c(λ f

1λ
f
2 )= E3

f→c(λ f
1λ

f
2 (λ f

0 +λ
f
1 +λ

f
2 ))=λc

0λ
c
1λ

c
2 + (λc

1)2
λc

2 +λc
1(λc

2)2,

which is a cubic polynomial on c.

For any face f = [v f0 . . .v fk ] of an n-simplex c = [v0 . . .vn], the barycentric extension Er
f→c

can be extended to a map from P rS ( f ) to P rS (c) naturally via the basis given in Proposi-

tion 2.3. For example, if f = [v0v1v2] then for any edge [viv j] of f ,

Er
f→c[λ f

0 (λ f
1 )

2
λ

f
2 dλ f

i ¯dλ f
j ] :=λc

0(λc
1)2

λc
2dλc

i ¯dλc
j .

For a cell c, the space P rS (c) can be decomposed as the extensions of bubble functions

on faces of c.

Proposition 2.4 (Geometric decomposition). Let c be a simplex. Then,

P rS (c)= ⊕
dim f≥1

Er
f→cP̊

rS ( f ).

The basis decomposes accordingly:

Br
S (c)= ⋃

dim f≥1
Er

f→cB̊r
S ( f )

where the union is disjoint. Moreover, the dual space also decomposes geometrically:

[P rS (c)]′ = ⊕
dim f≥1

{
u 7→

∫
f
(ι∗f u) : q | q ∈P r−dim f+1S ( f )

}
.
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For example, the unisolvency (Theorem 2.1) is a direct consequence of the dual space

decomposition. Examples of this geometric decomposition of the basis in 2D and 3D are

listed in Table 2.1 and Table 2.2.

r [viv j] [viv jvk]

0 dλi ¯dλ j

1 λidλi ¯dλ j, λidλ j ¯dλk,

λ jdλi ¯dλ j λ jdλi ¯dλk,

λkdλi ¯dλ j

2 λ2
i dλi ¯dλ j, λ2

i dλ j ¯dλk, λ2
j dλi ¯dλk, λ2

kdλi ¯dλ j,

λ2
j dλi ¯dλ j, λiλkdλi ¯dλ j, λ jλkdλi ¯dλ j,

λiλ jdλi ¯dλ j λiλ jdλi ¯dλk, λkλ jdλi ¯dλk,

λ jλidλ j ¯dλk, λkλidλ j ¯dλk

Table 2.1: Bernstein-style Basis in 2D

r [viv j] [viv jvk] [viv jvkvl]

0 Same as 2D, 1 per edge

1 Same as 2D, 2 per edge Same as 2D, 3 per triangle

2 Same as 2D, 3 per edge Same as 2D, 9 per triangle λiλ jdλk ¯dλl , λ jλkdλl ¯dλi,

λkλl dλi ¯dλ j, λlλidλ j ¯dλk,

λiλkdλ j ¯dλl , λ jλl dλi ¯dλk

Table 2.2: Bernstein-style Basis in 3D

2.2.1 Bernstein decomposition for Lagrange elements

Here we review the geometric decomposition of the scalar polynomial space P r(c). This

serves as a model and the basis for the more complicated decomposition of P rS n(c).

As mentioned in the introduction of this section, on an n-simplex c, the unnormalized

Bernstein basis Br(c) for P r(c) is given by [76]:

Br(c) := {λα |α ∈N0:n, |α| = r}, (2.8)

The normalization factor is dropped because it is not important for the discussion here.
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It should be noted that the normalization, however, is important in software implementa-

tions [74, Chapter 4]. This basis has many advantages numerically, for example see [63].

The Bernstein basis has the following elementary property:

Lemma 2.1. Suppose p ∈P r(c) is divisible by λk for some k, then in the expansion of p in the

Bernstein basis each summand contains a λk factor individually.

Proof. Suppose the claim is false. Then necessarily, a linear combination of

{λα0
0 · · ·λαn

n |α ∈N0:n, |α| = r, αk = 0}

equals λkq for some polynomial q of degree less than or equal to (r−1). But this q can be rep-

resented in the Bernstein basis Br−1(c) again. In particular, each term of the thus expanded

product in λkq is a basis element in Br(c) and contains a λk factor. Thus a linear combina-

tion of elements in Br(c) which do not contain the factor λk equals a linear combination of

elements in Br(c) which do contain the factor λk. This contradicts the fact that elements of

Br(c) are linearly independent.

Let the support � ·� and index set I( · ) be defined as in (2.6) and (2.7) respectively. For any

face f of an n-simplex c, set

Br
c( f ) := {λα |α ∈N0:n, |α| = r, �α� = I( f )} (2.9)

which is the subset of the Bernstein basis Br(c) whose factors involve exactly λi associated

with vertices of f . It is clear that every element of Br(c) is in a unique Br
c( f ) for some face f

of c. The trivial observation that the map [v f0 . . .v fk ]→ {v f0 . . .v fk } is a bijection between faces

of c and subsets of vertices of c implies:

Br(c)= ⋃
f⊂c

Br
c( f ),

where the union is disjoint and is taken over all faces f of c. Elements of Br
c( f ) vanishes on

the boundary of f .

On any simplex c, we call the subspace of P r(c) which vanishes on the boundary the

sapce of bubble functions and denote it by P̊ r(c). It turns out that following is a basis for

P̊ r(c):

B̊r(c) := {λα |α ∈N0:n, |α| = r, �α� = I(c)}, (2.10)

Indeed, each λi vanishes on the facet opposite to vertex vi and every facet is opposite to a

vertex, every element of B̊r(c) vanishes on the boundary of c and is thus in P̊ r(c). On the

other hand, if p ∈ P̊ r(c), then p is divisible by λ0 · · ·λn. By Lemma 2.1, this implies that every
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term in the expansion of p in the Bernstein basis is in B̊r(c). Hence, B̊r(c) is a basis for P̊ r(c)

(also derived in [9, Equation (2.4)]).

Comparing formulae (2.9) and (2.10), it is clear that for any face f of a simplex c:

Br
c( f )= ErB̊r( f ).

Hence,

Br(c)= ⋃
f ∈c

ErB̊r( f ), P r(c)=⊕
f ∈c

ErP̊ r( f ).

This is called the Bernstein decomposition in [9]. An example of this for P 3 on a triangle is

shown in Figure 2.7.

Figure 2.7: Geometric decomposition of P 3 on a triangle.

This decomposition is useful for software implementation [44]. Moreover, it gives an

elegant proof of unisolvency of degrees of freedoms for Lagrange elements. It is clear that the

map from P r−n−1(c) to P̊ r(c) given by

p 7→ pλ0 · · ·λn

is an isomorphism. Thus the space of functionals{
p 7→

∫
c

pq | q ∈P r−n−1(c)
}

is isomorphic to the dual space [P̊ r(c)]′. The Bernstein decomposition then implies that

[P r(c)]′ =⊕
f ∈c

{
p 7→

∫
f

pq | q ∈P r−dim f−1( f )
}

.

This is known to be the degrees of freedom for Lagrange finite elements [9].

2.2.2 Geometric decomposition for Regge elements

This subsection is subtle. The main idea is to derive the Bernstein-style basis (Proposi-

tion 2.3) for REGr first. This is used to give a constructive proof of the geometric decompo-

sition (Proposition 2.4) and the bubble characterization (Proposition 2.2). Then all the other
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theorems in the introduction of this section follow. A road map is provided below for the

reader:

1. Derive a basis for Sn in terms of barycentric coordinates (Proposition 2.5).

2. Derive the Bernstein-style basis Br
S

(c) for P rS (c).

3. Derive the action of pullback on basis elements (equation (2.16) and Proposition 2.6)

and establish that Er
f→c is the right inverse of the pullback.

4. Derive the Bernstein-style basis B̊r
S

(c) for P̊ rS (c). The key was the basis Br
i j(c)⊂ Br(c)

associated to each edge [viv j] of c for polynomials vanishing on all facets containing

that edge (Lemma 2.3 and Lemma 2.4). This combined with the second step proves

Proposition 2.3.

5. Derive the geometric decomposition of P rS (c) (first part of Proposition 2.4). This is a

constructive proof based on an edge-based Bernstein decomposition of P r(c) (Lemma 2.6

and Lemma 2.7).

6. Prove the bubble characterization (Proposition 2.2) via an explicit bijection using the

Bernstein-style basis. Then prove the dual geometric decomposition (Lemma 2.8). This

along with the previous step proves Proposition 2.4.

7. Prove Theorem 2.1–2.3 as corollaries.

The first step is to recall the well-known connection [28, Proposition 3.2] between the

barycentric coordinates and the space of piecewise constant symmetric covariant 2-tensors.

Proposition 2.5. Let c = [v0 . . .vn] be an n-simplex, {λi}n
i=0 its barycentric coordinates, and

e(c) the collection of all edges of c. Then the set

{dλi ¯dλ j | [viv j] ∈ e(c)} (2.11)

forms a basis for Sn =P 0S (c) under the identification of constants with constant functions.

Proof. First, because each λi is linear, dλi is constant. So is the symmetric tensor product

dλi ¯dλ j. Hence dλi ¯dλ j ∈P 0S (c). Second, elementary dimension counts show that

dimP 0S (c)=
(
n+1

2

)
= #[e(c)]. (2.12)

Thus the only thing left to show is that these dλi ¯dλ j are linearly independent. Note that

the simplex c is in some Euclidean space and inherits its affine structure. For any two points

p and q in c, p− q can be identified as a constant vector field on c. For a linear function f ,

the action of (p− q) as a derivation is just:

(p− q)( f )= f (p)− f (q).
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Hence, by definition of λi:

dλi(v j −vk)= (v j −vk)(λi)=λi(v j)−λi(vk)= δi j −δik. (2.13)

Then direct computation shows: for any [vkvl] ∈ e(c),

(dλi ¯dλ j)(vk −vl ,vk −vl)= (δik −δil)(δ jk −δ jl)

=

−1, if (i = k and j = l) or (i = l and j = k),

0, otherwise.
(2.14)

Thus the span of the given set has dimension at least #[e(c)]. This proves the linear indepen-

dency and hence the claim.

Let c be an n-simplex. By the tensor product structure (2.2), the previous theorem and

the Bernstein basis (2.8) together imply that

Br
S (c) := {pdλi ¯dλ j | p ∈ Br(c), [viv j] ∈ e(c)}

= {λαdλi ¯dλ j |α ∈N0:n, |α| = r, [viv j] ∈ e(c)} (2.15)

forms a basis for P rS (c). For any face f of c, the pullback ι∗f is linear. Its action on a basis

element is just:

ι∗f (pdλi ¯dλ j)= (p ◦ ι f )ι∗f (dλi ¯dλ j). (2.16)

Hence, the tensor part dλi ¯dλ j and the polynomial part can be dealt with separately.

Lemma 2.2. Let c be any simplex and f any face of c. For any u ∈P rS ( f ),

ι∗f Er
f→cu = u.

Proof. Suppose c = [v0 . . .vn] and f = [v f0 . . .v fk ]. Let {λc
i } and {λ f

f i
} be the barycentric coordi-

nates on c and f respectively. Since f determines a unique affine subspace of the Euclidean

space where c is in, there is a canonical identification the tangent space of f as a subspace of

tangent space of c. Under this,

λc
f i
◦ ι f =λ f

f i
, ι∗f (dλc

f i
)= dλ f

f i
.

Hence ι∗f Er
f→c is the identity on the basis elements in Br

S
( f ). Both maps are linear so this

extends to P rS ( f ). This proves the claim.

The following theorem collects the key properties of the pullback of dλi ¯dλ j:

21



Proposition 2.6. Let c be a simplex, f any k-face of c, and [viv j] ∈ e(c) an edge. Then

ι∗f (dλi ¯dλ j) 6= 0 if and only if the edge [viv j]⊂ f . Further, the set

{ι∗f (dλl ¯dλm) | [vlvm] ∈ ec( f )}

forms a basis for P 0S ( f ) = Sk, where λi are barycentric coordinates of c and ec( f ) is the

collection of all edges of c contained in f .

Proof. If the edge [viv j] is not part of f , then either vertex must be outside of f . Without loss

of generality, say vi is not in f . Then, from the calculation (2.13), dλi vanishes on all tangent

vectors of f . Hence ι∗f (dλi ¯ dλ j) vanishes. On the other hand, if the edge [viv j] is part of

f , then equation (2.14) implies that (dλi ¯dλ j)(vi − v j,vi − v j) =−1. So ι∗f (dλi ¯dλ j) cannot

vanish in this case. Moreover this shows that the elements of the set in the further part of

the claim are linearly independent. Then the same dimension count (2.12) implies that that

set forms a basis for P 0S ( f ).

Corollary 2.1. Let c be an n-simplex and p ∈S (c) a function of the form

p := ∑
[viv j]∈e(c)

pi jdλi ¯dλ j,

where pi j : c →R are arbitrary functions and the sum is over all edges of c. Then the pullback

to the boundary ι∗
∂c p vanishes if and only if the pullback to the boundary of every term in the

sum vanishes individually.

Proof. Let f be any boundary facet of c. Due to the tensor product structure,

ι∗f p := ∑
[viv j]∈e(c)

pi jι
∗
f (dλi ¯dλ j).

For terms associated with edges [viv j] not contained in f , the tensor part ι∗f (dλi ¯ dλ j) al-

ways vanishes. For terms associated with edges [viv j] contained in f , by the second part of

Proposition 2.6, these ι∗f (dλi ¯dλ j) forms a basis for P 0S ( f ). Hence each corresponding pi j

must vanish. Thus, for different boundary facets f , the pullback of each summand vanishes

individually for different reasons (either of the two mentioned here). Nevertheless, overall,

the pullback of each summand to the boundary must vanish individually.

The next step is find a basis for the tangential-tangential bubble space P̊ rS ( f ). Let

c = [v0 . . .vn] be an n-simplex and [viv j] ∈ e(c) an edge. In light of Proposition 2.6 and the

pullback formula (2.16), a basis element pdλi ¯dλ j ∈ P̊ rS ( f ) if p vanishes on the facets of

the boundary which does not contain the edge [viv j]. More precisely, in an n-simplex c, there
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are (n+1) facets (all facets are boundary facets in a simplex), of which exactly 2 facets, the

one opposite to vi and the one opposite to v j, do not contain the edge [viv j] and all the rest

of the (n−1) facets contain that edge. Define Br
i j(c) to be the collection of elements of the

Bernstein basis Br(c) which vanish on all the (n−1) facets which do contain [viv j].

Lemma 2.3.

Br
i j(c)= {λα |α ∈N0:n, |α| = r, �α�∪ {i, j}= I(c)}.

Further, Br
i j(c) forms a basis for the subspace of P r(c) containing polynomials vanishing on

all the (n−1) facets containing the edge [viv j].

Proof. For the first part, using the fact that λi vanishes on the facet opposite to vertex vi,

the definition of Br
i j(c) implies that all elements of it are divisible by λk for all k = 0, . . . ,n,

except k = i and k = j, which is exactly what the formula says. For the second part, it is clear

that Br
i j(c) as a subset of the Bernstein basis Br(c) is linearly independent. It is also obvious

that each element of Br
i j(c) is in the space it is claimed to be a basis of. Suppose q ∈ P r(c)

vanishes on all the facets containing the edge [viv j]. Expand q in Bernstein basis Br(c). By

Lemma 2.1, the fact that q is divisible by λk for all k = 0, . . . ,n, except k = i and k = j implies

that the same holds for each summand in the expansion. Hence q is a linear combination of

elements in Br
i j(c).

The following result, then, comes at no surprise:

Lemma 2.4. Let c be an n-simplex. Then

B̊r
S (c) := {p dλi ¯dλ j | p ∈ Br

i j(c), [viv j] ∈ e(c)}

= {λαdλi ¯dλ j | [viv j] ∈ e(c), α ∈N0:n, |α| = r, �α�∪ {i, j}= I(c)}

forms a basis for bubbles P̊ rS (c).

Proof. First, the preceding discussion showed that every element of B̊r
S

(c) is in P̊ rS (c). Sec-

ond, because both Br
i j(c) and {dλi¯dλ j | [viv j] ∈ e(c)} are linearly independent sets, elements

in B̊r
S

(c) as their product are also linearly independent by the tensor product structure (2.2).

Finally, suppose q ∈ P̊ rS (c). Expand q in basis Br
S

(c) defined in (2.15):

q = ∑
[viv j]∈e(c)

∑
p∈Br(c)

qp,i, j pdλi ¯dλ j.

By Corollary 2.1, for any edge [viv j] ∈ e(c), each

ι∗∂c

( ∑
p∈Br(c)

qp,i, j pdλi ¯dλ j

)
= ι∗∂c(dλi ¯dλ j)

∑
p∈Br(c)

qp,i, j(p ◦ ι∂c)= 0.
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By Proposition 2.6, the polynomial ∑
p∈Br(c)

qp,i, j(p ◦ ι∂c)

must vanish on the (n−1) boundary facets containing edge [viv j]. By Lemma 2.3, this is in

the span of Br
i j(c). Thus the linear span of B̊r

S
(c) contains P̊ rS (c). This proves the claim.

The next step is to derive another geometric decomposition of the Bernstein basis Br(c)

which are based on edges. Let c = [v0 . . .vn] be an n-simplex and [viv j] be an edge. For any

k-face f of c with k ≥ 1, let

Br
c,i j( f ) := {λαdλi ¯dλ j |α ∈N0:n, |α| = r, �α�∩ {i, j}= I( f )}, (2.17)

where the barycentric coordinates {λi} are for the cell c.

Figure 2.8: Edge-based Bernstein decomposition for P 3 on a triangle. The chosen edge is in

red. Basis associated with edges are in black while those associated with cells are in blue.

Figure 2.9: Edge-based Bernstein decomposition for P 3 on a tetrahedron. The chosen edge

is thickened. Basis associated with edges are in red, those associated with triangles are in

blue, and those associated with cells are in black.

Lemma 2.5. Let c = [v0 . . .vn] be an n-simplex. Then, for any fixed edge [viv j] of c,

Br(c)= ⋃
f⊃[viv j]

Br
c,i j( f ),

where the union is disjoint and is taken over all faces f of c containing edge [viv j].
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Proof. It is clear that each Br
c,i j( f ) is a subset of the Bernstein basis Br(c). Let the edge

[viv j] be fixed. The condition �α�∩ {i, j} = I( f ) implies that for different f , these Br
c,i j( f ) are

disjoint. On the other hand, suppose p = λα is any element of Br(c). Then, let f be the face

of c determined by the vertices �α�∪ {i, j}. It is clear that p ∈ Br
c,i j( f ). Hence the union covers

Br(c). This proves the claim.

Let c be an n-simplex and f any k-face of c with k ≥ 1. Further, let Er
f→c be the barycen-

tric extension defined before. Comparing the formula for Br
i j( f ) in Lemma 2.3 with the defi-

nition of Br
c,i j( f ) in equation (2.17), whenever f contains the edge [viv j], clearly,

Br
c,i j( f )= Er

f→cBr
i j( f ).

Therefore, there is an edge based geometric decomposition of the Bernstein basis:

Lemma 2.6. Let c = [v0 . . .vn] be an n-simplex. Then, for any edge [viv j] of c,

Br(c)= ⋃
f⊃[viv j]

Er
f→cBr

i j( f ),

where the union is disjoint and is taken over all faces f of c containing edge [viv j].

This decomposition of the Bernstein basis leads to the desired geometric decomposition

of the Regge finite element basis Br
S

(c).

Lemma 2.7. Let c be a simplex. Then,

Br
S (c)= ⋃

dim f≥1
Er

f→cB̊r
S ( f ) and P rS (c)= ⊕

dim f≥1
Er

f→cP̊
rS ( f ),

where the first union is disjoint.

Proof. It is clear that the partition of the basis Br
S

(c) implies the direct sum decomposition

of P rS (c). So it is sufficient to prove the partition of the basis. By definition,

Br
S (c)= ⋃

[viv j]∈e(c)
{pdλi ¯dλ j | p ∈ Br(c)}.

Lemma 2.6 implies that

Br
S (c)= ⋃

[viv j]∈e(c)

⋃
f⊃[viv j]

{Er
f→c pdλi ¯dλ j | p ∈ Br

i j( f )}.

Exchange the order of the two unions:

Br
S (c)= ⋃

dim f≥1

⋃
[viv j]∈e( f )

{Er
f→c pdλi ¯dλ j | p ∈ Br

i j( f )}.
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Finally, Lemma 2.4 says that the inner union is exactly Er
f→cB̊r

S
( f ). Hence,

Br
S (c)= ⋃

dim f≥1
Er

f→cB̊r
S ( f )

proves the claim.

The next step is to derive the geometric decomposition of the dual space.

Lemma 2.8. For any n-simplex c,

[P̊ rS (c)]′ =
{

u 7→
∫

c
u : q | q ∈P r−n+1S (c)

}
.

Further, the geometric decomposition of [P rS (c)]′ in Proposition 2.4 holds.

Proof. Clearly, the map from Bernstein basis Br−n+1(c) to the edge-associated Bernstein ba-

sis Br
i j(c) given by

p 7→ (λ0 · · · λ̂i · · · λ̂ j · · ·λn)p

is a bijection. Hence, it induces a linear isomorphism between P r−n+1(c) and the span of

Br
i j(c). In particular, the dual relation holds:

[spanBr
i j(c)]′ =

{
p 7→

∫
c

pq |q ∈P r−n+1(c)
}

.

Then the tensor product structure (2.2), the fact that the Frobenius inner product is an inner

product on Sn, and the basis result Proposition 2.3 together implies the claim.

Finally, the geometric decomposition of [P rS (c)]′ is derived. Dualize the geometric de-

composition of P rS (c)′ in Lemma 2.7 gives:

[P rS (c)]′ = ⊕
dim f≥1

[Er
f→cP̊

rS ( f )]′.

By Lemma 2.2 ι∗f Er
f→c is identity on the bigger space P rS ( f ). The first part of this lemma

then implies for each k-face f ,

[Er
f→cP̊

rS ( f )]′ =
{

u 7→
∫

f
(ι∗f u) : q | q ∈P r−k+1S ( f )

}
.

This proves the claim.

Given all the previous results, the theorems at the beginning of this section follows eas-

ily. Indeed, the geometric decomposition of the dual space directly proves the unisolvency

(Theorem 2.1).

Lemma 2.2, the geometric decomposition (Lemma 2.7), and the characterization of bub-

bles (Lemma 2.8) combined implies the locality result (Theorem 2.2).
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Finally, the characterization result (Theorem 2.3) is proved. Suppose u ∈ REGr(T ) for

some mesh T . By locality (Theorem 2.2), on each cell c of the mesh, the degrees of freedom

fixes ι∗f u for all k-faces f with k ≥ 1. Then the finite element assembly process forces ι∗f u

to be single-valued. On the other hand, suppose u ∈ P rS (T ) with single-valued ι∗f u for all

k-faces f with k ≥ 1. Then the degrees of freedom can be evaluated on this u and obtained

a u′ ∈ REGr(T ). By unisolvency, the restrictions u′|c = uc agree on each cell c of the mesh.

Hence u = u′ ∈REGr(T ).

2.3 Affine and approximation properties

We prove two more important results on REGr in this section. First, in Theorem 2.4, we

show that REGr forms an affine family of finite elements for any fixed dimension n ≥ 1. Such

affine families have many advantages [30, Section 2.3]. For example, for software imple-

mentations, this makes the assembly of bilinear forms involving such finite elements very

efficient [75, Chapter 6]. Second, in Theorem 2.5 and Theorem 2.6, we prove the optimal ap-

proximation properties of the canonical interpolant induced by the degrees of freedom (2.4b),

as a consequence of the affine property. Both results require some preparations to state

precisely.

2.3.1 Affine property

First we define affine properties of finite elements. Two finite elements (c̄, V̄ , Σ̄) and (c,V ,Σ)

are called affine equivalent if there is an affine isomorphism φ : Rn → Rn such that c = φ(c̄),

V̄ = φ∗(V ) under the appropriate pullback φ∗ for the function space, and for every face f̄

of c̄ and its corresponding face f := φ( f̄ ), the associated degrees of freedom (r̄ f̄ , Σ̄ f̄ ) ∈ Σ̄ and

(r f ,Σ f ) ∈Σ satisfies

r̄ f̄ (V̄ )=φ∗(r f (V )) and φ∗(Σ̄ f̄ )=Σ f ,

where the φ∗ is defined naturally: for any l̄ ∈ Σ̄ f̄ and u ∈ r f (V ),

(φ∗ l̄)(u)= l̄(φ∗u).

This definition is adapted from the classical definition of equivalence of finite elements [17,

Section 3.4]. A finite element family F is an affine family [30, Section 2.3], if all the finite

elements in the image of F are affine equivalent to F(ĉ) for a fixed simplex ĉ. This F(ĉ) is

called the reference element of the affine family.

Note that all simplices of the same dimension can be mapped to each other via affine

maps. More precisely, suppose c = [v0, . . . ,vn] and c̄ = [v̄0, . . . , v̄n] are two n-simplices. By
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definition the vertices of both are of general position, therefore both {v1 − v0, . . . ,vn − v0} and

{v̄1 − v̄0, . . . , v̄n − v̄0} form basis for Rn. Let A be the invertible linear map which takes {v1 −
v0, . . . ,vn −v0} to {v̄1 − v̄0, . . . , v̄n − v̄0} and φ :Rn →Rn an affine map given by

φ(x) := A(x−v0)+ v̄0. (2.18)

It is clear that φ maps c to c̄ bijectively. Further, its differential dφ is just the constant

matrix A. Thus up to affine bijections, there is a unique n-simplex for each n. For clarity, in

this thesis, for each n ≥ 0, the n-simplex ĉ = [v̂0, . . . , v̂n] in Rn with vertices

v̂0 = [0, . . . ,0], v̂1 = [1,0, . . . ,0], v̂2 = [0,1,0. . . ,0], . . . , v̂n = [0, . . . ,0,1], (2.19)

is chosen to be the representative. This ĉ is referred to as the reference n-simplex.

Given these definitions, we state the affine property of REGr.

Theorem 2.4. Fix any r ≥ 0 and n ≥ 1. Let ĉ be the reference n-simplex. For any n-simplex

c, REGr(c) is affine equivalent to REGr(ĉ). Thus the restriction of generalized Regge family to

simplices of the same dimension forms an affine family.

To prove this theorem, we need the following lemma:

Lemma 2.9. Let c̄ and c be two n-simplices and φ the linear isomorphism mapping c̄ to c

defined in equation (2.18). For any face f̄ of c̄, f :=φ( f̄ ) is a face of c. For any u ∈S (c),

φ∗ι∗f u = ι∗f̄φ
∗u.

Moreover, for any u ∈S (c) and v ∈S (c̄),∫
c̄
(φ∗u) : v =

∫
c
{u : [(φ∗)T v]}(detφ)−1,

where (φ∗)T is the transpose of φ∗ under the Frobenius inner product.

Proof. First since φ maps vertices to vertices, the image f =φ( f̄ ) is indeed a face of c. Identify

the tangent space to f̄ (or f ) as a subspace of that of c̄ (or c). Then φ∗ι∗f = ι∗
f̄
φ∗ on S (c). For

the last one, note that

(φ∗u) : v = {u : [(φ∗)T v]}◦φ

where the term in the braces is a scalar function on c. The last claim then follows from the

change of variable formula for integrals.
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Proof of Theorem 2.4. Let φ be the affine map from the reference n-simplex ĉ to c given by

equation (2.18). This fulfills φ(ĉ) = c. Because the differential dφ is constant, elements

of φ∗P rS (c) are still polynomials of degree r. The invertibility of dφ then implies that

φ∗P rS (c)=P rS (ĉ). Finally, the conditions on degrees of freedom have to be checked. First,

this φ acts as an affine isomorphism from all faces of ĉ to c. Hence, for every face f̂ of ĉ and

its corresponding face f :=φ( f̂ ), the associated degrees of freedom (r̂ f̂ , Σ̂ f̂ ) ∈ Σ̂ and (r f ,Σ f ) ∈Σ
satisfies

r̂ f̂ (V̂ )=P rS ( f̂ )=φ∗[P rS ( f )]=φ∗[r f (V )].

Note that in Lemma 2.9, (φ∗)T is an invertible constant matrix and detφ is a nonzero con-

stant. So the map

q 7→ (detφ)−1(φ∗)T q

is a bijection between P sS ( f̂ ) and P sS ( f ) for any integer s. Thus by definition of the

degrees of freedom (2.4b), φ∗Σ̂ f̂ =Σ f as required. This proves the claim.

2.3.2 Approximation properties of the canonical interpolant

We prove the optimal error rates for the canonical interpolant for REGr.

Let Ω be a Lipschitz polytope in Rn and T be a triangulation of Ω. For any smooth g ∈
S (Ω), the degrees of freedom for REGr(T ) can be evaluated on g to obtain an element Ir

T
g ∈

REGr(T ). This Ir
T

g is called the canonical interpolant of g and the map Ir
T

is called the

canonical interpolation operator. Let I be the identity operator. The approximation property

is a statement about (I − Ir
T

)g in some appropriate Sobolev norm.

In order to define the Sobolev spaces, a background Riemannian manifold is needed [12].

In numerical analysis, in the end, the mesh is always in some Euclidean space. Hence,

the background Riemannian manifold is always assumed to be Rn with the Euclidean met-

ric. This might cause some confusion. Symmetric covariant 2-tensor fields, like elements of

REGr(T ), can serve as Riemannian metrics if it is everywhere positive definite. In the ge-

ometry literature (for example [25]), Regge finite element is studied in the context of metric

approximation where the difference between a smooth metric and its discrete approxima-

tion is measured under the smooth metric itself. In this thesis, however, the error is always

measured in the background metric on the triangulation induced by its embedding in the

Euclidean space. This, while being extrinsic, is a very convenient and meaningful choice for

numerical analysis. As will be shown in this thesis, REGr(T ) have many applications where

it is not used as a discrete metric. So the error measured in the Euclidean background is

always available.
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Let Ω be a Lipschitz polytope in Rn. We denote the standard Sobolev spaces [2] for scalar-

valued functions onΩ by W s,p(Ω). Under the background Euclidean coordinates, tensor fields

acquire explicit components. For example, S (Ω) becomes the space of Sn-valued functions.

We define the Sobolev space of tensor fields in a componentwise manner. In particular, the

space of W s,p-symmetric tensor fields on Ω, denoted by W s,pS (Ω), is identified with the

Bochner space of Sn-valued W s,p-functions. More explicitly, for g ∈ S (Ω), let {g i}n(n+1)/2
i=1 be

its components in the background Euclidean space. The W s,pS -semi-norm of g is

|g|pW s,pS
=

n(n+1)/2∑
i=1

|g i|pW s,p ,

where each component is treated as a scalar function onΩ. In the literature, the W s,pS -semi-

norm is sometimes equivalently defined via the sum of the pointwise norms of the derivatives

of g (for example, in [26, Appendix 1]). The componentwise approach is taken here because

it is more convenient to apply theorems concerning scalar-valued Sobolev spaces.

For u ∈S (Ω), from the definition, the canonical interpolant Ir
T

u is a piecewise polynomial

which is discontinuous across the interior facets. By the standard trace theorems [45, Theo-

rem 1.5.1.2],

Ir
T u ∈W s,pS (Ω), ∀s ∈ [0,1/p).

On the other hand, from the definition of the degrees of freedom (2.4b), the interpolation

operator Ir
T

needs the integral of the function restricted to k-faces for 1≤ k ≤ n. By the trace

theorems again, Ir
T

can be extended from S (Ω) boundedly to

Ir
T : W s,pS (Ω)→REGr(T ), ∀s ∈ ((n−1)/p,∞]. (2.20)

This establishes the space and norm where the error of the canonical interpolant is going to

be assessed.

Moreover, some geometric quantities related to the mesh are needed to study approxima-

tions. For any simplex c, the size hc of c is the Euclidean diameter of c, the inradius ρc is

the Euclidean diameter of the inscribing sphere of c, and the shape constant σc is defined to

be the ratio hc/ρc. The shape constant quantifies how far away the simplex c is from being

degenerate (with vertices no longer of general position).

These quantities are useful for estimating the norm of the differential.

Lemma 2.10. Let c, c′ be two n-simplices and φ :Rn →Rn the affine bijective map from c to c′

as defined in (2.18). Then, d(φ−1)= (dφ)−1 and

‖dφ‖ ≤
p

nhc′

ρc
, ‖dφ−1‖ ≤

p
nhc

ρc′
,

where the norm is the Euclidean Frobenius norm.
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Proof. This result for the Euclidean operator 2-norm is well-known [30, Theorem 3.1.3]. A

proof is reproduced below. First, both dφ= A and dφ−1 = A−1 are just constant linear maps.

To prove the first inequality about dφ, note that any vector of Euclidean length ρc can be

realized as the difference between two points in c. Their images are at most hc′ apart under

φ, which proves the claim in the operator norm. For the invertible dφ, let σ1 ≥σ2 . . .≥σn > 0

be its singular values. It is well-known [43, Corollary 2.4.3] that the operator norm of dφ is

σ1 while its Euclidean Frobenius norm is
√
σ2

1 +·· ·+σ2
n. This gives the

p
n factor in the final

result. For the inverse, the proof is similar.

The estimates on the differential can be used to estimate the pullback in the W s,pS (Ω)-

norm. This will be a key step in the proof of the approximation theorem.

Lemma 2.11. Let c̄, c be two n-simplices and φ : Rn → Rn the affine isomorphism from c̄ to c

as defined in equation (2.18). Let g be any function in W s,pS (c) and ḡ := φ∗g. Then, there

exists a constant C = C(n, s) such that

| ḡ|W s,pS (c̄) ≤ C‖dφ‖s+2|det(dφ)|−1/p|g|W s,pS (c),

|g|W s,pS (c) ≤ C‖dφ−1‖s+2|det(dφ)|1/p| ḡ|W s,pS (c̄).

Proof. Fix the same arbitrary orthonormal basis {e i}n
i=1 for Rn for both c̄ and c. This implicitly

identifies the tangent space of c̄ and c at any point. Since the Euclidean Frobenius norm is

invariant under orthogonal transformations, it does not matter which basis is chosen. It

should be stressed that the norm on the pullback φ∗g is not measured in the pullback metric

but in the background metric on c̄. Otherwise it would be an isometry and there is no scaling

at all. In this basis, ḡ and g are matrix-valued functions and dφ is a constant matrix A. By

the definition of the pullback,

ḡ =φ∗g = AT (g ◦φ)A.

Recall [43, Equation (2.3.3)] that the Frobenius norm is compatible with matrix product. So

the point-wise norm satisfies:

| ḡ| = |AT (g ◦φ)A| ≤ ‖dφ‖2|(g ◦φ)|.

Hence, the W s,pS (Ω)-semi-norm is estimated by:

| ḡ|W s,pS (c̄) ≤ ‖dφ‖2|(g ◦φ)|W s,pS (c̄).

Recall the classical scaling result [30, Theorem 3.1.2] for scalar-valued functions u ∈W s,p(c):

|u ◦φ|W s,p(c̄) ≤ C‖dφ‖s|det(dφ)|−1/p|u|W s,p(c),
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where C = C(s,n). Since each component of u ◦φ is just a scalar function,

|(g ◦φ)|W s,pS (c̄) ≤ C‖dφ‖s|det(dφ)|−1/p|g|W s,pS (c),

where the constant C depends on s,n. This proves the claim for φ∗. The same result applied

to the inverse gives the second estimate.

Compared with the classical scaling result [30, Theorem 3.1.2], this theorem contains an

extra ‖dφ‖2 due to the tensor pullback. This should also be compared to similar estimates

for alternating multilinear form fields (differential forms) in [105, Theorem 5], which was

used in [54] to derive estimates for Finite Element Exterior Calculus. It should be noted that

in [54,105], the pullback estimates are proved in the Euclidean operator norm on differential

forms but in the end the metric induced norms on differential forms are used in applications.

Given all these, we get an estimate for the canonical interpolant.

Theorem 2.5. Let c be any n-simplex and Ir
c the REGr canonical interpolant for any r ≥ 0.

Suppose p ∈ [1,∞] and s ∈ ((n− 1)/p, r + 1]. Then, for any t ∈ [0, s], there exists a constant

C = C(n, r, t, s)> 0 such that

|g− Ir
c g|W t,pS (c) ≤ Cσt+2

c hs−t
c |g|W s,pS (c), ∀g ∈W s,pS (c).

Compared with classical results for scalar-valued functions [17, Theorem 4.4.4], the only

difference is that for covariant 2-tensors the exponent for σc is (t+2) while for scalar functions

it is t. This means that the approximation properties of REGr(c) are more sensitive to the

shape of c. In particular, while for scalar functions, the Lp-estimates are independent of σc,

for REGr(c) the Lp-estimates are still degraded if σc is large.

Proof of Theorem 2.5. The first step is to establish the claim on the reference n-simplex ĉ.

As before, without loss of generality, take any orthonormal basis {e i}n
i=1 for Rn. The idea

is again to estimate component by component. Clearly ĉ is a Lipschitz domain in Rn. The

Bramble-Hilbert lemma (see [16] and [30, Theorem 3.1.1]) states that for all r ≥ 0, there

exists a constant C = C(r,n) (the dependency on n follows from its dependency on ĉ) such

that for scalar-valued functions:

inf
p∈P r(ĉ)

‖u− p‖W r+1,p ≤ C|u|W r+1,p , ∀u ∈W r+1,p(ĉ).

This implies a similar result for our Bochner space:

inf
p∈P r(ĉ)⊗Sn

‖u− p‖W r+1,pS (ĉ) ≤ C|u|W r+1,pS (ĉ), ∀u ∈W r+1,p(ĉ,Sn),
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where C depends on r and n. It was already shown before in (2.20) that for s > (n−1)/p, the

canonical interpolant Ir
ĉ : W s,pS (ĉ)→P rS (ĉ) is bounded. The quantity

‖Ir
ĉ‖W r+1,pS (ĉ)→W s,pS (ĉ)

is just a constant depending only on r,n, s. It is also clear that Ir
ĉ is a projection which

preserves P rS (ĉ). Hence, whenever s ∈ ((n− 1)/p, r + 1], for any t ∈ [0, s], there exists a

constant C = C(r,n, s, t) such that,

‖u− Ir
ĉu‖W t,pS (ĉ) = inf

p∈P rS (ĉ)
‖(I − Ir

ĉ)(u− p)‖W t,pS (ĉ)

≤ ‖(I − Ir
ĉ)‖W s,pS (ĉ)→W t,pS (ĉ) inf

p∈P rS (ĉ)
‖(u− p)‖W t,pS (ĉ)

≤ C|u|W s,pS (ĉ), ∀u ∈W s,pS (ĉ).

The next step is the scaling argument. Let c be any n-simplex and φ : Rn → Rn the affine

bijection mapping ĉ to c defined in equation (2.18). For any u ∈ W s,pS (c) and t ∈ [0, s], the

second estimate in Lemma 2.11 implies

‖u− Ir
cu‖W t,pS (c) ≤ C1‖dφ−1‖t+2|det(dφ)|1/p|φ∗(u− Ir

cu)|W t,pS (ĉ),

where C1 = C1(n, t). Crucially, the affine property (Theorem 2.4) implies that the canonical

interpolation operator commutes with pullbacks Ir
ĉφ

∗ =φ∗Ir
c. Thus, using the estimate for Ir

ĉ

in the previous step,

‖u− Ir
cu‖W t,pS (c) ≤ C1‖dφ−1‖t+2|det(dφ)|1/p|û− Ir

c û|W t,pS (ĉ)

≤ C1C2‖dφ−1‖t+2|det(dφ)|1/p|û|W s,pS (ĉ),

where C2 = C2(r,n, s, t). Applying the first estimate in Lemma 2.11,

‖u− Ir
cu‖W t,pS (c) ≤ C1C2C3‖dφ−1‖t+2‖dφ‖s+2|u|W s,pS (c),

where C3 depends on n and s. Finally, this, along with the estimates for ‖dφ‖ and ‖dφ−1‖ in

Lemma 2.10, leads to the estimate in the claim.

Last, for a mesh T , the mesh size h(T ) and the shape constant σ(T ) are defined as the

maximum of the cell-wise hc and σc over all cells c in T . We have the following very useful

approximation theorem for REGr.

Theorem 2.6. Let Ω be a bounded Lipschitz polytope in Rn and {Th} be a sequence of trian-

gulations of Ω indexed by mesh size h with uniformly bounded shape constants suphσ(Th)=:
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σ < ∞. The canonical interpolant Ir
h for REGr(Th) defined on smooth S (Ω) can be ex-

tended boundedly to W s,pS (Ω) for any p ∈ [1,∞] and s ∈ ((n−1)/p,∞], Further, for any r ≥ 0,

t ∈ [0,1/p), and s ∈ ((n−1)/p, r+1], there exists a constant C = C(σ,n, r, t, s)> 0 such that

|g− Ir
h g|W t,pS (Ω) ≤ Chs−t|g|W s,pS (Ω), ∀g ∈W s,pS (Ω).

This is optimal in the sense that it is as good as the best approximation in terms of order in h.

Proof. For a fixed h, apply Theorem 2.5 to each cell c in Th where σc ≤σ is absorbed into the

constant. Sum over all the cells in Th leads to the estimate in the claim:

|g− Ir
h g|pW t,pS (Ω) =

∑
c∈Th

|g− Ir
h g|pW t,pS (c) ≤ Cphp(s−t) ∑

c∈Th

|g|pW s,pS (c) = Cphp(s−t)|g|pW s,pS (Ω).

2.4 Coordinate representations and implementable degrees of

freedom

The first part of this section describes REGr in coordinates. The most important results being

equation (2.21) for the pullback in coordinates and Proposition 2.7 for a canonical coordinate

basis. These are important for the software implementation of this finite element.

The second part describes the details of two sets of equivalent concrete degrees of freedom

for REGr. The first set is the one actually used in the FEniCS implementation by the author.

The second set is of geometric appeal and is closest to the original REG0.

2.4.1 Coordinate representations

So far, REGr is used in a coordinate-free fashion. For its concrete implementation on a com-

puter, however, inevitably some coordinate basis has to be fixed. As will be shown in the rest

of this thesis, there are also many applications where it is natural to use REGr for concrete

symmetric-matrix-valued functions. In this section, formulae for the coordinate representa-

tion are derived.

First, the standard coordinate identification (see for example [113]) is reviewed. In Rn,

the canonical vector basis is the Euclidean basis {e i}n
i=1, where each e i is the tangent vector to

the coordinate function xi. Under this, vector fields on Rn becomes Rn-valued functions. The

canonical basis for 1-forms consists of the differentials of the Euclidean coordinate functions

{dxi}n
i=1. Under this, 1-forms are also identified with Rn-valued functions. The evaluation of
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a 1-form l on a vector-field u is computed as

l(u)= lT u,

where elements of Rn are identified as column vectors. The basis choice for 1-forms induces

a canonical choice of basis for covariant 2-tensors given by {dxi ⊗dx j}1≤i, j≤n. Under this,

covariant 2-tensor fields are identified with n-by-n matrix-valued functions and elements of

S (Rn) are identified with symmetric-matrix-valued functions. The evaluation of g ∈ S (Rn)

on two vector fields u,v is then given by

g(u,v)= uT gv.

For any subset of Rn, like a domain Ω or a mesh T , all these identifications are inherited.

For a mesh T in Rn, this is global in the sense that the same basis are used for all the cells.

Under this, REGr(T ) becomes a space of symmetric-matrix-valued polynomials of degree r

or less.

The next step is to derive the coordinate representation of the pullbacks. Suppose U ,U ′

are two open subsets in Rn and φ : U → U ′ is a diffeomorphism. From the definition of the

differential and chain rule, the coordinate representation of dφ is an Rn×n-valued function

on U with components:

[dφ]i j = ∂ jφi,

where following the usual notation the first index is the row index and the second index is the

column index. Let g ∈ S (U ′). By definition, its pullback in this coordinates is a symmetric-

matrix-valued function on U :

(φ∗g)(x)= [dφ(x)]T [g ◦φ(x)][dφ(x)]. (2.21)

Note that these formulae are possible because both U and U ′ are open subsets of the same

Rn. In this case, there is a canonical way to identify the same Euclidean basis for both. This

is, however, no longer true when, for example, U ′ is a lower-dimensional subset of U .

Let c = [v0 . . .vn] be an n-simplex in Rn and f be a k-face with 1 ≤ k < n. There is no

natural Euclidean basis on f which is compatible with the Euclidean basis on c. This is

potentially problematic because then there are as many arbitrary choices as the number of

faces of c to be made. For 2-tensors and only for 2-tensors, however, there is a canonical

barycentric system with appealing geometric associations. Let Vn be the space of symmetric

2-vectors in Rn, that is, the span of {e i ¯ e j}1≤i≤ j≤n. This Vn is the dual to Sn. The obser-

vation that the number of edges in an n-simplex
(n+1

2
)

equals the dimension of the space of

symmetric 2-tensors Sn can be lifted into two related statements on vector spaces:
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Proposition 2.7. Let c = [v0 . . .vn] be an n-simplex and {λi}n
i=0 its barycentric coordinates.

For any edge e = [viv j] of c, let

ge :=−dλi ¯dλ j, ve := v j −vi.

Then,

{ge | e ⊂ c} is a basis for Sn, {ve ¯ve | e ⊂ c} is a basis for Vn. (2.22)

Further these two basis are dual to each other:

ge(ve′)=

1, if e = e′,

0, otherwise.

Proof. The fact the {ge} forms a basis for Sn has already been proved in Proposition 2.5. For

{ve ¯ve}, it is enough to show that for any g ∈Sn, knowing the values

{g(ve,ve) | e ⊂ c}.

is enough to evaluate g(vi −v0,v j −v0) for any pair i and j, because {vi −v0}n
i=1 forms a basis

for Rn. When i = j, this is already known. When i 6= j, by polarization identity for bilinear

forms:

g(vi −v0,v j −v0)= 1
2

[g(vi −v j,vi −v j)− g(vi −v0,vi −v0)− g(v j −v0,v j −v0)].

All terms on the right-hand side are of the form g(ve,ve) for some edges e. This proves that

{ve ¯ ve} spans Vn. The last claim follows immediately from the computations in the proof of

Proposition 2.5.

Under the barycentric basis, the tangential-tangential pullback has a canonical represen-

tation. Indeed, each function g ∈ S (c) is an Rn(n+1)/2-valued function where the components

are indexed by edges of c. By the dual structure and Proposition 2.6, tangential-tangential

pullback to a face f of c simply drops components indexed by edges which are not part of f ,

that is, a simple projection:

ι∗f (
∑
e⊂c

ae ge)= ∑
e⊂ f

ae ge,

The classical REG0 used in Regge Calculus is also given in this basis.

It is recommended that the barycentric basis system is used for mathematical analysis

and software implementation internal to the generalized Regge finite element. The Euclidean

basis system should be used for all other places.

36



2.4.2 Implementable degrees of freedom

In this subsection, two elegant and efficiently implementable degrees of freedom are derived

for REGr. The first one is the mathematical description of the REGr implemented in FEn-

iCS [75] by the author as part of this thesis. The second one has a geometric interpretation

that is closest to the original Regge finite element REG0.

From the definition (2.4b) of the degrees of freedom, it comes down to choose a basis for{
u 7→

∫
f
(ι∗f u) : q | q ∈P r−k+1S ( f )

}
for each k-face f with k ≥ 1 of an n-simplex c. The direct implementation of the above is

not convenient because as mentioned in the previous subsection, when u is identified as a

symmetric matrix, the Euclidean basis is implicitly assumed but there is no good canoni-

cal representation of ι∗f u in the Euclidean basis. Moreover, the numerical integrals are not

efficient in implementations.

The two issues outlined above are dealt with separately. For the first one, note that for a

k-face f , because (Sk)′ =Vk,{
u 7→

∫
f
(ι∗f u) : q | q ∈P r−k+1S ( f )

}
=

{
u 7→

∫
f

p(ι∗f u) ·φ |φ ∈Vk, p ∈P r−k+1( f )
}

,

where the dot denotes the duality pairing between Sk and Vk. This is further simplified when

the edge-based basis for Vk in (2.22) is chosen because

(ι∗f u) · (ve ¯ve)= u(ve,ve)= vT
e uve,

and the pullback is obtained “for free”. Thus the following set can be used as a basis for the

degrees of freedom associated with f :

{u 7→
∫

f
(vT

e uve)pi | for every edge e of f and every element pi of a basis for P r−k+1( f )}.

This is good for many purposes already. But for a concrete software implementation, the

integral moments can be implemented more efficiently by pointwise evaluations at points

which can fix an element of P r−k+1( f ). Let X f
r−k+1 be such a set of points in f . The final

directly implementable degrees of freedom associated with f are:

{u 7→ (vT
e uve)(x) | e ⊂ f , x ∈ X f

r−k+1}. (2.23)

Examples of this are given in the introduction of this chapter (see Figure 2.2 and Figure 2.3).

There are many possible choices of X f
r . The following is one particular choice which is

used frequently in FEniCS. First, let f̂ be the reference k-simplex defined in equation (2.19).
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The equi-distance X f̂
r is given by

X f̂
r :=

{
(

m1

r+2
, . . . ,

mk

r+2
)
∣∣∣m j ∈Z and m j ≥ 1 for j = 1, . . . ,k.

k∑
j=1

m j ≤ r+1

}
. (2.24)

Pictorially, this for various values of k and r are depicted in Figure 2.10.

Figure 2.10: Pictures for X f̂
r .

On a general k-face f of an n-simplex c, the equi-distance X f
r is defined as the image of X f̂

r

under the affine isomorphism φ mapping f̂ to f . It is well-known that pointwise evaluation

at points in X f̂
r are linearly independent and forms a dual basis to P r( f ) [30].

There is another choice of X f
r which is geometrically appealing. The idea is to take the

mid-point of all the small edges in the subdivisions of the cell. This subdivision-based X f
r is

best described with pictures. See examples for 2D in Figure 2.11 and for 3D in Figure 2.12.

Figure 2.11: Subdivision-based degrees of freedom in 2D.
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Figure 2.12: Subdivision-based degrees of freedom in 3D.

The pattern for higher dimensions is clear.

The subdivision-based X f
r in fact leads to another set of degrees of freedom for REGr.

Instead of pointwise evaluation, one can consider using the polynomial symmetric covariant

2-tensor as the metric to measure the squared lengths of these small edges in the subdivision

as degrees of freedom. More precisely, for each small edge connecting point p1 and p2, one

can associate a functional:

u 7→
∫ 1

0
(p2 − p1)T u(p1 + t(p2 − p1))(p2 − p1)dt. (2.25)

The union of such functionals over all the small edges in the r-th division of the cell c forms

another unisolvent degrees of freedom for REGr(c). Indeed, the edge whose mid-point is

inside a face f of c must be parallel to one of the undivided edges of f . In the interior of

each k-face f , the integrals of a scalar function over all the small edges interior to f forms a

unisolvent set for P r−k+1( f ) as before.

This has a nice geometric interpretation: REGr(c) assigns one number to each of the

small edge in the r-th subdivision of c. These numbers have the meaning of the squared

edge lengths. By the unisolvency, there are
(n+1

2
)(n+r

r
)

small edges in the r-th subdivision

and these numbers determines a unique element of REGr(c). This is the most geometric

interpretation that clearly shows that REGr(c) generalizes REG0(c) used in Regge Calculus.

Physicists studying quantum gravity have long searched for generalizations of Regge calcu-

lus, with even ideas like area-based degrees of freedom [110]. This generalization is much

more natural and elegant.

It should be noted that both choices of X f
r above are known to be not optimal [112].

The performance of choices of the degrees of freedom can be evaluated quantitatively by the

Lebesgue constant. For a set of degrees of freedom Σ, let IΣ be the induced interpolant. The

Lebesgue constant ΛΣ is the smallest constant such that the following holds for all smooth u:

‖u− IΣu‖ ≤ (1+ΛΣ) inf
p
‖u− p‖,
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where the infimum is taken over the shape functions and the norm should be appropriate

for the function space being discretized. The optimal X f
r to control P r(c) with the smallest

possible Lebesgue constant is known [112]. Further, in the same paper, it was shown that the

first choice of X r
f with the equi-distance lattice points (2.24) is not good for r ≥ 10. In practice

though, the optimal X r
f is messy to implement and for real problems, degree r more than 3

is rarely used. So the easier equi-distance X r
f was chosen for the software implementation of

REGr in FEniCS by the author.
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Chapter 3

Geodesics on Generalized Regge
metrics

3.1 Introduction

One of the main applications of symmetric covariant 2-tensor fields is in geometry, where

they serve as Riemannian metrics. Similarly, on a mesh, everywhere positive definite func-

tions in the generalized Regge space can serve as discrete Riemannian metrics on the mesh.

In this sense REGr can be used to discretize Riemannian geometry. We call everywhere pos-

itive definite functions in REGr generalized Regge metrics, or simply REGr metrics. In this

chapter, we define and study geodesics on REGr metrics.

The piecewise constant REG0 has been studied extensively in the literature as a discrete

model of geometry. Historically, Riemannian metrics in REG0 are important in the math-

ematical study of Euclidean polyhedrons and are referred to as polyhedral metrics [6]. In

General relativity, Lorentzian metrics, which are symmetric covariant 2-tensor fields similar

to Riemannian metrics, play a central role. Tullio Regge used Lorentzian metrics in REG0 to

derive a geometric discretization of the Einstein field equation in his influential work [96].

In this chapter, we focus on the Riemannian case. The generalization of most results

here to pseudo-Riemannian metrics, which contain both Riemannian metrics and Lorentzian

metrics as special cases, is straightforward.

In the context of Riemannian geometry, geodesics are basic objects for quantifying and

characterizing geometry. We examine various mathematical and computational aspects of

geodesics on generalized Regge metrics in this chapter. Geodesics on discrete geometries are

of considerable practical interest. Geodesics on 2D triangulations embedded in 3D Euclidean

space are important in computer graphics [51] and computer-aided design [73]. In relativ-
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ity, geodesics model the trajectories of light rays and free-falling test particles [111]. After

Regge’s initial work, physicists explored the interpretation and computation of geodesics on

Regge metrics [18, 23, 118, 119]. Finally, in other parts of this thesis, REGr will be used

to solve PDEs in solid mechanics where the solutions either are or can be interpreted as

Riemannian metrics. In such cases, geodesics can be used for visualizing these symmetric

covariant 2-tensor fields [55].

The theory of smooth geodesics on smooth Riemannian manifolds is well-understood [34].

We review this in Section 3.2. Geodesics are essentially generalizations of straight lines in

the Euclidean space to Riemannian manifolds. There are two aspects in the classical theory.

One is of a global nature, where the “shortest” curve connecting two points is been sought

after. This generalizes the notion of a line segment in the Euclidean space. The other one is of

a local nature, given a position and a velocity, the “straightest” curve needs to be defined. This

generalizes the notion of a ray in the Euclidean space. The study of the interplay between the

two occupies substantial part of differential geometry. In this chapter, both will be studied

for REGr metrics.

It turned out that the key ingredient behind the global aspect is the distance structure,

which can be quite non-smooth. This part is thus easy to generalize to REGr metrics. In

Section 3.3, we study this in detail. The main result is that REGr metrics have a well-

behaved length structure, under which geodesics are well-defined. Further, REGr metrics

are the least smooth (thus the most general) piecewise polynomial Riemannian metric for

which the usual sense of curve length is preserved (Theorem 3.1).

The local theory of geodesics turned out be subtle for REGr metrics. Indeed, the local the-

ory uses “velocity”, which inevitably requires some differential structure. Intuitively, gener-

alized Regge metrics are piecewise smooth, so problems can arise only when smooth geodesics

in the interior of a simplex reach an interior facet in the mesh. In the case of Riemannian

metrics in REG0, two seemingly unrelated ideas for resolving this are popular in the litera-

ture. The first idea [6] is of a geometrical nature. Take a 2D REG0 metric for example. This

can be identified as the metric for a triangulated surface like the one in Figure 3.1 embed-

ded in some Euclidean space. Near an interior edge, the two triangles containing that edge

can be cut off from the rest and then flattened in Euclidean R2. Then intuitively geodesics

should connect any two points in different triangles by straight lines in R2. The geodesic

on the REG0 metric can thus be obtained by pulling the straight lines back to the mesh via

the isometry between the two triangles and their flattened counterparts, giving a piecewise

straight line. This idea readily generalizes to higher dimensions [25]. In Section 3.5, this idea

will be generalized to REGr for all r ≥ 1. The general case is quite subtle. For REGr metrics,

42



the mesh can be given a metric-dependent piecewise smooth globally C1 atlas, under which it

is a C1-manifold having singularities at low-dimensional faces with a C0-Riemannian metric

on it. It will be shown that local geodesics can be defined as Carathéodory solutions to the

geodesic equation away from the singularities.

Figure 3.1: Illustration of the first geodesic idea.

The second idea [118] is motivated by physical interpretations. For REG0, free falling test

particles follow straight lines in the interior of each simplex in the mesh as usual because

they are flat. When the trajectory crosses an interior facet, the part of the velocity tangential

to the facet should not change due to the tangential-tangential continuity of the metric. It

remains to define how the normal component should change. Physically, the energy (the

squared length of the velocity vector measured in the metric) is conserved during a free

fall. Hence it is reasonable to require that the squared length of the velocity measured in

both sides of the facet to be equal. We show that this is equivalent to requiring the normal

projection on both sides to have the same magnitude. Hence at the facet, the tangential part

of the velocity remains the same while the normal part rotates to match the facet normal on

the other side. This is illustrated in Figure 3.2. This variational approach readily generalizes

to REGr in all dimensions and for all r ≥ 0. We derive derive it rigorously in Section 3.4. Thus

the geodesics are usual smooth geodesics inside each cell and rotates in this way when they

cross interior facets.
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Figure 3.2: Illustration of the second geodesic idea. In the middle two figures, the red line

indicates the tangential direction while the blue indicates the normal direction.

We prove prove that the geometric approach and the variational approach lead to the

same definition for local geodesics on REGr metrics (Theorem 3.5). While the variation ap-

proach is easy to understand and use, the more abstract geometric approach reveals some

subtle structure of the geodesics. Moreover, we show in Section 3.6 that geodesics on REGr

metrics still have a symplectic structure in a subtle sense. This, for example, suggests that

symplectic discretizations should be used to compute geodesics.

The situation becomes complicated when a local geodesic reaches a face of dimension

≤ (n−2) in a mesh of dimension n. It is a known pathology [6,93] that in general the geodesics

becomes undefined in this case. In this thesis, the goal is to use REGr metrics as approxima-

tions to smooth Riemannian metrics. Therefore such pathologies are considered as artifacts

and not features of the discrete geometry. We discuss this in detail in Section 3.4.

In Section 3.7, we describe a robust algorithm to compute local geodesics on REGr metrics.

The basic idea is to use a symplectic collocation method to solve the Hamiltonian formulation

of the geodesic equation inside each cell, then rotate the momentum crossing interior facets

as prescribed in the variational picture. To make this useable, accurate, provably halt in

finite time, and robust against various numerical issues is nontrivial. One feature of the

algorithm is a robust way of dealing with the pathology above where the local geodesic comes

close to a low-dimensional face, with which the numerical solution continues at the cost of

negligible error. The author has implemented this algorithm is in Python using FEniCS as a

part of this thesis.

In Section 3.8, we study the error between the smooth geodesic on a smooth Riemannian

metric and the geodesics on a sequence of REGr metrics approximating that metric. The
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main result is Theorem 3.6. Since usually the metric approximation is a harder problem

than solving ODEs, it is reasonable to assume that the ODEs solver error is small or of higher

order compared to the error due to the metric approximation. Thus the error estimates in

Theorem 3.6 are effectively practical a priori error estimates between the smooth geodesic on

the smooth metric and the computed numerical geodesic on the approximating REGr metric.

Finally, in Section 3.9, computational examples using the geodesic code are given for

Keplerian orbits and Schwarzschild orbits. Figure 3.3 shows the result of the computation of

50 periods of a Kelperian orbit on the same mesh with REGr for r = 0,1,2,3. The exact orbit

is periodic and follows an ellipse. The advantage of going to higher degrees is obvious.

Figure 3.3: Keplerian orbits. Left to right, top to bottom r = 0,1,2,3.

Figure 3.4 shows the result of the computation of 50 periods of a Schwarzschild orbit on
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the same mesh with REGr for r = 0,1,2,3. The exact orbit is almost an ellipse with a slow

precession (its major axis slowly rotates around the center). Because the discretization is

almost symplectic, qualitatively, the numerical solution would precess even for the Keplerian

case where there is no precession. Comparing to previous plots, it is clear that REGr with

higher degrees performs much better than REG0. For REG0, it is even difficult to tell if

the orbit is Kelperian or Schwarzschild. This showcases the need for higher degree REGr

developed here for relativistic simulations.

Figure 3.4: Schwarzschild orbits. Left to right, top to bottom, r = 0,1,2,3.

In the case of Kelperian orbits, the exact solution can be evaluated for arbitrary large time

to arbitrary accuracy via analytical methods. This will be used to validate the error estimates

proved in Section 3.8 and also to test the long-time behavior of the solver. To give a sense
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of the result, the rates for the error in the position, energy, and momentum in terms of the

fineness of the discretization and time t are listed in Table 3.1. These are compared with the

error estimates for standard ODE solvers from [48]. The first three are obtained by applying

the standard ODE solvers using the smooth metric, where hs is the constant step size. For

the last two, the Kepler problem is transformed into a geodesic problem and the relevant

metric is interpolated into REGr on an unstructured mesh of size h using the canonical

interpolant. The geodesics were then computed using the proposed algorithm with a step

size smaller but comparable to h. The naive one is obtained by applying the ODE solvers

directly without taking the non-smoothness of REGr into consideration, that is, without the

rotations at interior facets.

Method Error in position Error in energy Error in momentum

Explicit Euler t2hs ths ths

Implicit Euler t2hs ths ths

Collocation at Gauss (2r) th2r
s h2r

s 0

Naive REGr t2hr thr thr

REGr (t+εt2)hr+1 hr+1 (1+εt)hr+1

Table 3.1: Convergence rates comparison for geodesic solvers.

Because the geodesics have to exit the cell at the cell boundary. Inevitably, the step

size for the symplectic solver inside each cell cannot be completely uniform. This causes a

slow loss of symplecticity of the geodesic solver, which shows up as the ε-terms for REGr in

the table. In practice, this effect is negligible, except for very long-term computations. For

example, for the Kepler problem, the quadratic term in the error in position is not observable

even after 10000 orbits. The linear growth in the error of the momentum, however, is clearly

observable for r ≥ 2 but remains very small for a long time.

3.2 Review of the smooth geodesic theory

In this section, we review basic facts of geodesics on smooth Riemannian manifolds.

Let (M, g) be a smooth Riemannian manifold. A piecewise smooth curve is a continuous

function γ : [a,b] → M with a finite partition a = t0 < ·· · < tn = b such that each restriction
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γ|(ti ,ti+1) is smooth. The length of such γ is defined as

L(γ) :=
n−1∑
i=0

∫ ti+1

ti

√
g i j(γ(t))γ̇i(t)γ̇ j(t)dt. (3.1)

The curve length is invariant under reparameterization. A natural choice is parametrization

by arc length, where the parameter value is required to equal its length along the curve

L(γ |[a,t])= t−a, ∀t ∈ [a,b].

It is convenient for later discussion to relax this a little bit. A curve is of constant speed if

L(γ |[a,t])= c(t−a), ∀t ∈ [a,b],

for some constant c > 0. Clearly, a curve is of constant speed if and only if the kinetic energy

g i jγ̇
iγ̇ j is constant along the curve. The parameterization is by arc length if and only if c = 1.

The curve length induces a metric structure on the Riemannian manifold M: for p, q ∈ M,

the distance between them is

d(p, q)= inf {lengths of all piecewise smooth curves connecting p and q}.

The minimizers γ which are of constant speed are called global geodesics. For such curves,

by definition, for any t1 and t2 in its domain,

d(γ(t1),γ(t2))= L(γ |[t1,t2])= c|t1 − t2|. (3.2)

If γ happens to be parameterized by arc length, that is c = 1, then it is called a minimizing

geodesic.

Global geodesics are important in optimization and planning applications, for examples

see [82]. The global nature of these can be inappropriate for many other applications. This

leads to another useful notion. A piecewise smooth curve is a local geodesic if every point on

the curve has a neighborhood where equation (3.2) holds. In applications like mechanics and

relativity, physical laws are generally assumed to be local. In this case, local geodesics are

more meaningful.

To derive a usable local condition for local geodesics, it is convenient to introduce the

energy functional

E(γ) := 1
2

n−1∑
i=0

∫ ti+1

ti

g i j(γ(t))γ̇i(t)γ̇ j(t)dt. (3.3)

It is similar to the length but without the square root in the integrand. The energy is not

invariant under reparameterization of the curve, so its minimizers are more constrained.

Further, Cauchy-Schwarz inequality implies that for piecewise smooth γ : [a,b]→ M,

L(γ)2 ≤ 2(b−a)E(γ).
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The equal sign holds if and only if the kinetic energy is constant. The following theorem is

well-known ( [34, Chpater 3 and 9]).

Proposition 3.1. Let (M, g) be a smooth Riemannian manifold. A piecewise smooth curve

γ : [a,b]→ M is a critical point of E if and only if γ is smooth and solves the geodesic equation

γ̈i +Γi
kl γ̇

kγ̇l = 0, (3.4)

where Γi
jk is the Christoffel symbol associated with g defined by

Γl
jk := 1

2
gil(∂k g i j −∂i g jk +∂ j gki).

Moreover, such γ has constant kinetic energy. Thus, it is a critical point of the length L with

constant speed, or equivalently, a local geodesic.

The geodesic equation is a second-order ordinary differential equation (ODE). This can

be used to setup initial-value problems given an initial position and velocity. Formally, given

p ∈ M and v ∈ TpM, the local geodesic problem tries to find a smooth curve γ(t) satisfying

γ̈i +Γi
kl γ̇

kγ̇l = 0, γ(0)= p, γ̇(0)= v.

In sum, the problem of finding a global geodesic given two points p, q is akin to a boundary

value problem while the problem of finding a local geodesic given a point and a velocity vector

is an initial-value problem. Both are interesting in applications.

3.3 Global geodesics on Regge metrics

In this section, global geodesics on generalized Regge metrics are defined rigorously. This is

most natural under the framework of metric geometry [21, 46]. It is an elegant formulation

of the relationship between distances and lengths of curves.

Let (X ,d) be a metric space. The length of a continuous curve γ : [a,b] → X is defined in

terms of the distance

L(γ) := sup
∑

d(γ(ti),γ(ti+1)),

where the supremum is taken over all finite partitions a = t0 ≤ t1 ≤ ·· · ≤ tn−1 ≤ tn = b of [a,b].

When L(γ)<∞, γ is said to be rectifiable.

Global geodesics are defined as rectifiable curves γ(t) of constant speed, that is, for any t1

and t2 in its domain,

d(γ(t1),γ(t2))= c|t1 − t2|,
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for some constant c > 0. The curve is called minimizing if c = 1. Clearly, by equation (3.2),

smooth Riemannian global geodesics in the previous section are included as a special case of

this.

The length functional induces another distance function on X called the intrinsic distance

dI (p, q)= inf {lengths of all rectifiable curves γ connecting p and q.} (3.5)

Well-behaved metric spaces satisfies dI = d and are called length spaces.

One easy way to construct length spaces is to start with some well-behaved curve length

functional and then define the distance as its associated intrinsic distance in equation (3.5).

Indeed, a smooth Riemannian manifold described in the previous section leads to a length

space this way.

Generalized Regge metrics is the natural analog of smooth Riemannian metrics among

piecewise polynomial metrics in the context of length space:

Theorem 3.1. Let T be a mesh and g a piecewise polynomial Riemannian metric on T . The

length L defined in equation (3.1) is single-valued for piecewise smooth curves in T if and

only if g ∈REGr(T ). In this case, (T ,dg) is a length space, where dg is the intrinsic distance

induced by the curve length under g.

Proof. From definition, L(γ) is well-defined for a curve γ inside a k-face f of the mesh if and

only if ι∗f g are single-valued on f pulling back from all cells containing f . By the characteri-

zation theorem of generalized Regge elements in Chapter 2, a piecewise polynomial covariant

2-tensor field on a mesh has single-valued pullbacks ι∗f g for all faces of dimension ≥ 1 of the

mesh if and only if g ∈ REGr(T ). This proves the first part. When g ∈ REGr(T ), the curve

length functional L(γ) is the same as the Riemannian case. In particular, the induced dis-

tance dg satisfies the requirements of being a distance function. Hence (T ,dg) is a length

space by definition.

For the lowest degree case REG0, each simplex is flat. Riemannian metrics in REG0

can be realized geometrically as triangulated polytopes embedded in some Euclidean space

[25]. The global geodesics in this case have been studied extensively in mathematics [6]

and in computational geometry [51, 73]. From the discretization and approximation point

of view, these works focus on the extrinsic polyhedral approximations of smooth embedded

surfaces and the geodesics on the approximate surfaces. In this thesis, however, the intrinsic

approximation of the metric will be the main focus instead. Convergence questions here can

be reduced to approximation properties of the discrete metric, which has been addressed in

Chapter 2.
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Another potentially interesting problem is the computation of the distance function on

a generalized Regge metric. In the smooth case, this is equivalent to solving an Eikonal

equation and can be discretized by the Fast Marching Method [62]. This is an extensively

studied area in computational geometry. The generalized Regge case is future work.

3.4 Local geodesics on Regge metrics: variational approach

In this section, we define and study local geodesics on a generalized Regge metric. This is of

particular interest in mathematical physics and numerical analysis.

Let T be a mesh and g a generalized Regge metric on T . As described in the previous

section, (T , g) is a length space. The local geodesics can therefore be defined again as curves

which satisfies the geodesic condition locally. More precisely, a piecewise smooth curve γ(t) in

T is a local geodesic if and only if every point on it has a neighborhood where it is of constant

speed:

d(γ(t1),γ(t2))= c|t1 − t2|.

As discussed in the previous section, the length and energy of a piecewise smooth curve are

well-defined on (T , g). By Cauchy-Schwarz inequality again, it is clear that the above defi-

nition of a local geodesic is equivalent to requiring γ to be a critical point of the energy func-

tional locally. This will be used to derive a local condition for local geodesics in Theorem 3.2.

But before that, there is some subtlety which needs to be addressed.

While global geodesics of generalized Regge metrics are very similar to their smooth Rie-

mannian counterparts, the local geodesics have some significant differences, due to the non-

smooth nature of the metric. In particular, the crucial local geodesic initial-value problem

does not carry over directly. These pathologies already show up for REG0. First we give

some examples of the pathology. Then we give a more refined definition of a generalized local

geodesic initial-value problem and describe its solution strategy.

First, there is ambiguity about the tangent space when a point is at some interior faces.

For example, consider the apex p of the tetrahedron in Figure 3.5. It is clear that a mean-

ingful initial velocity must belong to the tangent space of a particular triangle at p. Thus,

unlike the smooth case, where the state of the system is specified by a point in the manifold

and a velocity in the tangent space, on a mesh T , the state of the system is specified by a cell

c of T , a point p ∈ c, and a velocity vector v ∈ Tpc.
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Figure 3.5: Failure of having a well-defined tangent space at a point.

Second, unlike a smooth local geodesic which can be extended indefinitely, a local geodesic

on generalized Regge metrics in general cannot be extended further if the curve hits an

interior face of dimension ≤ (n−2) in a mesh of dimension n. For REG0, this is known in the

computer graphics literature [93,94], but does not seem to be known in the physics literature.

An example of this is illustrated below.

Proposition 3.2. For a REG0 metric on a 2D mesh, a curve passing through a vertex of

positive angle deficit (the sum of angles around the vertex is smaller than 2π) cannot be a

local geodesic.

Proof. We call the vertex of positive angle deficit S and focus on the star of S (that is the

union of all triangles intersect S). We call the star of S the tent. For example, the left panel

of Figure 3.6 depicts a tent where S is surrounded by 4 triangles. Take any curve passing

through S. If the curve lies entirely in one triangle, then it cannot be a geodesic, because

a triangle is flat and geodesics are straight lines. Thus, the curve passes through from one

triangle to another one. By the flatness of triangles again, within each triangle in order to be

a local geodesic, the curve has to be a straight line. Hence we only need to consider the case

where the curve is a piecewise straight line from one triangle to another turning at S. The

left panel of Figure 3.6 shows such a generic situation. Take two points P and Q on the curve

from the interior of the two triangles, say path
−−−→
PSQ connects P ∈4ABS and Q ∈4DCS. We

show that the curve
−−−→
PSQ cannot be a geodesic.

52



Figure 3.6: Pathology of generalized geodesic

Because of the positive angle deficit, we can always find an edge at S, say SB here, such

that if we cut along that edge and flatten the tent then the line segment PQ lies completely

inside the flattened triangles. The right panel of Figure 3.6 depicts such a flattened tent,

where SB on the left is cut and becomes SB and SB′ on the right. Note that this cut-and-

flatten operation is an isometry. Using the triangle inequality in the flattened tent, it is clear

that the length of
−−→
PQ is shorter than the path

−−−→
PSQ. Hence the original path

−−−→
PSQ cannot be

locally distance minimizing and therefore not a local geodesic.

Given the above proposition, if a local geodesic hits a vertex of positve angle deficit, then

it cannot be extended further. A similar argument shows that if the angle deficit is negative,

then a local geodesic has an infinite family of extensions. For the two-dimensional REG0 case,

various generalizations of the notion of local geodesics were proposed in the literature [6,

93], where the curves are required to be “straight” in some other sense. These ideas do not

generalize directly to higher dimensions or to higher degree REGr. In this thesis, the focus is

on the case where the non-smooth metric is itself an approximation to some smooth metric.

These pathologies are thus considered artifacts rather than an interesting feature of the

discrete geometry.

A generic curve (submanifold of dimension 1) cannot hit a face of dimension (n−2) almost

surely. In particular, for numerical computations, one can always perturb the solution within

the machine precision to get around a low dimensional face. For a generic generalized Regge

metric, this is problematic because the geodesics are not stable near a face of low dimension,

as shown in the tent example. However, when the generalized Regge metric is an approxima-

tion to some smooth metric, we will show that the error committed converges to zero as the

mesh is refined. Hence for the purpose of this thesis, only local geodesics that do not intersect
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low dimensional faces need to be considered.

Other than the two pathologies just described, the local geodesics on REGr are similar to

their smooth counterparts. The next step is to prove an analog of Proposition 3.1 describing

a local condition for local geodesics. In this case, there is nothing special about REGr(T ),

the theorem will be applicable to any piecewise smooth Riemannian metric g on T with

tangential-tangential continuity: for any interior facet f of T , ι∗f g is single-valued evaluated

from any cell containing f . In particular, this contains the space of smooth Riemannian

metrics on T as a special case. We consider this slightly more general case because it makes

the study of error analysis later easier.

Before stating the theorem, some convenient notations are introduced for a frequently

arising situation depicted in Figure 3.7. Suppose g is a piecewise smooth Riemannian metric

on some mesh. Let c+ and c− be two cells intersecting at a facet f . Suppose a piecewise

smooth curve γ crosses f at a point p in the interior of f . Note that there is a natural iden-

tification of the subspace Tp f ⊂ Tpc+ with the subspace Tp f ⊂ Tpc− via the affine structure

intrinsic to f . This identification is assumed implicitly throughout this chapter. Other quan-

tities are however discontinuous. In such a situation, g+
i j is defined to be the restriction of

g in c+, ni+ the unit outward normal vector to the facet f at p under g+
i j, and γ̇i+ ∈ Tpc+ the

velocity vector of γ at p. Quantities like g−
i j, n−, and γ̇i− are similarly defined in c−.

Figure 3.7: Definitions of quantities when a curve crosses an interior facet

Theorem 3.2. Let T be a mesh of dimension n and g a piecewise smooth Riemannian metric

with tangential-tangential continuity. A piecewise smooth curve γ : [a,b] →T which does not

intersect any interior faces of dimension ≤ (n−2) is a local geodesic if and only if it satisfies

the geodesic equation (3.4) inside each cell and at each point p where γ intersects a facet f , the
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tangential projection of γ̇ is the same on both sides: for all vectors t j ∈ Tp f ,

g+
i jγ̇

i
+t j = g−

i jγ̇
i
−t j

and the normal projection has the same length on both sides:

g+
i jγ̇

i
+n j

++ g−
i jγ̇

i
−n j

− = 0.

In particular, the kinetic energy g i jγ̇
iγ̇ j is constant along any local geodesic (even when the

curve crosses a facet). Moreover, γ is C0,1 globally. If g happens to be in Ck globally, k ≥ 0,

then γ is in Ck+1,1 globally. If g happens to be smooth, then γ is smooth and solves the usual

smooth geodesic equation everywhere.

Before proving this theorem, a corollary very useful for computations is given:

Corollary 3.1. Suppose g is piecewise smooth with tangential-tangential continuity and γ

crosses an interior facet f as depicted in Figure 3.7, then at point p ∈ f , the value of γ̇i satisfies

the following update formula:

γ̇i
− = γ̇i

+− (g+
jkγ̇

j
+nk

+)(ni
++ni

−), (3.6)

Proof. Set a± := g±
i jγ̇

i
±n j

± and ti
± := γ̇i

±−a±ni
±. The theorem implies that

ti
+ = ti

−, a++a− = 0.

Thus,

γ̇i
+− γ̇i

− = (ti
++a+ni

+)− (ti
−+a−ni

−)= a+(ni
++ni

−),

which proves the identity in the claim.

Thus, analytically, the generalized initial-value problem for local geodesics can be solved

by alternating between solving the smooth geodesic equation inside each cell until the curve

hits the cell boundary and applying equation (3.6) to move to the next cell. The procedure

has to stop when the local geodesic hits a low-dimensional face.

In the literature, results similar to Theorem 3.2 for non-smooth metrics are derived

through variational methods [50,77], or through Filippov’s theory for differential inclusions [104],

or through the regularization of the metric [78, 79]. In another direction, similar results for

curved interface were derived in [41]. The REG0 case was derived in [118]. The case consid-

ered here has a simple proof and much stronger conclusions (namely uniqueness and regu-

larity). To prove Theorem 3.2, the following lemma on the variation of the energy functional

is needed.
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Lemma 3.1. Let T be a mesh of dimension n and g a piecewise smooth Riemannian met-

ric. Suppose γ : [a,b] → T is a piecewise smooth curve which does not cross interior faces of

dimension ≤ (n−2) in T . Let γs(t) : (−ε,ε)× [a,b]→T be a smooth family of variations:

γ0(t)= γ(t) for all t, γs(a)= γ(a), γs(b)= γ(b) for all s, and γs(t) is C∞ in s for each t,

with ε > 0 small enough that none of γs(t) intersect any interior faces of dimension ≤ (n−2).

Let v be the variational vector field of γs relative to γ:

v(t) := ∂

∂s
γs(t)

∣∣∣
s=0

.

Then the variation of the energy functional is

∂

∂s
E(γs)

∣∣∣
s=0

= 1
2

n−1∑
i=1

(
g+

i jγ̇
i
+γ̇

j
+− g−

i jγ̇
i
−γ̇

j
−
)∣∣∣

t=ti

+
n−1∑
i=1

(
g+

i jγ̇
i
+v j

+− g−
i jγ̇

i
−v j

−
)∣∣∣

t=ti

−
n−1∑
i=0

∫ ti+1

ti

(γ̈i +Γi
kl γ̇

kγ̇l)g i jv j dt,

where ti are points in the domain of γ where either γ̇ is discontinuous or γ crosses an interior

facet.

Proof. This is just a direct computation from the definition

E(γs)=
n−1∑
i=0

∫ ti+1

ti

g i jγ̇
i
sγ̇

j
s dt,

and integration by parts.

Then the main theorem of this section follows:

Proof of Theorem 3.2. Lemma 3.1 gives the condition for γ to be a critical point of the energy

functional. At a point of discontinuity of γ̇ in the interior of a cell, the situation is exactly the

same as the smooth Riemannian case. These conditions forces γ to be smooth and solves the

geodesic equation in the interior of each cell. At a point ti where γ crosses an interior facet f

at p = γ(ti), the conditions for critical points require

g+
i jγ̇

i
+γ̇

j
+ = g−

i jγ̇
i
−γ̇

j
−,

g+
i jγ̇

i
+w j = g−

i jγ̇
i
−w j, for all w j ∈ Tp f .

The first equation implies the first condition in Theorem 3.2 directly. The second condition

follows from the fact that s 7→ γs(ti(s)) is by definition a curve in f where ti(s) is the time

γs crosses that facet. So the corresponding variational vector field must be tangential to f .
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Now, set a± := g±
i jγ̇

i
±n j

± and ti
± := γ̇i

±−a±ni
±. The second condition and tangential-tangential

continuity together imply that ti+ = ti−. Then the first condition implies

a2
+ = a2

−.

But γ is leaving c+ and entering c−, which means a+ and a− have opposite signs. Thus

a++ a− = 0. This proves the tangential projection and normal projection conditions in the

theorem. This in particular shows that the critical points of the energy functional has con-

stant kinetic energy. Thus they are critical points of the length with constant speed locally,

or equivalently, local geodesics.

Finally, by standard ODE theory, γ is smooth inside each cell. The two facet conditions

and their derivatives imply that if g is Ck globally, then γ̇ is Ck,1 globally. This proves the

regularity claim.

3.5 Local geodesics on Regge metrics: geometric approach

In the introduction, two different intuitive approaches were given to compute the geodesics

on REG0. In the previous section, the variational approach was generalized to handle higher

degree REGr cases. In this section, the cut-flatten-glue approach is generalized to piecewise

smooth metrics with tangential-tangential continuity, which include REGr as a special case.

This is not as straightforward as the variational approach. Further, like the cut-flatten-glue

approach before, this more abstract view is not useful directly for numerical computations.

Nevertheless, it offers crucial geometric insights into the structure of generalized Regge met-

rics. In particular, it is useful for understanding the symplectic structure in the next section.

Given a mesh T in Rn and a piecewise smooth Riemannian metric with tangential-

tangential continuity g on T . As an embedded submanifold of Rn, T is a smooth mani-

fold with polygonal boundary. Under this, (T , g) can be viewed as a smooth manifold with

a piecewise smooth Riemannian metric. But there is nothing special about the embedding

of T in Rn. The same information about the metric can be specified simplex by simplex

independently.

A more intrinsic but subtle interpretations of (T , g) is known in the literature for REG0 [25].

Take a 2D mesh for an example. Every triangle in the mesh can be isometrically embedded

in Euclidean R2, with edge lengths given by g. Locally, the images of each pair of triangles

sharing an edge in the mesh can be glued together to form a trapezoid in Euclidean R2 as a

smooth Riemannian submanifold with polygonal boundary. This gluing operation can be done

at all shared edges of the Euclidean triangles. A typical mental image of the result would be
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a 2D triangulated surface in 3D (in general a higher embedding dimension might be needed).

A triangulated surface is no longer a smooth manifold. It has ridges and conic points. A more

careful construction can get rid of the ridges by going to a higher dimension every time a new

triangle is added (indeed, each pair of triangles can be glued together to a trapezoid without

ridges). But the conic points will persist. Under this view, the 2D REG0(T ) corresponds to an

abstract Riemannian manifold, which is a smooth manifold with a constant Euclidean metric

away from the vertices and is singular at the vertices. The proper framework for this is the

theory of stratified manifolds. But, for this chapter, as discussed before, the vertices can be

simply discarded. In general for REG0(T ) of dimension n, let T̊ be the manifold obtained by

removing faces of dimension ≤ (n−2) from the mesh T . Then an abstract smooth manifold

T̊ with the Euclidean metric can be obtained from REG0(T ) using a similar construction.

For the general case, we have the following.

Theorem 3.3. Let T be a mesh of dimension n and g a piecewise smooth Riemannian metric

with tangential-tangential continuity on T . There exists an atlas depending on g for T which

is piecewise smooth, globally C1 on T̊ , and singular at T − T̊ , under which the piecewise

smooth metric g can be extended to a globally C0-Riemannian metric on T̊ . Let T̊ g denote

the C1-manifold obtained from the topological manifold T̊ with the aforementioned atlas.

Then g is a C0-Riemannian metric on T̊ g satisfying the condition that each cell in T̊ g is

isometric to its corresponding cell in (T , g) via a smooth map whose differential is identity on

vectors tangential to the boundary facets of each interior cell. Further such (T̊ g, g) is unique

up to isometry.

This theorem is a direct consequence of the gluing lemma [31] below.

Lemma 3.2. Let (M±, g±) be two smooth compact Riemannian manifolds with boundary,

having smooth submanifolds Σ± of the boundaries ∂M± isometric to each other. Let M be the

disjoint union of M± with Σ± identified via the isometry. Identify M± as subsets of M and let

g be a piecewise function on M with g = g± depending on where g is evaluated. Then there

exists a unique C1 altas on M, which is compatible with the smooth atlas on M± and under

which g can be extended to a C0 Riemannian metric on M by continuity.

Notice that for REG0, as described before, (T̊ g, g) is a smooth manifold with a smooth

(globally constant) Euclidean metric. For generalized Regge metrics REGr with r > 0, the

abstract manifold is less smooth.

Nevertheless, this has enough regularity for geodesics. Indeed, a piecewise smooth and

globally C0 metric on a mesh is Lipschitz. Its Christoffel symbols, which depend on up to
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the first derivatives of the metric, are piecewise smooth but globally discontinuous functions.

It turns out that the usual geodesic equation (3.4), though still does not make sense in the

classical view, becomes well-posed in some general sense. Geodesics on Lipschitz metrics

were studied in the physics literature with the application of geodesics in gravitational shock

waves [71, 104]. In general, it was proved in [104] that the local geodesic problem has C1-

solutions on Lipschitz Riemannian metrics in the Filippov sense as a direct application of the

theory of differential inclusions in [37]. The detailed discussion on this will not be pursued

here.

Instead, an elementary treatment will be given for the special case here where the met-

ric is further piecewise smooth and the local geodesics are required to be transverse to the

interior facets.

Theorem 3.4. Let M be a mesh of dimension n with a piecewise smooth globally C1 smooth

structure which might be singular at faces of dimension ≤ (n−2) and g a piecewise smooth

C0-Riemannian metric on M. Suppose q0 is a point in the interior of some cell c in M and v0 ∈
Tq0 c. Starting with initial data (q0,v0), construct a curve γ : [0,T]→ M by alternating between

solving the smooth geodesic equation inside a cell and move to the next cell by continuity of

γ and γ̇. This process can go on as long as γ exits cells transversely in the interior of a

facet. Then γ ∈ C1,1 and it solves the geodesic equation on (M, g) almost everywhere (that

is, a Carathéodory solution). In particular, it is the unique C1,1 curve which satisfies the

initial condition, crosses interior facets transversely, and solves the geodesic equation almost

everywhere.

Proof. This is obvious. Inside each cell, the solution to the geodesic equation is smooth.

Because γ̇ is piecewise smooth and globally continuous, on a bounded interval, γ ∈ C1,1. From

the transverse condition, γ can only intersect interior facets and fails to satisfy the geodesic

equation at a null subset of [0,T]. The uniqueness follows from the uniqueness of the smooth

geodesic in each cell and the continuity conditions.

Local geodesics defined in this way agree with the local geodesics defined variationally in

the previous section:

Theorem 3.5. Let T be a mesh of dimension n and g a piecewise smooth Riemannian metric

with tangential-tangential continuity on T . Let (T̊ g, g) be the induced abstract Riemannian

manifold and Φ : T̊ g → T be the piecewise smooth isometry in Theorem 3.3. Take any cell

c in T , any point p ∈ c∩ T̊ g, and any vector v ∈ Tpc. Let γ in T̊ g be the curve defined in

Theorem 3.4 for (T̊ g, g) with initial data (q,v) and γ′ in T be the local geodesic constructed

using Theorem 3.2 with initial data (c, q,v). Then Φ◦γ= γ′ as long as they are defined.
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Proof. This can be proved cell by cell. In cell c, Φ is a smooth isometry. By definition, γ and γ′

are solutions to the same smooth geodesic equation with the same initial data. By standard

ODE theory, γ and γ′ coincide. Both then exits c at the same point in the interior of one of

the boundary facets f of c with the same velocity. On (T̊ g, g), because g is C0, the geodesic

equation (3.4) implies that γ̇ is at least C0 and therefore the solution γ is at least C1. Hence,

necessarily the kinetic energy and the facet tangential part of γ are preserved crossing f .

These two conditions determines the velocity γ̇ on the other side of the facet uniquely in

(T̊ g, g). Both conditions are invariant under Φ. The preservation of these two are exactly

the conditions for local geodesics in (T , g) in Theorem 3.2. This proves the equivalence.

3.6 Hamiltonian structures of local geodesics

Hamiltonian mechanics offers an elegant and efficient way to encapsulate many important

properties of physical systems in a mathematical framework [11]. It is well-known that

smooth local geodesics can also be formulated in the Hamiltonian framework [35, Section

28.3]. In numerical analysis, it is also well-known that the preservation of the Hamilto-

nian structure is of great importance for the discretization of such systems because this is

crucial for retaining the correct qualitative behavior and leads to good long-time error prop-

erties [48].

In this section, we show that local geodesics of generalized Regge metrics, or piecewise

smooth Riemannian metrics with tangential-tangential continuity in general, also have a

Hamiltonian structure. This suggests that a symplectic discretization should be used for

computing local geodesics in this case as well.

First, we review the smooth case. Let g be a smooth Riemannian metric on a smooth

manifold M. The Hamiltonian for geodesics is a functional on the cotangent bundle H :

T∗M →R given by

H(p, q) := 1
2

gi j(q)pi p j,

where q ∈ M and p ∈ T∗
q M so together (p, q) ∈ T∗M. The corresponding equation of motion is:

q̇i = ∂H
∂pi = gi j p j,

ṗi =−∂H
∂qi =−1

2
p j pk∂i g jk.

(3.7)

It is clear that under the substitution γ(t)= q(t) and γ̇i = gi j p j, the Hamiltonian equation of

motion (3.7) and the geodesic equation (3.4) are equivalent. This shows that a local geodesic

on a smooth Riemannian manifold is equivalent to a Hamiltonian flow on the cotangent
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bundle. This makes the machinery from symplectic geometry available to the study of local

geodesics.

There are several immediate geometric properties which are consequential for the dis-

cretization [48]. First is the conservation of the Hamiltonian, that is, H is constant along

any geodesics. This follows from the fact that geodesics have constant kinetic energy g i jγ̇
iγ̇ j

(Proposition 3.1) and γ̇i = gi j p j. Second is reversibility: going forward in time with mo-

mentum p is the same as going backward in time with momentum −p. Symbolically, let

φt : T∗M → T∗M be the solution map to equation (3.7) and ρ : (q, p) 7→ (q,−p), then,

ρ ◦φt =φ−t ◦ρ.

This can be seen from equation (3.7): when the sign of p is flipped, the right-hand side for q̇

flips sign while the right-hand side for ṗ is unchanged. This has important consequences for

the dynamics of the system [48, Chapter V] (for example, the existence of period orbits). Last

and most important is symplecticity, which is the fundamental property of a Hamiltonian

system. To explain this, some symplectic geometry is needed. Using variables pi and q j for

T∗M as before, the symplectic form (on the cotangent bundle) ω is a 2-form on T∗M given by:

ω :=
n∑

i=1
dqi ∧dpi. (3.8)

It is easy to verify that ω is closed dω= 0 and non-degenerate: ω(u,v)= 0 for all v if and only

if u = 0 [11, Chapter 8]. Note that the cotangent bundle T∗M is a manifold of dimension 2n

on its own. Let Jω : T(T∗M)→ T∗(T∗M) be a linear map induced by ω: for u ∈ T(T∗M),

[Jω(u)](v) :=ω(u,v), ∀v ∈ T(T∗M).

Due to the non-degeneracy of ω, Jω is a linear isomorphism. A Hamiltonian H is a real-

valued smooth function on T∗M. The vector field XH := J−1
ω dH on T∗M is called the Hamil-

tonian vector field. It has the nice property that ω is conserved along the flows of XH :

LXHω= ιXH dω+dιXHω= dιXHω= d[Jω(XH)]= ddH = 0, (3.9)

where LXH is the Lie derivative, the first step uses Cartan’s magic formula, the second step

uses the fact that ω is closed, the third and fourth step use the definition of contraction and

Jω. The relevance of this to the current discussion is clear with a computation in coordinates.

In the coordinates of (pi, q j), Jω becomes a 2n-by-2n block matrix [11, Chapter 8, 37C]:

J :=
 0 I

−I 0

 ,
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where I is the n-by-n identity matrix. Under this, the definition of a Hamiltonian vector field

XH = J−1
ω dH reads: ṗ

q̇

= J−1∇H(p, q)=
−∂qH

∂pH

 ,

which is exactly the equation of motion for Hamiltonian systems. In particular, under mild

regularity conditions, it can be shown that a flow on T∗M is the solution to the equation of

motion for some Hamiltonian locally if and only if it preserves the symplectic form [48, Chap-

ter VI Theorem 2.6]. Symplecticity is of great importance because of this. For example,

suppose a discrete flow preserves the symplectic form as well. Then it is also the flow of some

other Hamiltonian. If one can show this Hamiltonian is a perturbation of the Hamiltonian to

be approximated, the whole machinery of Hamiltonian perturbation theory can be deployed

to study the qualitative and long-term dynamics of the discrete flow with respect to the ex-

act flow. Indeed, this is the key idea behind the explanation of the desirable properties of

symplectic discretizations [48, Chapter X].

Let T be a mesh of dimension n and g be a piecewise smooth Riemannian metric with

tangential-tangential continuity. It is clear that local geodesics on (T , g) still preserves the

Hamiltonian and is reversible. The main result of this section is that local geodesics also

have a symplectic structure. The general theory of non-smooth Hamiltonian systems was

systematically studied by Marsden [78,79]. The case here fits in that framework. In fact, the

situation here is sufficiently simple that an independent treatment with minimal modifica-

tion to the smooth theory is needed and is given here.

Let (T̊ g, g) be the abstract Riemannian manifold constructed in Theorem 3.3. Since T̊ g is

only C1 globally, its cotangent bundle T∗T̊ g is a C0 manifold of dimension 2n. In particular,

it does not make sense to talk about vector fields and differential forms on T∗T̊ g directly.

Let (qi, p j) be a local coordinate patch for T∗T̊ g. The only problematic quantity is dp j,

which is a piecewise smooth and globally discontinuous function. This does not cause any

problem. In the following, it is implicitly understood that the p-components of vector fields

or differential forms on T∗T̊ g are only piecewise smooth. Because g is piecewise smooth

and globally C0, using a similar argument to the one used in Theorem 3.4, it is clear that

a unique Carathéodory solution (q, p) to the Hamiltonian equation of motion (3.7) can be

constructed. In particular, the equation is satisfied almost everywhere, p is piecewise smooth

and globally C0 while q is piecewise smooth and globally C1. Let the symplectic form ω be

defined on T̊ g using equation (3.8), which is now discontinuous in the p-components globally.

Then it is still conserved along the flow because the Lie derivative identity (3.9) still holds in

the distributional sense. It is in this sense that local geodesics on REGr(T ) have a (metric
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dependent) symplectic structure.

Because the symplectic structure is defined with respect to the abstract metric depen-

dent manifold (T̊ g, g), it is not immediately clear its explicit corresponding structure in the

original computational coordinates (T , g). But this does show that on (T , g) it is possible to

define a generalized Hamiltonian system using certain non-smooth theory for ODEs. This

will not be pursued here. Given Theorem 3.5, for the purpose of computing local geodesics,

because rotating the velocity as specified in equation (3.6) can be implemented exactly, a

discretization is globally symplectic as long as it is symplectic in each cell.

3.7 A robust algorithm for generalized local geodesics

Given Theorem 3.2 and its corollary, the computation of generalized local geodesics is straight-

forward with an exact solver for the usual smooth geodesic equation. Indeed, one can repeat:

solve the smooth geodesic equation (3.4) in a cell until the curve hits a facet and then move to

the next cell and rotate the tangent vector according to the jump condition (3.6). The process

would end when the curve hits a face of dimension ≤ (n−2). In practice, however, there are

many problems due to numerical issues and practical concerns. In what follows, we describe

and implement a robust method for solving the geodesic initial-value problem on Riemannian

REGr.

Given a mesh, a step size h > 0, and a position-momentum pair (q0, p0), the algorithm

repeats the following steps:

• Identify which cell the initial point is in.

• Solve the smooth Hamiltonian geodesic equation inside the cell using a symplectic col-

location method with step size h. Step until the curve leaves the current cell.

• Solve for the intersection with the boundary of the cell. Truncate the last step at the

boundary.

• Identify the cell for the next step.

• Rotate the momentum crossing to the next cell.

It stops either when the curve exits the computational domain or when a specified time T > 0

is reached. In particular, this algorithm does not stop the computation when the curve comes

close to a face of dimension ≤ (n−2).

For the first step, the algorithm finds all the cells which are numerically near the starting

point q. If there is only one such cell, then it is chosen. If there are more than one cells, that

is when q is near a face of dimension ≤ (n−1), the tie is broken in the following way. The

momentum p is flattened using the metric in each nearby cell c to get an initial velocity
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v ∈ Tpc. Then for some fixed ε (for example ε= 0.01), q′ := q+εhv is computed. The cell with

the minimum distance to its q′ is chosen. If there are tied minimizers, a random choice is

made.

Figure 3.8: Possible bad initial conditions. The green cell is chosen.

For the next step, the geodesic ODE needs to be solved in the interior of each cell. For

REG0 this is trivial since the geodesics are just straight lines. For higher degree elements,

the geodesic equation is nonlinear which cannot be solved in closed form even for REG1 and

has to be solved numerically. As mentioned before, the Hamiltonian structure is frequently of

physical importance in geodesic computations. Thus a symplectic discretization of the Hamil-

tonian geodesic equation is used. Overall, equation (3.7) is solved using Collocation method

at Gauss points in the interior of cells. It is known that this implicit method is symmetric

and symplectic [48]. There are several notable details. First, the metric g is a piecewise

polynomial. The inverse metric appearing in the Hamiltonian equation of motion (3.7) can-

not be represented accurately in a finite element space for symbolic derivative computation.

Instead, the gradient of the inverse metric is evaluated exactly via:

∂i g jk =−g jm gkn∂i gmn. (3.10)

Second, due to performance concern, the collocation method is implemented via its equivalent

Runge-Kutta method [48, Chapter II Theorem 1.4]. In practice, REGr with r ≥ 4 is rarely

needed. So collection at 3 Gauss points was chosen as the default solver. This is an order 6

symplectic solver with many good properties. The nonlinear equation at each step is solved

using a fixed point iteration with linear extrapolation from the previous step as the initial

guess [48, Chapter VIII.6.1]. In practice, a step size h smaller than the radius of the inscribed

sphere of a cell is accurate enough.
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Once the discrete geodesic steps outside of its current cell, the facet intersection needs to

be computed. To do this, the stage values of the Runge-Kutta method are used to construct

the collocation interpolant. Since it is possible that the curve passes through the cell near

a face of low-dimensions, special care is needed. In practice, the interval for the interpolant

frequently varies from 10−1 to 10−10. A properly scaled robust Barycentric Lagrange inter-

polant [14] was implemented here for this purpose. Given the Euclidean coordinates of the

vertices of a simplex c, the distance from any point to c can be computed using standard ro-

bust routines [88]. Let γ(t) be the interpolant and dc(p) be the distance function. A bisection

method is implemented to find the first smallest t∗ within some tolerance such that

dc(γ(t∗))> 0.

A standard root finding routine for dc(γ(t))= 0 will fail here because it cannot guarantee the

curve leaves the current cell beyond numerical tolerance, potentially leading to an infinite

loop.

The next step is to identify the next cell to start the next round of the geodesic solver.

First, the boundary facet f of c which is closest to γ(t∗) is chosen. The ties are broken by a

random choice. If f lies on the domain boundary, the computation terminates. Otherwise, the

next cell c′ is the cell opposite to c at f . Due to numerical issues for the rare situation where

γ(t∗) is near a face of dimension ≤ (n−2), a crucial check is needed. If the point γ(t∗) is outside

of c′, that is dc′(γ(t∗)) is greater than some small tolerance, then the solver is restarted using

the first step to find a new starting cell. This is called a bad crossing. If the point γ(t∗) is

inside of c′, which is almost always the case, then the next cell is naturally c′. This is called

a good crossing.

Figure 3.9: Left: a good crossing. Right: a bad crossing that needs a restart.
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Finally, the momentum is rotated using the following formula derived from equation (3.6):

p−
i = g−

ik(gk j
+ −nk

+n j
+−nk

−n j
+)p+

j . (3.11)

It should be noted that for bad crossings, the momentum is rotated as if the curve is crossing

from c to c′ via f and then a new cell instead of c′ is chosen. This commits an error which will

be analyzed in the next section. Intuitively, when the discrete metric is a good approximation

of some smooth metric, the error committed is proportional to the tolerance and is thus very

small.

It should be noted that unfortunately this algorithm does not lead to a globally symplectic

discretization. This is due to the known problem that nonuniform time-stepping degrades the

performance of a symplectic integrator [48, Section VIII.3]. Because the curve has to hit the

cell boundary, the last step in a cell cannot in general have the same step size as the previous

steps. In particular, the correct step size for the last step is not known a priori. Thus current

strategies for symplectic discretization with adaptive time stepping cannot be applied here.

The problem of finding a fully symplectic implementation remains open. In practice, however,

this is less of an issue. Because the metric approximation is the harder problem, the error

due to the metric approximation is much larger than the error committed by the ODE solver.

Thus, as will be demonstrated in the numerical example section, the errors associated with

the violation of the symplectic structure will not dominate the total error except for extremely

long-term simulations.

The robust algorithm outlined here is implemented in geodesics/regge_geodesics.py

in the companion code repository to this thesis. All the numerical examples later in this

chapter are computed using this library.

3.8 Error analysis

Let (M, g) be a smooth Riemannian manifold and γ : [a,b] → M a smooth geodesic. Suppose

{Th} is a sequence of triangulations of M, on which gh ∈ REGr(Th) are Riemannian metrics

and γh geodesics to (Th, gh) with the same initial data as γ. We study when γh is close

to γ and how close the approximation is. In practice, it is reasonable to assume that the

error in the ODE solver is comparable or of higher order compared to the error due to metric

approximation (for example, through the use of time steps finer than the mesh size). Hence

the results of this section gives the practical a priori error estimates for the errors between

the true geodesic and the computed geodesics on the generalized Regge metrics.

First, the difference measure needs to be specified. This is completely arbitrary. When the

mesh T is given as an embedded manifold in some Rn, the mesh size of T is measured in the
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Euclidean metric there, which is standard in the numerical analysis literature. Error related

statements are usually made in terms of the mesh size. Hence it is natural to measure the

difference in geodesics using the Euclidean distance between the coordinates of the curves.

For the rest of this section, the single bar norm | · | for tensor values denotes the norm under

the Euclidean metric in the background Rn coordinates. The Sobolev norms of tensor-valued

functions are defined through the Sobolev norms on the point-wise | · |-norm. For piecewise

smooth tensor-valued functions u on T , notations like ‖u‖W s,p(T ) mean the piecewise W s,p-

norm on each cells in T combined using the scaling of p-norms in the obvious way. For

example, ‖g‖W1,∞(T ) is the maximum over all cells of the W1,∞-norm of g restricted to these

cells. When the norm is not taken piecewise, the domain T in the notation will be suppressed.

For example, for a smooth metric g on T , ‖g‖W2,∞ is just the usual Sobolev norm. It should be

noted that this differs from the convention in the geometry literature, where the differences

are measured intrinsically in the smooth Riemannian metric being approximated. Here, this

smooth Riemannian metric is usually the unknown in the metric approximation problem. In

any case, for non-singular metrics on compact domains, the convergence rates remain the

same for both the extrinsic and the intrinsic approach.

The main result of this section is the following theorem:

Theorem 3.6. Let M be a domain in Rn and Th a family of triangulations of M parameterized

by the mesh size h. Suppose g is a smooth Riemannian metric on M and gh ∈ REGr(Th) a

family of Riemannian metrics satisfying ‖g − gh‖L∞ ≤ 1
2‖g−1‖−1

L∞ uniformly in h. Suppose

γ : [0,T] → M is a smooth geodesic under g and γh a family of geodesics under gh with the

same initial conditions as γ. Moreover, assume the “no-stuck” condition: there exists a constant

V > 0 such that the time γh takes to traverse through a single mesh cell is bounded above by

h/V uniformly for all cells of Th and all h. Then, there exists a constant C depending only on

‖g‖W2,∞ , ‖g−1‖L∞ , V , T, and |γ̇(0)|, such that

|γ̇(t)− γ̇h(t)| ≤ C(‖g− gh‖W1,∞(Th) +h−1‖g− gh‖L∞),

|γ(t)−γh(t)| ≤ C(h‖g− gh‖W1,∞(Th) +‖g− gh‖L∞).

The “no-stuck” condition on the discrete metrics is quite intuitive. Basically, it excludes

situations like the one depicted in Figure 3.10, where the geodesic is trapped in a single cell

somehow. This is obviously necessary, because in this theorem, the only other assumption on

the discrete metrics gh is that gh is close to g in L∞-norm with no control over the derivatives.
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Figure 3.10: A geodesic is stuck in a cell.

The following corollary shows the expected convergence rate in practice when the metric

approximation is as good as the best approximation:

Corollary 3.2. Under the assumption of Theorem 3.6, suppose the shape constants of the

meshes are bounded uniformly, g is known, and gh are the Regge canonical interpolants.

Then,

|γ̇(t)− γ̇h(t)| ≤ Chr, |γ(t)−γh(t)| ≤ Chr+1,

where C depends on ‖g‖W2,∞ , ‖g−1‖L∞ , V , T, |γ̇(0)|, the degree r, the dimension of the domain,

and the shape constant bound of the meshes.

Proof. This follows from the previous theorem and the error estimates for the Regge canoni-

cal interpolant in Chapter 2.
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Figure 3.11: Restart a geodesic.

The corollary below shows that the restarting strategy used in the robust algorithm in

the previous section when the geodesics of the approximating generalized Regge metric goes

near a face of low-dimension does not cause any problems:

Corollary 3.3. Under the assumption of Theorem 3.6, suppose γh comes to a distance εh,

ε < 1, to a face of dimension ≤ (n−2) at time t∗. Restart the extension of γh by keeping the

Euclidean velocity vector γ̇h(t∗) while moving its position to a point in another cell within

the ε-sphere. Still call this (discontinuous) curve γh after t∗, and extend it as usual. Then,

the error estimates still holds with an additional εh error in both the position and velocity

estimates.

Proof. It is clear that an extra error of εh is incurred for the position at time t = t∗. For the

velocity vector, the error is proportional to the difference between the values of gh at the two

points. Using g, this difference is bounded by

2‖g− gh‖L∞ +εh‖g‖W1,∞ .

After t∗, the original estimate applies to the restarted geodesic approximation problem to the

smooth geodesic under g with the same initial condition as γh(t∗+). The difference between

this smooth geodesic and the original geodesic up to a fixed time T can be bounded by Cεh,

using the standard ODE perturbation theorem (see Theorem 3.7 later). This proves the

claim.

In practice, εh is close to machine precision. So this is negligible.
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The proof of Theorem 3.6 is somewhat long. It is adapted from the standard technique for

proving error estimates for ODE solvers. The main idea is captured in Figure 3.12.

Figure 3.12: The black curve is the smooth geodesic. The blue curve is the geodesic on gh.

In each cell, consider auxiliary smooth geodesics under the smooth metric using the po-

sition and velocity of γh when it enters that cell as the initial condition (the green curves in

Figure 3.12). The final error is then bounded by the sum of the successive difference between

all these green curves at the final time T. The difference between neighboring green curves

comes from two sources. First in a cell, one curve is a geodesic under g while the other is a

geodesic under gh with the same initial data. When gh exists that cell, the velocity of γh is

further rotated. At this time, the difference between γh and the auxiliary smooth geodesic is

denoted by e i as in Figure 3.12. Then afterwards, the two green curves are both geodesics to

g but with difference e i in initial conditions. Note that in both cases, only geodesics to smooth

metrics are considered and can be handled by standard theory. This is made more precise

below. The proof uses several technical lemmas which are stated and proved immediately

after this proof.

Proof of Theorem 3.6. Fix a particular h. Let t1, t2, . . . , tn be the time γh leaves the n-th cell

it ever transverses such that at time T it is still inside the (n+ 1)-th cell. Set t0 = 0 and

tn+1 = T. Define a sequence of auxiliary curves λk which morphs from γ to γh as depicted in

Figure 3.12: for k = 0, . . . , (n+1),

λk(t) :=

γh(t), for t ∈ [0, tk),

fk(t), for t ∈ [tk,T],

where fk : [tk,T]→ M is the geodesic under g with the initial condition

fk(tk)= γh(tk), ḟk(tk)= γ̇h(tk+).
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For any t ∈ [0,T], let m = m(t) be the integer such that tm ≤ t ≤ tm+1. It is clear from the

definition that

λ0(t)= γ(t), λm+1(t)= γh(t).

Hence,

|γ(t)−γh(t)| = |λ0(t)−λm+1(t)| ≤
m∑

k=0
|λk(t)−λk+1(t)|.

Each summand |λk(t)−λk+1(t)| goes through three phases. The first phase when t ∈ [0, tk), it

vanishes because λk(t) = λk+1(t) = γh(t). In the second phase when t ∈ [tk, tk+1), λk(t) = fk(t)

and λk+1(t) = γh(t) are two geodesics with the same initial data under the metric g and gh

respectively in the (k+1)-th cell (g can go out, of course). At the end, define

ek+1 := fk(tk+1)− gh(tk+1), ėk+1 := ḟk(tk+1)− ġh(tk+1+).

In the third phase, when t ∈ [tk+1,T], λk(t) and λk+1(t) are geodesics of the same metric g

with difference in initial data given by ek+1 and ėk+1 in position and velocity respectively.

By standard ODE theory and Lemma 3.5, the difference at time t after tk+1 can be bounded:

there exists a constant C1 depending only on ‖g‖W2,∞ , ‖g−1‖L∞ , |γ̇(0)|, and T, such that

|λk(t)−λk+1(t)|+ |λ̇k(t)− λ̇k+1(t)| ≤ C1(|ek+1|+ |ėk+1|).

Since the norms on g were taken over the maximum of the whole domain, globally,

|γ(t)−γh(t)|+ |γ̇(t)− γ̇h(t+)| ≤ C1

m∑
k=0

(|ek+1|+ |ėk+1|)

The right-hand side can be estimated by using Lemma 3.6 for the two geodesics with the

same initial condition but different metric and then applying Lemma 3.7 for the rotation of

the velocity at the interior facet. The result is:

|γ(t)−γh(t)|+ |γ̇(t)− γ̇h(t+)| ≤ C2

m∑
k=0

[eM(tk+1−tk)h‖g− gh‖W1,∞(ck+1) +‖g− gh‖L∞],

where ck+1 is the (k+1)-th cell γh passes and C2 and M has the same dependence as C1.

By the “no-stuck” assumption, tk+1 − tk ≤ h/V . So the exponential term can be absorbed in a

constant C3 with the addition dependency on V :

|γ(t)−γh(t)|+ |γ̇(t)− γ̇h(t+)| ≤ C3

m∑
k=0

[h‖g− gh‖W1,∞(ck+1) +‖g− gh‖L∞].

On one hand, using the “no-stuck” assumption again, the number of summands is bounded

by TV /h. Hence, there exists a constant C depending on ‖g‖W2,∞ , ‖g−1‖L∞ , |γ̇(0)|, V , and T

such that

|γ̇(t)− γ̇h(t+)| ≤ C(‖g− gh‖W1,∞(Th) +h−1‖g− gh‖L∞).
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On the other hand, integrate in time for each interval [tk, tk+1],

|γ(t)−γh(t)| ≤ C3

m∑
k=0

(tk+1 − tk)(h‖g− gh‖W1,∞(ck+1) +‖g− gh‖L∞)

≤ C3T(h‖g− gh‖W1,∞(Th) +‖g− gh‖L∞),

where in the last step the cell-wise norm is again bounded by the global maximum. This

proves the theorem.

The rest of this section contains the proofs of all the lemmas used above. First, the

following lemma bounds the Euclidean norm of the geodesics:

Lemma 3.3. Let T be a mesh in Rn and g a piecewise smooth Riemannian metric with

tangential-tangential continuity. Suppose γ : [a,b]→T is a geodesic under g. Then

‖g−1‖L∞ |γ̇(0)| ≤ |γ̇(t)| ≤ ‖g‖L∞ |γ̇(0)|.

Proof. By Theorem (3.2), the speed of γ measured in g is constant along γ:

g i jγ̇
i(t)γ̇ j(t)= g i jγ̇

i(0)γ̇ j(0).

Then elementary linear algebra proves the claim.

A key result is the variation of constant theorem for ODEs which essentially is a stability

estimate. This is known as the Alekseev-Gröbner Theorem [47, Corollary I.14.6]:

Theorem 3.7. Let y(t, t0, y0) be the solution to

y′(t)= f (t, y(t)), y(t0)= y0,

and z(t) be the solution to a perturbed equation:

z′(t)= f (t, z(t))+δ(t, z(t)), z(t0)= z0,

where ∂y f exists and is continuous. Then,

z(t)− y(t)=
∫ 1

0

∂y
∂y0

(t, t0, y0 + s(z0 − y0))(z0 − y0)ds+
∫ t

t0

∂y
∂y0

(t, s, z(s))δ(s, z(s))ds.

In order to use this theorem, it is convenient to write the geodesic equation (3.4) in the

following position-velocity form by defining qi = γi and v j = γ̇ j.

q̇i = vi,

v̇ j =−Γ j
klv

kvl ,
⇔ ẏ(t)= F(y(t)), (3.12)

where the Christoffel symbol Γ j
kl defined after equation (3.4) is a function of qi and y := [qi,v j]

is a curve in the tangent bundle.

This lemma bounds the error estimate in the Christoffel symbol:
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Lemma 3.4. Let M be a smooth manifold. Suppose g, g1, g2 are three smooth Riemannian

metrics on M and Γ,Γ1,Γ2 are their corresponding Christoffel symbols (with the indices sup-

pressed). Then, for integer s ≥ 0, there exists a constant C depending only on ‖g−1‖L∞ and

‖g‖W s+1,∞ such that

‖Γ‖W s,∞ ≤ C.

Suppose g1 and g2 sufficient close satisfying ‖g1 − g2‖L∞ < 1
2‖g−1

2 ‖−1
L∞ , then,

‖Γ1 −Γ2‖L∞ ≤ C′‖g1 − g2‖W1,∞ ,

where the constant C′ depends only on ‖g2‖W1,∞ and ‖g−1
2 ‖L∞ .

Proof. From the definition of the Christoffel symbol, the derivative of inverse metric for-

mula (3.10), and chain rule, clearly,

‖Γ‖L∞ ≤ ‖g−1‖L∞ |g|W1,∞ ,

‖Γ‖W1,∞ ≤ ‖g−1‖2
L∞ |g|2W1,∞ +‖g−1‖L∞ |g|W2,∞ ,

. . .

This proves the first claim. For the second one,

Γ1 −Γ2 = g−1
1 (∂g1)− g−1

2 (∂g2)= (g−1
1 − g−1

2 )(∂g2)+ g−1
1 (∂g1 −∂g2),

where (∂g i) is the lazy notation for the first-derivative terms in the definition of the Christof-

fel symbol. By assumption, ‖g−1
2 ‖L∞‖g1 − g2‖L∞ < 1

2 . Standard linear perturbation theo-

rem [60, I.4.24] implies that

‖g−1
1 − g−1

2 ‖L∞ ≤ ‖g1 − g2‖L∞‖g−1
2 ‖2

L∞

1−‖g−1
2 ‖L∞‖g1 − g2‖L∞

≤ 2‖g−1
2 ‖2

L∞‖g1 − g2‖L∞ ≤ ‖g−1
2 ‖L∞ .

This also shows that ‖g−1
1 ‖L∞ ≤ 2‖g−1

2 ‖L∞ . This proves the second estimate.

This lemma gives a crude stability bound for the smooth geodesic equation:

Lemma 3.5. Let y(t, t0, y0) be the solution to equation (3.12) with initial data y(t0)= y0. Then,

there exists a constant C depending on ‖g‖W2,∞ , ‖g−1‖L∞ , and |y0| such that∥∥∥∥ ∂y
∂y0

(t, t0, y0)
∥∥∥∥≤ eC(t−t0).

Proof. Let Φ(t) := ∂y
∂y0

(t, t0, y0). By the standard ODE theory [47, Theorem I.14.3], Φ solves

the linear ODE:

Φ̇(t)= ∂F
∂y

(t, y(t, t0, y0))Φ(t), Φ(t0)= I,
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where I is the identity matrix of the correct size. Using the definition of F,

∂F
∂y

=
 0 I

−∂iΓ
j
klv

kvl −2Γ j
ilv

l

 .

Then Lemma 3.4 applies to the Γ-terms and Lemma 3.3 applies to the v-terms. Hence, there

exists a constant C with the dependency as stated in the claim of this lemma such that:∥∥∥∥∂F
∂y

∥∥∥∥≤ C,

for all t ≥ t0. Then standard ODE comparison theorem proves the claim.

Given the previous lemmas, the differences between geodesics to different metrics with

the same initial condition can be bounded. A form useful to the case here is stated below:

Lemma 3.6. Let c be an n-simplex in Rn of Euclidean diameter h. Suppose ḡ is a Riemannian

metric on c and γ̄ a geodesic with initial condition γ(t0) = q0 ∈ c and γ̇(t0) = v0. Suppose g is

any Riemannian metric on c with ‖g− ḡ‖L∞ ≤ 1
2‖ ḡ−1‖−1

L∞ . Let γ be the geodesic under g with

the same initial data (q0,v0). Set y := [qi,v j] for γ as before and define ȳ similarly. Then,

before γ exits c, there exist constants C and M depending only on ‖ ḡ‖W2,∞ , ‖ ḡ−1‖L∞ , and |v0|
such that

|y(t)− ȳ(t)| ≤ CeM(t−t0)h‖g− ḡ‖W1,∞ .

Proof. By Theorem 3.7 and the definition of F(y) in equation (3.12),

|y(t)− ȳ(t)| ≤
∣∣∣∣∫ t

t0

∂ ȳ
∂y0

(Γi
jk − Γ̄i

jk)v jvk ds
∣∣∣∣≤ (sup

t
|v(t)|l∞)

∥∥∥∥ ∂ ȳ
∂y0

∥∥∥∥‖Γ− Γ̄‖L∞

∣∣∣∣∫ t

t0

v ds
∣∣∣∣ .

Because γ cannot exit c, ∣∣∣∣∫ t

t0

v ds
∣∣∣∣= |q(t)− q(t0)| ≤ h.

By Lemma 3.4, there is a constant C1 depending only on ‖ ḡ‖W1,∞ and ‖ ḡ−1‖L∞ such that

‖Γ− Γ̄‖L∞ ≤ C1‖g− ḡ‖W1,∞ .

By Lemma 3.5, there is a constant C2 depending on ‖ ḡ‖W2,∞ , ‖ ḡ−1‖L∞ , and |v0|, such that∥∥∥∥ ∂ ȳ
∂y0

∥∥∥∥≤ eC2(t−t0).

Moreover, on finite dimensional spaces, the | · |-norm controls the l∞-norm by a constant,

sup |v(t)|l∞ ≤ C3 sup |v(t)| ≤ C3C4|v0|,
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where C3 only depends on the dimension of v and C4 is from Lemma 3.3. Combining all these

estimates, one obtains

|y(t)− ȳ(t)| ≤ C1C3C4eC2(t−t0)|v0|h‖g− ḡ‖W1,∞ .

The rotation of the velocity vector at the interior facets can be bounded by the jump in

the unit normal vector across the facet. This jump is estimated by the following lemma:

Lemma 3.7. Fix an (k−1)-dimensional hyperplane H in Rk and any basis {t1, . . . , tk−1} for

vectors parallel to H. Let ḡ be a k-by-k symmetric positive definite matrix. Suppose g is

any k-by-k symmetric positive definite matrix satisfying |g− ḡ| ≤ 1
2 | ḡ−1|−1. Let n̄ and n be

the outward (with respect to the origin) unit vectors normal to H under ḡ and g respectively.

Then, there exists a constant C depending only on H and | ḡ−1| such that

|n− n̄| ≤ C|g− ḡ|.

Proof. Let u(s) = (1− s) ḡ+ sg for s ∈ [0,1]. Because the space of positive definite matrices is

convex, u(s) is positive definite for all s. With a computation of the Neumann series similar

to that at the end of the proof of Lemma 3.4, it can be shown that

|u−1| ≤ | ḡ−1|,

uniformly in s. Let T be the constant n× (n−1) matrix [t1, . . . , tn−1]. Then n(s) solves:

TT un = 0, nT un = 1.

The Euclidean norm of n is therefore bounded by a constant depending on {ti} and the norm

of u−1 and in turn ḡ−1, uniformly in s. Differentiate the equations with respect to t,

TT u′n+TT un′ = 0, 2nT un′+nT u′n = 0.

This is a linear system. Solve for n′,

n′ =−
T

n

−T

u−1

 T

n/2

T

u′n.

Because columns of T and n are u-orthogonal, the first term is bounded uniformly in s. The

rest of the terms in the above other than u′ are bounded uniformly in s as well. Then,

|n− n̄| = |n(1)−n(0)| =
∣∣∣∣∫ 1

0
n′(t)dt

∣∣∣∣≤ C
∫ 1

0
|u′|dt = C|g− ḡ|,

where C depends only on | ḡ−1| and the tangent vectors.
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3.9 Numerical examples: Kepler and Schwarzchild systems

In this section, we give two interesting numerical examples for the geodesic algorithm: the

Keplerian orbits and the Schwarzschildian orbits. All the Python scripts used in this section

can be found in the directory geodesics in the companion code repository to this thesis.

3.9.1 Kepler system

Kepler system is the classical Newtonian description of planetary motion under the gravity

of a central star. In natural units, the problem is, find q : [0,T]→R2 such that

q̈ =−q/|q|3, q(0)= q0, q̇(0)= v0.

This has a known exact solution, which is derived below. First it is easy to check that the

energy H and the angular momentum L defined below are conserved quantities [48, Equation

(2.5)]:

H := |q̇|2/2−1/|q|, L := q× q̇ = q1 q̇2 − q2 q̇1.

Switch to polar coordinates q =: (r cosθ, rsinθ). The above becomes:

H = (ṙ2 + r2θ̇2)/2−1/r, L = r2θ̇. (3.13)

After a tedious elementary computation, it can be shown that the trajectories are ellipses:

Lemma 3.8 (Equation (2.10) of [48]). Let e =
p

1+2HL2. Then, r and θ satisfies:

r = L2

1+ ecos(θ−θ0)
.

That is, the trajectories are ellipses with eccentricity e.

Proof. This is a well-known result. A direct proof is outlined here. Take r as a function of

θ. Then ṙ(t)= r′(θ)θ̇(t). Substituting the second part of equation (3.13) θ̇ = Lr−2 into the first

equation for H, after some algebra, one gets
p

1− e2 dr

e
√

e2 − (2Hr+1)2
= dθ,

The substitution u := (L2/r−1)/e leads to:

− dup
1−u2

= dθ =⇒ u = cos(θ−θ0),

which proves the claim.
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The time dependency still has to be solved. Use L = r2θ̇ in equation (3.13) to eliminate r:

L3 dθ
(1+ ecos(θ−θ0))2 = dt. (3.14)

A nontrivial change of coordinates has to be used to integrate this. Without loss of generality,

set θ0 = 0. The function

r = L2

1+ ecos(θ)
(3.15)

describes an ellipse with semi-major axis a := L2/(1−e2) in polar coordinates where the origin

is at the right focus. The new coordinate system in Figure 3.13 has the center of the ellipse

as the origin. For a point P on the ellipse, let R be its projection down to the x-axis, and Q

be the intersection of the ray RQ with the circle of radius a centered at the origin. The new

angle variable E :=∠QOR is called the eccentric anomaly.

O C
θE

P

Q

R

r

Figure 3.13: Definition of the eccentric anomaly

In Figure 3.13, the length of the segment PC is r, ∠PCR = θ, and the length of OC is ea

is the focal length. The fact that OR =OC+CR then implies that

acosE = ea+ r cosθ =⇒ cosθ = a
r

(cosE− e).

By equation (3.15) and the definition a = L2/(1− e2), the above becomes

cosθ = cosE− e
1− ecosE

.
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Substituting this back into equation (3.14), one gets the Kepler’s equation [38, Equation

(4.59)]:

E+ esinE = (1− e)3/2

L3 (t− t0).

To evaluate the exact solution, for each t, the above equation is solved using Newton’s method

to obtain E, which can in turn be used to evaluate cosθ and r and then q in the original

equation. This can be done to any precision for arbitrarily large t and will be used to evaluate

the long-time properties of the geodesic solver.

3.9.2 Jacobi’s formulation

The Kelper’s system can be formulated as a geodesic problem using the Jacobi’s formulation.

Recall the following classical theorem [1, Theorem 3.7.7]:

Proposition 3.3. Let (M, g) be a Riemannian manifold and V : M → R. A stationary point

γ : [a,b]→ M to the Lagrangian ∫ b

a

1
2

g i jγ̇
iγ̇ j −V dt,

with total energy E is a geodesic γ(s) of the Riemannian manifold (M, ḡ) with the Jacobi metric

ḡ := 2(E −V )g under the reparameterization

s(τ)= 2
∫ τ

0
E −V (γ(t))dt.

The Kelper’s system corresponds to a Lagrangian on the Euclidean space (R2,δi j) with

V (q)=−|q|−1. Its Jacobi metric is thus

g i j = 2(E +|q|−1)δi j. (3.16)

Here the potential V is always negative and is normalized so that V → 0 at infinity. There-

fore, when E ≥ 0, the trajectories are unbounded. When E < 0, the trajectories are trapped

inside the region where E −V remains positive. Within this region, the Jacobi metric g i j

is Riemannian. From the discussion in the previous subsection, the trajectories are in fact

ellipses. The corresponding geodesic equation in the symplectic formulation is:

q̇i = pi

2(E +|q|−1)
, ṗi =− |p|2qi

4(E +|q|−1)2|q|3
.

The solution q(s) to this system is related to the exact solution q(t) before via the reparame-

terization:

s(τ)=
∫ τ

0
2(E +|q(t)|−1)dt.

In the numerical experiments, the Jacobi metric (3.16) is used to find Kelperian orbits.
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3.9.3 Numerical examples for Kelperian orbits

For all the numerical experiments, parameters H =−1.5 and L = 0.5 were chosen for the Ke-

pler’s system. An elliptic annulus domain slightly bigger than the exact orbit is triangulated

using the FEniCS package mshr. A visualization of the discrete Kepler metric is given in

Figure 3.14.

Figure 3.14: Plot of a discrete Kepler metric. The color indicates the pointwise Euclidean

norm of the metric.

Examples of plots of the numerical solution can be found in the introduction (see Fig-

ure 3.3).

First, the convergence rates for a fixed maximum time are tested. For this set of numer-

ical experiments, the generalized geodesic equation is solved on a sequence of refiner and

refiner meshes for 1.65 period with the canonical Regge interpolant of the Jacobi metric as

the metric. For all the mesh sizes, the solver step size hs is chosen to be 2×10−5, which is

smaller than the smallest mesh size hm ∼ 7×10−5. This ensures the error convergence rate

is due to the better approximation of the metric. After each computation, the L∞-errors in

the position q, the energy H, and the momentum L are estimated from the maximum error

of the computed solution at points uniformly sampled at a density of 200 points per period.
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The results are summarized in Table 3.2. There the error rates without turning of p at the

cell boundaries are included as well, which corresponds to using the existing ODE geodesic

solver directly on the Regge metric pretending it is continuous. Detailed plots of the errors

are found in Figures 3.15, 3.16, and 3.17.

Metric mesh sizes max error in position max error in H max error in L

REG0 [64,128,256,512,1024] h1
m (1) h1

m (1) h1
m (1)

REG1 [64,128,256,512,1024] h2
m (h2

m) h2
m (h2

m) h2
m (h2

m)

REG2 [32,64,128,256,512] h3
m (h2

m) h3
m (h2

m) h3
m (h2

m)

REG3 [16,32,64,128,256] h4
m (h3.5

m ) h4
m (h3.5

m ) h4
m (h3.5

m )

Table 3.2: Convergence rate for a fixed maximum time. hm is the mesh size. The rates in

the parenthesis are for the cases without turning p at interior facets.

For the lowest degree, the turning p step is obviously important as the derivative of the

metric vanishes in the interior of all cells. From the above, this step is important even for

higher degree Regge elements in order to get clean optimal convergence rates.
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Figure 3.15: Blue: log-log plot of mesh size against position error for degree 0,1,2,3.

Red: reference slope for convergence of order 1,2,3,4.
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Figure 3.16: Blue: log-log plot of mesh size against error in the energy for degree 0,1,2,3.

Red: reference slope for convergence of order 1,2,3,4.
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Figure 3.17: Blue: log-log plot of mesh size against momentum error for degree 0,1,2,3.

Red: reference slope for convergence of order 1,2,3,4.

In the second sets of numerical experiments, the long time behavior of the error is as-

sessed. The Kepler Jacobi metric is interpolated into REGr and the generalized geodesic

equation is solved for 100 orbits for r = 0 and 300 orbits for r = 1,2,3. Then the computed

solutions are sampled uniformly at a density of 200 points per period and compared with the

exact solution. The growth of the error in the position, energy, and momentum are recorded.

The results are summarized in Table 3.3. There the error growth rates without turning of p

at interior facets are included as in the previous numerical experiment. Detailed plots of the

errors are found in Figures 3.18, 3.19, and 3.20.
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Metric mesh size error in position error in H error in L

REG0 160 t1 (t2) 1 (t1) 1 (t1)

REG1 96 t1 (t2) 1 (t1) 1 (t1)

REG2 96 t1 (t2) 1 (t1) 1 (t1)

REG3 48 t1 (t2) 1 (t1) εt1 (t1)

Table 3.3: The error growth rate in time t. The rates in the parenthesis are for the cases

without turning p at interior facets.

The observed rates agree with the expectation. The energy H is conserved for all time.

There should in fact be a small constant times t1 in the error in L for degree r ≥ 1. This is due

to the occasional variable step size. This becomes obvious only for r ≥ 2. For physical prob-

lems, r ≥ 2 would be rather rare for 3D problems due to memory constraints. So this should

not be an issue for most applications. It is also interesting to note that without the turning

p step, the error grows one order faster in t. Thus even for medium length simulations, the

turning p step is crucial. It should also be noted that the long time error behavior for REG0

is somewhat sporadic.
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Figure 3.18: Plot of time against the error in position for degree 0,1,2,3.

85



Figure 3.19: Plot of time against the relative error in energy for degree 0,1,2,3.
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Figure 3.20: Plot of time against the relative error in momentum for degree 0,1,2,3.

3.9.4 Schwarzschild system

The Schwarzschild metric is the most general static spherically symmetric solution to the

Einstein field equation in general relativity [15]. It can be used as a model for the gravita-

tional field around a star, to which the Newtonian mechanics used in the Kepler system is

a classical approximation [111, Chapter 6]. In spherical coordinates, the metric for a star of

mass M in natural units has the form [111, Equation 6.1.43]:

ds2 =−
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 +sin2θdφ2).

It can be shown that the Jacobi metric for a particle of mass m and total energy E in this

system is given by [42, Equation 3.1]:

ds2 =
(
E2 −m2 + 2Mm2

r

) dr2

(1− 2M
r )

2 + r2

1− 2M
r

(dθ2 +sin2θdφ2)

 ,
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where E ≤ m. In this numerical example, planar orbits are computed. By spherical symmetry,

without loss of generality, set θ = 2π. Then the Jacobi metric becomes:

ds2 =
(
E2 −m2 + 2Mm2

r

) dr2

(1− 2M
r )

2 + r2dφ2

1− 2M
r


It is known that the orbits are almost ellipses with precession (that is, the major axis of the

ellipsis rotates). A plot of the metric is shown in Figure 3.21. The mesh is obtained from

mshr. The red part corresponds to the singularity of the metric at the star while the deep

blue circle is where the Jacobi metric vanishes. Technically, the Jacobi metric is defined only

inside this circle. The computed curves always stays inside the circle so this does not cause

any problems.

Figure 3.21: Plot of the discrete Schwarzschild metric. The color indicates the pointwise

Euclidean norm of the metric.

Example orbit plots can be found in the introduction (see Figure 3.4).
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Chapter 4

Rotated generalized Regge finite
elements with applications in solid
mechanics

In this chapter, we use generalized Regge finite elements, REGr, to solve problems in solid

mechanics. In particular, in Section 4.2, we propose a mixed method for the biharmonic equa-

tion in dimension n ≥ 2, where we use REGr to discretize the divdiv operator on symmetric

matrix fields. Moreover, in Section 4.3, we propose another mixed method for the elasticity

equation in dimension n ≥ 2, where we use REGr to discretize div on symmetric matrix fields.

We demonstrate the effectiveness and convergence properties of both methods via numerical

examples.

In both methods, symmetric matrix-valued finite elements with normal-normal continu-

ity are needed. The key idea, is to use the trace shifting map

Su := u− I tru,

to transform tangential-tangential continuous REGr to normal-normal continuous finite el-

ements. We study the properties of this transformation and its geometric interpretations in

Section 4.1. We call S(REGr) rotated generalized Regge finite elements.

This study also reveals connections of REGr to previously known finite elements for sym-

metric tensor fields. In particular, in 2D, S(REGr) is equivalent to the well-known Hellan-

Herrmann-Johnson (HHJ) elements [13, 20] for the bending moment tensor in plate mod-

els. In 3D, S(REGr) forms a strict subspace of the TDNNS stress elements for elasticity by

Pechstein-Schöberl [89–91].
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On one hand, we can view the two proposed mixed methods as using S(REGr) to discretize

divdiv and div on symmetric matrix fields for applications in solid mechanics. This is the

main view of this chapter. On the other hand, however, we can equivalent consider these two

methods as using REGr to discretize divdivS and divS on symmetric matrix fields. These two

operators play important roles in the discretization of linearized relativity in later chapters.

We end this chapter with discussions of this connection and some other potential applications

in Section 4.4.

4.1 Rotated generalized Regge finite element

A vector-valued finite element with tangential continuity can clearly be transformed into one

with normal continuity via a simple rotation by 90◦ in dimension 2, as shown in Figure 4.1.

This, for example, relates Nédéléc edge elements of the first kind [85] to Raviart-Thomas

elements [95].

Figure 4.1: Rotation of 2D Nédéléc edge elements to Raviart-Thomas elements

However, such linear algebraic map between tangential continuous and normal continu-

ous vector finite elements can only exist in 2D.

Proposition 4.1. For m ≥ 3, suppose A ∈ Rm×m has the property that for any (m−1)-plane

P in Rm, A maps tangential vectors to P to normal vectors to P. Then A = 0. In particular,

there is no nonzero linear map taking piecewise smooth tangential continuous vector fields on

a mesh to piecewise smooth normal continuous vector fields.

Proof. Suppose A is such a map. Let {e1, . . . , em} be the Euclidean basis for Rm. First, it is

clear that e i
T Ae i = for all i so A has zeros on the diagonals. Because m ≥ 3, for any pair

(i, j) with 1≤ i < j ≤ m, we can find an (m−1)-plane containing the two vectors e i and e j. By
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assumption e i
T Ae j = e j

T Ae i = 0. This implies that all off diagonal entries of A are zero too.

Hence A = 0.

For symmetric matrix fields, however, the situation is quite different. Let P be an (n−1)-

plane in Rn and {t1, . . . , tn−1,n} an orthonormal basis adapted to P, such that {ti} are tangent

to P while n is normal to P. For a symmetric matrix field u in Rm, its tangential-tangential

part is the (m−1)× (m−1) symmetric matrix field

uP := [t1 · · · tm−1]T u[t1 · · · tm−1],

and its normal-normal-part is the scalar field nT un on P. Similar to the vector case, with

respect to a mesh, a piecewise smooth symmetric matrix field is tangential-tangential contin-

uous or normal-normal continuous if the tangential-tangential parts or normal-normal parts

are single-valued at all interior facets.

Theorem 4.1. Suppose m ≥ 2. Let S be the linear map on symmetric matrix fields:

Su := u− I tru.

The map S takes tangential-tangential continuous symmetric matrix fields to normal-normal

continuous symmetric matrix fields.

Proof. Let f be any interior facet of the mesh and {t1, . . . , tn−1,n} an orthonormal basis for Rm

adapted to f . By definition,

nT (Su)n = nT un− tru.

The trace can be computed via:

tru = nT un+
m−1∑
i=1

tT
i uti.

Hence,

nT (Su)n =−
m−1∑
i=1

tT
i uti =−tru f ,

is just the trace of the tangential-tangential part of u to f , which is continuous across interior

facets by assumption.

The definition of S is most intuitive in 2D. Let R be the clockwise 90◦-rotation matrix

R :=
 0 1

−1 0

 . (4.1)
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It is clear that this matrix rotates tangential vectors to every 1-plane in R2 to normal vectors.

Thus if u is tangential-tangential continuous, RT uR is normal-normal continuous. A direct

computation shows that

RT uR =−(Su)T . (4.2)

In dimension m ≥ 3, there is no such R as we show in Proposition 4.1.

Let T be a mesh in Rm. We use REGr(T ) to denote the space of generalized Regge

elements of degree r on T and NNr(T ) the space of normal-normal continuous piecewise

polynomial symmetric matrix fields of degree ≤ r on T .

Theorem 4.2. In dimension m ≥ 2,

S(REGr(T ))⊂NNr(T ).

In 2D, the two spaces are equal. For m ≥ 3, the inclusion is proper.

Proof. Theorem 4.1 implies the inclusion. In dimension 2, the rotation R is clearly invertible.

Equation (4.2) is the isomorphism between the two spaces. For m ≥ 2, S is invertible

S−1u = u− 1
m−1

I tru.

Normal-normal continuity entails only 1 condition at every interior facet, while tangential-

tangential continuity entails (n− 1) conditions at every interior facet. Thus when m ≥ 3,

for v ∈ NNr(T ), the inverse image S−1v is not necessarily in REGr(T ) in general. Hence

S(REGr(T )) is only a strict subspace.

4.2 Solving the biharmonic equation via the Hellan-Herrmann-

Johnson mixed formulation

Let Ω be a bounded Lipschitz domain in Rn. The biharmonic problem is, given f :Ω→R, find

u :Ω→R such that
∆∆u = f , in Ω,

u = ∂nu = 0, on ∂Ω.
(4.3)

This is a classic model problem with many applications including 2D Kirchhoff-Love plate

models [108], potential formulations in 3D elasticity [99], and stationary Cahn-Hilliard phase

separation models [114].

The continuous theory for the 2D biharmonic equation is well-established. In particular,

it can be shown that given f ∈ H−2 there is a unique solution u ∈ H̊2. An exposition of the
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existence and regularity theory on Lipschitz domains can be found in [45, Chapter 7]. Its

finite element discretization is also very mature. A survey can be found in [30, Chapter 6].

The theory for the 3D case, however, is less developed.

In this section, we first review the Hellan-Herrmann-Johnson (HHJ) mixed discretiza-

tion [7, 13, 20] of equation (4.3). We then show that S(REGr) is equivalent to the HHJ ele-

ment for the symmetric matrix field variable. After that we propose a mixed method for the

biharmonic equation in dimension m ≥ 2 using REGr and study the convergence properties

numerically.

4.2.1 Hellan-Herrmann-Johnson continuous mixed formulation

First, the biharmonic problem is put into a Hilbert space context via a mixed formulation.

Let Sn be the space of symmetric n-by-n matrices and

H(divdiv) := {u ∈ L2 ⊗Sn | divdivu ∈ H−1},

where divdiv means first taking the divergence of a matrix field row by row and then take

the divergence again of the resulting vector field. This space caries the graph norm.

The mixed formulation of equation (4.3) is, given f ∈ H−1, find (σ,u) ∈ H(divdiv)×H̊1 such

that
(σ,τ)−〈u,divdivτ〉 = 0, ∀τ ∈ H(divdiv),

〈divdivσ,v〉 = 〈 f ,v〉, ∀v ∈ H̊1,
(4.4)

where 〈 · , · 〉 is the duality pairing between H−1 and H̊1.

The following two theorems are well-known in the literature [69] (see also [13, 20]). Al-

though they were proven only in 2D, the same proofs work in any dimension. The proofs are

reproduced here for the convenience of the reader.

First, the mixed system (4.4) itself is well-posed:

Theorem 4.3 (Theorem 2.2 of [69]). Given f ∈ H−1, there exists a unique pair (σ,u) solving

system (4.4). Further there exists a constant C > 0 depending only on Ω such that

‖σ‖H(divdiv) +‖v‖H1 ≤ C‖ f ‖H−1 .

Proof. This follows from Brezzi’s theorem [19]. It is clear that (σ,τ) is coercive over the kernel

of divdiv. It remains to show the inf-sup condition for the bilinear form 〈v,divdivτ〉. Note

divdiv Iv = div∇v =∆v.
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For any v ∈ H̊1, let τ=−Iv ∈ H1 ⊗Sn ⊂ H(divdiv). Then,

〈v,divdivτ〉 = 〈v,−∆v〉 = (∇v,∇v)≥ c‖v‖2
H1 ,

where c depends on the Poincaré constant for Ω and

‖τ‖2
H(divdiv) = ‖τ‖2

L2 +‖divdivτ‖2
H−1 = ‖Iv‖2

L2 +‖∆v‖2
H−1 ≤ (n2 +1)‖v‖2

H1 ,

where n is the dimension of Ω. Thus the inf-sup constant is bounded below by a constant

depending only on the domain.

Second, the mixed system (4.4) can be used to solve the biharmonic equation (4.3).

Theorem 4.4 (Corollary 2.3 of [69]). Given f ∈ H−1, suppose (σ,u) is a solution to system (4.4),

then σ=∇∇u and u ∈ H̊2 solves the biharmonic equation (4.3) as a distribution.

Proof. The biharmonic equation (4.3) has a unique solution, say w ∈ H̊2 with ∆∆w = f . It

is clear that ∇∇w ∈ H(divdiv). Once we show that (σ,u) := (∇∇w,w) solves system (4.4), the

theorem is then proved by the well-posedness of system (4.4). First, for test functions y,

〈y,divdivτ〉 = (∇∇y,τ).

Since the set of test functions is dense in H̊2, the same holds for w. Hence,

〈w,divdivτ〉 = (∇∇w,τ)= (σ,τ),

which shows that the first equation of system (4.4) holds. Similarly, by definition, divdivσ=
divdiv∇∇w = ∆∆w = f as a distribution. Since the set of test functions is also dense in H̊1

the second equation of system (4.4) also holds.

4.2.2 Hellan-Herrmann-Johnson discretization

Let Ω be a Lipschitz polyhedral domain in Rn as before and Th a triangulation of Ω with

mesh size h. Set

V := {σ ∈ L2 ⊗Sn is piecewise H1 with normal-normal continuity},

W := {u ∈ H̊1 is piecewise H2}.

We also need some additional convenient notations. For σ ∈V , on a facet with unit normal n,

define

σnn := nTσn, σnτ :=σn−nσnn.
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Similarly, for u ∈W , let

∂nu := n ·∇u, ∂τu :=∇u−n∂nu.

We give V and W the following mesh dependent norms:

‖σ‖2
V :=∑

c
‖σ‖2

L2(c) +h‖σnn‖2
L2(∂c),

‖u‖2
W :=∑

c
‖u‖2

H2(c) +h−1‖∂nu‖2
L2(∂c),

where both sum over all the cells c in the mesh Th. Using the same notation, we define a

mesh-dependent divdivh by:

〈divdivhσ,v〉 :=∑
c

(∫
c
σ :∇∇v−

∫
∂c
σnn∂nv

)
=∑

c

∫
c
σ :∇∇v−∑

f

∫
f
σnn�∂nv�, (4.5)

where
∑

f means sum over all facets f of Th and the jump �∂nv� f is defined as the difference

of ∂nv on both sides of f if f is an interior facet and just ∂nv if f is a boundary facet. Clearly

from the definition, there exists a constant independent of h such that

|〈divdivhσ,v〉| ≤ C‖σ‖V‖u‖W .

The HHJ discretization chooses the following discrete subspaces of V and W :

Vh :=NNr(Th), Wh :=CGr+1(Th)∩ H̊1, r ≥ 0.

The NNr finite element space in 2D is referred to as the Hellan-Herrmann-Johnson element

in this thesis. Let T be a triangle. Then NNr(T) is defined by the shape functions

P r(T)⊗S2

and the degrees of freedom

σ 7→
∫

e
(nTσn)q, ∀q ∈P r(e) and all edges e of T,

σ 7→
∫

T
σ : τ ∀τ ∈P r−1(T)⊗S2,

where n is the outward unit normal vector to T.

Let R be the 90◦-rotation matrix defined in equation (4.1) and t := Rn the unit tangent

vector to the edges of T. The generalized Regge element REGr(T) in 2D is given by the same

shape functions

P r(T)⊗S2
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but tangential degrees of freedom

σ 7→
∫

e
(tTσt)q, ∀q ∈P r(e) and all edges e of T,

σ 7→
∫

T
σ : τ ∀τ ∈P r−1(T)⊗S2.

Note that in 2D, we have

S−1 = S.

Because S maps P r(T)×S2 bijectively into itself and∫
e
[nT (Sσ)n]q =

∫
e
(nT RTσRn)q =

∫
e
(tTσt)q,

we conclude that S : REGr(T) → NNr(T) is an isomorphism of finite elements. Since we

proved in early chapters of this thesis that REGr is unisolvent, NNr(T) defined here is uni-

solvent too. All the other properties carry over as well.

Given the discrete spaces, the discrete mixed problem is thus: given f ∈ H−1, find (σ,u) ∈
Vh ×Wh satisfying:

(σ,τ)−〈u,divdivh τ〉 = 0, ∀τ ∈Vh,

〈divdivhσ,v〉 = 〈 f ,v〉, ∀v ∈Wh,
(4.6)

First, we have consistency.

Theorem 4.5. Suppose u ∈ H3∩ H̊2 solves the biharmonic equation (4.3). Let σ :=∇∇u. Then

(σ,u) satisfies the discrete system (4.6).

Proof. First, u ∈ W so 〈u,divdivh τ〉 makes sense. Because u ∈ H̊2, �∂nu� = 0 at all facets of

the mesh. Hence, the first equation of (4.3) reads:

∑
c

(∫
c
σ : τ−

∫
c
τ :∇∇u

)
= 0, ∀τ ∈Vh.

This certainly holds because σ=∇∇u by definition. Second, u ∈ H3 implies that σ ∈ H1 ⊗Sn.

Hence σ ∈ V and 〈divdivhσ,v〉 still makes sense. Then, for an interior facet f , �σnτ� = 0 at

f because σ is continuous across facets. On the other hand, for boundary facets f , ∂τv = 0

because τ ∈ H̊1. Hence, ∑
c

∫
∂c
σnτ∂τv =∑

f

∫
f
�σnτ�∂τv = 0.

Thus, by the identity σn ·∇v =σnn∂nv+σnτ∂τv and integration by parts:

〈divdivhσ,v〉 =∑
c

(∫
c
σ :∇∇v−

∫
∂c
σnn∂nv

)
=∑

c

(∫
c
σ :∇∇v−

∫
∂c
σn ·∇v

)
=∑

c

∫
c
−divσ ·∇v.
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Sum over the cells and integrate by parts again:

〈divdivhσ,v〉 =
∫
Ω
−divσ ·∇v =

∫
Ω

vdivdivσ−
∫
∂Ω

nv ·divσ=
∫
Ω

vdivdivσ,

where the last equality follows from the fact that v = 0 on the boundary. By definition,

divdivσ=∆∆u = f . So the second equation of (4.6) is also satisfied. This proves the claim.

In [13], the following stability and convergence theorem was proved:

Theorem 4.6. Suppose the domain is a convex polygon. Let u ∈ H3 be a solution to the

biharmonic equation (4.3) and σ = ∇∇u. The discrete system (4.6) has a unique solution

(σh,uh) ∈NNr ×CGr+1∩H̊1. This pair satisfies:

‖σ−σh‖L2 +‖u−uh‖H1 ≤ Ch‖u‖H3 .

Moreover, if u is smooth, then

‖σ−σh‖L2 ≤ Chr+1‖u‖Hr+3 ,

and for r = 0,

‖u−uh‖H1 ≤ Ch‖u‖H3 , ‖u−uh‖L2 ≤ Ch2‖u‖H4 ,

while for r ≥ 1,

‖u−uh‖H1 ≤ Chr+1‖u‖Hr+2 , ‖u−uh‖L2 ≤ Chr+2‖u‖Hr+3 .

4.2.3 Discretization of biharmonic equation in higher dimensions using ro-
tated Regge elements

In dimension m, m ≥ 3, the form of the continuous biharmonic equation (4.3), the continuous

mixed formulation (4.4), and the mesh-dependent divdiv (4.5) remain the same as those in

2D. We noted that S(REGr), which is defined in dimension m for all m ≥ 2, is a discrete

subspace of the infinite-dimensional mesh-dependent space V . This opens up the possibility

of using the pair

Vh = S(REGr), Wh =CGr+1∩H̊1, r ≥ 0, (4.7)

in higher dimensions for the discretization (4.6) to solve the biharmonic equation. In this sub-

section, we first validate that in 2D, the space S(REGr) can be used to solve the biharmonic

equation in place of HHJr in practical implementations. Then we study the convergence of

the discrete space choice (4.7) for solving the 3D biharmonic equation.
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The finite element pair (4.7) can be implemented practically by: given f , find (µ,u) ∈
REGr ×Wh satisfying:

(Sµ,Sρ)−〈u,divdivh Sρ〉 = 0, ∀ρ ∈REGr,

〈divdivh Sµ,v〉 = 〈 f ,v〉, ∀v ∈Wh.

Direct computation shows that:

(Sµ,Sρ)= (µ,ρ)+ (m−2)(trµ, trρ),

which is coercive over the L2 norm for all m ≥ 2. The operator divdivS also arises in numer-

ical relativity. This connection will be explained in the later part of this chapter.

First for the 2D test, the author implemented HHJr+1 as part of this thesis in FEniCS.

To make this numerical test more realistic and interesting, the biharmonic equation:

∆∆u = f ,

is solved on the non-convex cracked domain formed by deleting the triangle determined by

{(2,0.8), (2,0), (2.5,0)} from the rectangle [0,3]× [0,2]. The mesh is shown in Figure 4.2.

Figure 4.2: Domain and mesh of the comparison test

The boundary conditions are as follows: u is clamped u = 0 and ∂nu = 0 at all of the

boundary except at the right edge where it is simply supported u = 0 and nT (∇∇u)n = 0. The

load is given by

f (x, y)=

1, if (x−1.5)2 + (y−1)2 < 0.2,

0, otherwise.
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The script rotated_regge/demo_biharmonic_2d.py in the companion repository of this the-

sis implemented the HHJ mixed formulation using quadratic S(REG2) to solve this problem.

A plot of the solution is given in Figure 4.3.

Figure 4.3: 2D biharmonic equation demo

Then in script rotated_regge/sreg_vs_hhj_2d.py, the same problem is solved with

HHJ2 and the discrete displacement variable uh computed using S(REG2) and HHJ2 are

compared. The difference in L2-norm is 1.080041764330992×10−13, which shows that there

is practically no difference.

Finally we test the convergence rates of the HHJ mixed formulation with S(REGr) nu-

merically. This is implemented by the script rotated_regge/biharmonic_conv.py in the

companion repository. The 2D case is done first to verify empirically the optimal convergence

rates stated in the previous subsection. For this, the biharmonic equation is solved on the

unit square with the following sinusoidal exact solution

u = sin2(πx)sin2(πy) ∈ C∞∩ H̊2.

A sequence of unstructured meshes are generated using the FEniCS package mshr, which in

turn internally uses CGAL [106] to generate the mesh. mshr takes a parameter “mesh size”

which scales inversely with the diameter of the mesh, that is, doubling the mesh size is very
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close to half the diameter of the mesh. An example of the output of mshr for the unit square

with mesh size 20 is shown in Figure 4.4.

Figure 4.4: Example of an unstructured 2D mesh for the convergence test

Table 4.1, Table 4.2, and Table 4.3 show the convergence test results for 2D with r = 0,1,2,

where ‖ · ‖ means the L2-norm. It is clear that the optimal convergence rates for both the σ

and u are observed.

Mesh size ‖u−uh‖ Rate ‖∇(u−uh)‖ Rate ‖σ−σh‖ Rate

8 1.996271e-02 4.736657e-01 4.670851e+00

16 5.287603e-03 1.97 2.171961e-01 1.15 2.370708e+00 1.00

32 1.291838e-03 1.98 1.074595e-01 0.99 1.210166e+00 0.94

64 3.269980e-04 1.97 5.399691e-02 0.99 6.086878e-01 0.99

128 8.137206e-05 1.99 2.694561e-02 1.00 3.037696e-01 1.00

Table 4.1: 2D biharmonic degree 0
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Mesh size ‖u−uh‖ Rate ‖∇(u−uh)‖ Rate ‖σ−σh‖ Rate

4 5.389649e-03 1.667406e-01 1.578812e+00

8 6.811778e-04 2.97 4.421494e-02 1.91 4.364165e-01 1.85

16 8.296795e-05 3.12 1.074281e-02 2.09 1.096000e-01 2.05

32 1.053586e-05 2.89 2.754467e-03 1.91 2.859750e-02 1.88

64 1.356525e-06 2.94 6.987778e-04 1.97 7.258006e-03 1.97

Table 4.2: 2D biharmonic degree 1

Mesh size ‖u−uh‖ Rate ‖∇(u−uh)‖ Rate ‖σ−σh‖ Rate

2 8.358579e-03 2.291764e-01 2.037017e+00

4 5.105807e-04 4.42 2.396781e-02 3.57 2.367370e-01 3.40

8 3.798470e-05 3.74 3.408628e-03 2.80 3.306554e-02 2.83

16 2.197489e-06 4.22 4.115211e-04 3.13 4.095130e-03 3.09

32 1.457209e-07 3.81 5.348559e-05 2.86 5.273608e-04 2.87

Table 4.3: 2D biharmonic degree 2

We then carry out the similar study for the convergence rates of the 3D biharmonic equa-

tion. The biharmonic equation is solved on the unit cube with the following sinusoidal exact

solution

u = sin2(πx)sin2(πy)sin2(πz) ∈ C∞∩ H̊2.

A sequence of randomly perturbed meshes are generated in the following way. Given a mesh

size, m, we first create a uniform triangulation with m nodes per edge. Then, we perturbed

the position of each internal mesh vertex by a 3D gaussian with zero mean and 10% of the

diameter of the uniform mesh as standard deviation. An example of the perturbed mesh is

given in Figure 4.5.
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Figure 4.5: Example of a randomly perturbed 3D mesh for the convergence test

Table 4.4, Table 4.5, and Table 4.6 shows the convergence test results for 3D with r =
0,1,2. Due to the scale of the 3D problems and the memory limitation of the LU solver,

especially for higher degrees, only relatively small meshes were tested. For r = 0, it seems

that the method leads to a convergent approximation. The convergence rate, however, might

be sublinear. For r ≥ 1, it seems that the discrete solution converges to the true solution but

the rates are suboptimal. It seems ‖u−uh‖ ∼ hr is one order suboptimal, ‖∇(u−uh)‖ ∼ hr is

optimal, ‖σ−σh‖ ∼ h1+r/2 is also suboptimal.

Mesh size ‖u−uh‖ Rate ‖∇(u−uh)‖ Rate ‖σ−σh‖ Rate

4 6.563758e-02 9.228645e-01 8.053509e+00

8 3.423797e-02 0.98 5.265519e-01 0.84 5.906622e+00 0.47

12 2.830453e-02 0.49 3.745720e-01 0.88 5.054238e+00 0.40

16 2.703180e-02 0.16 3.054689e-01 0.69 4.628145e+00 0.30

20 2.784529e-02 -0.14 2.733648e-01 0.51 4.491225e+00 0.14

24 2.640807e-02 0.45 2.401061e-01 1.11 4.290418e+00 0.39

Table 4.4: 3D biharmonic degree 0
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Mesh size ‖u−uh‖ Rate ‖∇(u−uh)‖ Rate ‖σ−σh‖ Rate

3 3.958634e-02 4.178022e-01 4.115063e+00

6 1.139772e-02 1.83 1.636156e-01 1.38 2.451652e+00 0.76

9 4.954564e-03 2.36 7.946402e-02 2.04 1.654588e+00 1.11

12 2.639824e-03 1.97 4.685069e-02 1.65 1.213616e+00 0.97

Table 4.5: 3D biharmonic degree 1

Mesh size ‖u−uh‖ Rate ‖∇(u−uh)‖ Rate ‖σ−σh‖ Rate

2 3.470993e-02 3.689862e-01 3.453816e+00

4 3.516079e-03 3.34 7.192239e-02 2.39 1.221303e+00 1.52

6 8.712791e-04 3.68 2.456078e-02 2.83 6.156819e-01 1.81

8 3.382587e-04 3.25 1.129189e-02 2.67 3.872619e-01 1.59

Table 4.6: 3D biharmonic degree 2

4.3 Solving the elasticity equation via the Pechstein-Schöberl

mixed formulation

The linear elasticity equation is: on a bounded Lipschitz domain Ω in Rn, given a vector field

f , the body force on Ω, find another vector field u, the displacement such that

divCεu =− f , in Ω,

u = 0, on ∂Ω,
(4.8)

where the compliance tensor C is given such that (C · , · ) is an inner product for symmetric

2-tensor fields. This equation is of great importance in solid mechanics. Many textbooks on

this equation and applications exist, for example [80].

The well-posedness and regularity theory for this equation is well-understood. In partic-

ular, for smooth C, given f ∈ H−1⊗Rn, there exists a unique u ∈ H̊1⊗Rn solving the problem.

An exposition of the regularity theory on various types of domains can be found in [45].

4.3.1 Continuous mixed formulation

The linear elasticity equation is put into a Hilbert space context via a mixed formulation

suitable for discretization. Here we use the TDNNS formulation first proposed in [89,90,100,
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101]. We review their continuous results and make the necessary changes to generalize them

to all dimensions.

In the TDNNS mixed formulation, we will use H(divdiv) for the stress variable σ= Cεu.

This is where rotated Regge elements would fit. We still need another space to pair with

divσ. For this, we need a Hilbert space for vector fields which is between L2⊗Rn and H1⊗Rn

derived from the de Rham complex:

HΛ1 = {u ∈ L2 ⊗Rn |∂iu j −∂ jui ∈ L2 for all i, j}.

This is a Hilbert space under the graph inner product

(u,v)HΛ1 = ∑
1≤k≤n

(uk,vk)+ 1
4

∑
1≤i< j≤n

(∂iu j −∂ jui,∂iv j −∂ jvi).

In 2D, HΛ1 is the space H(rot). In 3D, HΛ1 is the space H(curl). In general, this is the

space of L2-differential 1-forms [8, 10]. It can be shown using integration by parts and a

density argument [8, page 19] that elements of HΛ1 has a well-defined tangential trace to

the boundary. More precisely, there is a bounded linear map HΛ1 → H−1/2(∂Ω)⊗Rn. Let H̊Λ1

be the subspace of HΛ1 with vanishing tangential trace. We will show that there is a duality

pairing 〈divτ,v〉 for τ ∈ H(divdiv) and v ∈ H̊Λ1. This requires several steps.

First, we recall the following the regular decomposition result (Lemma 5 in [33] with

k = 1):

Proposition 4.2. On a bounded Lipschitz domain Ω, for all u ∈ H̊Λ1, there exists φ ∈ H̊1,

z ∈ H̊1⊗Rn such that u =∇φ+z with ‖φ‖H1 +‖z‖H1 ≤ M‖u‖HΛ for some constant M depending

only on Ω.

Second, using a similar argument to Lemma 2.1 of [89], we show the following duality

result:

Proposition 4.3. On a bounded Lipschitz domain, let

H−1(div) := {u ∈ H−1 ⊗Rn | divu ∈ H−1}.

Then, the dual space of H−1(div) is:

(H−1(div))′ = H̊Λ1.

In particular, divH(divdiv) ⊂ H−1(div), therefore the pairing 〈divτ,v〉 makes sense for τ ∈
H(divdiv) and v ∈ H̊Λ1 and leads to a bounded bilinear form on this pair of spaces.
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Proof. By Proposition 4.2, we have the following equivalence of norms on distributions:

‖ f ‖(H̊Λ1)′ = sup
u∈H̊Λ1

〈 f ,u〉
‖u‖HΛ1

∼ sup
φ,z

〈 f ,∇φ+ z〉
‖φ‖1 +‖z‖1

∼ sup
φ

〈 f ,∇φ〉
‖φ‖1

+sup
z

〈 f , z〉
‖z‖1

= ‖div f ‖−1 +‖ f ‖−1,

where a ∼ b means that there exist constants c and C depending only on the domain such

that ca ≤ b ≤ Ca. By definition, (H̊Λ1)′ is the space of distributions with bounded dual norm.

This implies the first claim. Finally, it is clear that for σ ∈ H(divdiv), divσ ∈ H−1 ⊗Rn and

divdivσ ∈ H−1. This proves the last claim.

Let A := C−1 be the compliance tensor. The TDNNS continuous formulation is: given

f ∈ H−1(div), find σ ∈ H(divdiv), u ∈ H̊Λ1 such that

(Aσ,τ)+〈u,divτ〉 = 0, ∀τ ∈ H(divdiv),

〈divσ,v〉 =−〈 f ,v〉, ∀v ∈ H̊Λ1.
(4.9)

First we show that this system is well-posed. The theorem below largely follows the ar-

guments in Theorem 2.3 of [89]. The proof there has a gap where they only proved 〈divσ,v〉 =
(w,v)H(curl) for v ∈ H̊1⊗R3 but in the end took v = w where w ∈ H(curl) is from a bigger space.

Here we give the correct proof with more details and greater generality.

Theorem 4.7. On a bounded Lipschitz domain Ω in Rn, there exists a unique solution (σ,u)

to system (4.9). Further there exists a constant M depending only on Ω and the coefficient C

such that

‖σ‖H(divdiv) +‖u‖HΛ1 ≤ M‖ f ‖(H̊Λ1)′ .

Proof. This follows from Brezzi’s theorem [19]. We only need to show the inf-sup condition

for 〈divτ,v〉. Fix any v ∈ H̊Λ1. Let w ∈ H̊1 ⊗Rn be the solution to

(Cεw,εy)= (v, y)HΛ1 , ∀y ∈ H̊1 ⊗Rn.

The left-hand side is a bounded coercive bilinear form. Hence such unique solution w exists.

Define τ := Cεw. Then τ ∈ L2 ⊗Sn with

‖τ‖L2 = ‖Cεw‖L2 ≤ M1‖w‖H1 ,

where M1 is a constant depending on Ω and C. By Korn’s inequality and the equation defin-

ing w,

‖w‖2
H1 ≤ M2(Cεw,εw)= M2(v,w)HΛ1 ≤ M2‖v‖HΛ1‖w‖HΛ1 ≤ M2‖v‖HΛ1‖w‖H1 ,

for some constant M2 depending on Ω and C. Hence,

‖w‖H1 ≤ M2‖v‖HΛ1 , ‖τ‖L2 ≤ M1M2‖v‖HΛ1 .
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Moreover, by definition

(τ,εy)= (v, y)HΛ1 , ∀y ∈ H̊1 ⊗Rn. (4.10)

Take any test function ρ. We note that ∇ρ has the property:

∂i∂ jρ−∂ j∂iρ = 0.

Thus if we choose y=∇ρ, we get:

(τ,ε∇ρ)= (v,∇ρ)HΛ1 = (v,∇ρ)≤ ‖v‖L2‖ρ‖H1 . (4.11)

Notice ε∇ is just the Hessian. Thus by definition, divdivτ is a distribution in H−1 with:

‖divdivτ‖H−1 ≤ ‖v‖L2 . (4.12)

Hence τ ∈ H(divdiv) with

‖τ‖H(divdiv) ≤ M3‖v‖HΛ1 .

Now take the regular decomposition of v =: ∇φ+ z for some φ ∈ H̊1 and z ∈ H̊1 ⊗R3 with

‖φ‖H1 +‖z‖H1 ≤ M4‖v‖HΛ1 . The z-part can be plugged into equation (4.10) by choosing y= z,

〈−divτ, z〉 := (τ,εz)= (v, z)HΛ1 .

Because test functions are dense in H̊1 and both sides of equation (4.11) are continuous in ρ

under the H1-norm on ρ. By continuity, equation (4.11) holds for ρ ∈ H̊1. Choose ρ =φ,

〈−divτ,∇φ〉 := (τ,ε∇φ)= (v,∇φ)HΛ1 .

Adding two preceding equations up, we get

〈−divτ,v〉 = ‖v‖2
HΛ1 .

This equation and estimate (4.12) together imply the inf-sup condition for 〈divτ,v〉. This

proves the theorem.

The mixed system (4.9) solves the linear elasticity equation (4.8) when the body force f is

in H−1(div).

Theorem 4.8. On a bounded Lipschitz domain, suppose f ∈ H−1(div). Let (σ,u) be the unique

solution to the mixed system (4.9). Then u ∈ H̊1⊗Rn and its solves the elasticity equation (4.8).
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Proof. The elasticity equation has a unique solution in H̊1⊗Rn when f is from a bigger space

H−1 ⊗Rn. Given this special f , let w be that unique solution in H̊1 ⊗Rn. Since the mixed

system has a unique solution, we have proven the theorem if we can show that (Cεw,w)

solves the mixed system. Let σ := Cεw. It is clear that σ ∈ L2 ⊗Sn. The fact that w solves

the elasticity equation implies that divσ=− f ∈ H−1(div), that is, divdivσ ∈ H−1. Hence σ ∈
H(divdiv) and satisfies the second equation of system (4.9). For vector-valued test functions

y we have,

〈y,divτ〉 =−(τ,εy), ∀τ ∈ H(divdiv).

By density, the above holds for y= w ∈ H̊1 ⊗Rn as well. Hence,

〈w,divτ〉 = (τ,−εw)=−(τ, A(Cεw))=−(τ, Aσ).

This shows that the first equation of system (4.9) is satisfied as well.

4.3.2 Rotated Regge element discretization

In this subsection, we show how to discretize the mixed formulation (4.9) using generalized

Regge elements. We will state an implementable method, prove its consistency, and test it

numerically in the next subsection. The proof for stability and error estimates will be future

work. The approach here follows closer to the mesh-dependent norm analysis framework

of [13]. A different analysis approach for a different finite element discretization of the same

mixed formulation (4.9) is given in [90].

The relationship between H(divdiv) and piecewise normal-normal continuous finite ele-

ments were already studied in the biharmonic section of this chapter. We still use S(REGr) to

discretize H(divdiv). The finite element theory for the space HΛ1 is well-understood [8, 10].

We use the FEEC element P rΛ1 to discretize HΛ1. In dimension 2 and 3, P rΛ1 is the space

of Nédéléc edge elements of the second kind, which is widely used. The only thing that re-

mains here is to derive the formula for the pairing 〈divτ,v〉. It is more natural to define this

in mesh dependent spaces, in a fashion very similar to the that of the biharmonic case.

Let Ω be a Lipschitz polyhedral domain in Rn and Th a mesh of size h. Define

V := {piecewise H1 symmetric matrix fields with normal-normal continuity},

W := {piecewise H1 vector fields in H̊Λ1 with tangential continuity}.

Note that piecewise H1 vector fields with tangential continuity already forms a subspace of

HΛ1. Hence the condition H̊Λ1 in the definition of W simply means that elements of W have
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vanishing tangential trace on the boundary. We make V and W Hilbert spaces by giving them

mesh-dependent norms:

‖σ‖2
V =∑

c
‖σ‖2

L2(c) +h‖σnn‖2
L2(∂c),

‖u‖2
W =∑

c
‖u‖2

H1(c) +h−1‖u‖2
L2(∂c),

where both sums are over all the cells c in mesh Th. We define a mesh-dependent divh

operator: for any (τ,v) ∈V ×W ,

〈divh τ,v〉 :=∑
c

∫
c
−τ : εv+

∫
∂c
τnnvn =∑

c

∫
c
−τ : εv+∑

f

∫
f
τnn�vn�, (4.13)

where n is the unit outward normal to a cell c, the second sum is over all facets f of the mesh,

and as before τnn := nTτn and vn := v ·n. It is clear that this is well-defined. Further, it is a

bounded bilinear form: there is a constant M independent of h such that

|〈divh τ,v〉| ≤ M‖τ‖V‖v‖W .

We now introduce our finite element choices as subspaces of V and W . For r ≥ 1, let

Vh := S(REGr), Wh :=P rΛ1 ∩ H̊Λ1.

The discrete problem corresponding to mixed system (4.9) is: given f ∈ H−1(div), find (σ,u) ∈
Vh ×Wh, such that

(Aσ,τ)+〈u,divh τ〉 = 0, ∀τ ∈Vh,

〈divhσ,v〉 =−〈 f ,v〉, ∀v ∈Wh.
(4.14)

An obvious question is, given that divh is not really div and Vh ×Wh does not have an ap-

parent relationship to H(divdiv)× H̊Λ1, how is system (4.14) a discretization of the mixed

system (4.9) at all. This situation is the same as the HHJ discretization of the biharmonic

equation. This all makes sense if we have consistency, which means that solutions of the

linear elasticity equation satisfies (4.14) in some sense, and discrete stability, which means

that (4.14) itself is well-posed uniformly in h. We prove the consistency here and leave the

stability as future work.

We need more regularity than the minimal for this consistency theorem to hold. It is

known that the H2 regularity for the elasticity equation (4.8) holds for smooth C on convex

polyhedral or C2 domains [45] for f ∈ L2 ⊗Rn.

Theorem 4.9. Suppose u ∈ (H̊1 ∩H2)⊗Rn solves the elasticity equation (4.8). Let σ := Cεu.

Then (σ,u) satisfies system (4.14).
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Proof. First, it is clear that u ∈W and σ ∈ H1⊗Sn ⊂V . Hence the equations in system (4.14)

still make sense for this continuous (σ,u). Since u ∈ H̊1 globally, �un� = 0 (this includes the

condition that u vanishes on the domain boundary). Thus,

〈u,divh τ〉 =
∫
Ω
−τ : εu =

∫
Ω
−Aτ : Cεu =

∫
Ω
−Aτ :σ=−(Aσ,τ).

This proves that the first equation is satisfied. Second, because σ ∈ H1⊗Sn, we have �σnτ� = 0

at all interior facets. On the other hand, vτ = 0 at all boundary facets. So overall,

∑
c

∫
∂c

σnτvτ =
∑
f

∫
f
�σnτ�vτ = 0.

Because u ∈ H2 ⊗Rn, we have f ∈ L2 ⊗Rn. Thus,

(− f ,v)= (divσ,v)=∑
c

∫
c
(divσ)v =∑

c

∫
c
σ : (−εv)+

∫
∂c
σn ·v

=∑
c

∫
c
σ : (−εv)+

∫
∂c
σnnvn = 〈divhσ,v〉,

where the second to last equation used the decomposition σn · v = σnnvn +σnτvτ and the

previous identity. This proves that the second equation is satisfied as well.

For software implementation of system (4.14) in an environment where REGr is already

implemented, as is the case for FEniCS, the following equivalent formulation should be used:

find (ρ,u) ∈REGr ×Wh such that

(ASρ,Sτ)−〈u,divh Sτ〉 = 0, ∀τ ∈REGr,

〈divh Sρ,v〉 =−〈 f ,v〉, ∀v ∈Wh.
(4.15)

4.3.3 Numerical experiments

In this subsection, we show through numerical experiments that discretization (4.15) is sta-

ble but converges with suboptimal L2 error rates in the σ variable. We further show that this

method can be implemented to handle different boundary conditions in both 2D and 3D and

does not suffer from locking.

First, we look at the convergence test for 2D. The elasticity equation (4.8) is solved on the

unit square with the following exact solution:

u =
 sin(πx)sin(πy)

15x(1− x)y(1− y)

 ∈ C∞∩ H̊1.
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A sequence of unstructured meshes are again generated using the FEniCS package mshr.

The procedure is essentially the same as the one used for the biharmonic case. The im-

plementation can be found in the script rotated_regge/tdnns_conv.py in the companion

repository.

Table 4.7, Table 4.8, and Table 4.9 show the convergence test results for 2D with r = 1,2,3,

where ‖ · ‖ means the L2-norm. It is clear that the L2 convergence rate is optimal for u but 1

order suboptimal for σ.

We also tested the same formulation with Nédéléc edge elements of the first kind of the

same degree, a smaller space, in place of Nédéléc edge elements of the second kind. The

resulting scheme is 1 order suboptimal in both the stress and displacement variables. In

particular, it is unstable for degree 1.

Mesh size ‖u−uh‖ Rate ‖σ−σh‖ Rate

8 7.094244e-03 1.687453e-01

16 1.742923e-03 2.08 8.163971e-02 1.08

32 4.548902e-04 1.88 4.239306e-02 0.92

64 1.130114e-04 2.00 2.114090e-02 1.00

128 2.834921e-05 1.98 1.062154e-02 0.99

Table 4.7: 2D elasticity degree 1

Mesh size ‖u−uh‖ Rate ‖σ−σh‖ Rate

4 1.945019e-03 3.559110e-02

8 2.633687e-04 2.87 8.278951e-03 2.10

16 3.096338e-05 3.17 1.910408e-03 2.17

32 3.931342e-06 2.89 4.794675e-04 1.94

64 5.015333e-07 2.95 1.224961e-04 1.96

Table 4.8: 2D elasticity degree 2
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Mesh size ‖u−uh‖ Rate ‖σ−σh‖ Rate

2 1.346217e-03 1.646650e-02

4 1.031960e-04 4.06 2.660197e-03 2.88

8 7.203260e-06 3.83 3.054329e-04 3.11

16 4.397091e-07 4.14 3.678944e-05 3.13

32 2.857008e-08 3.83 4.766975e-06 2.87

64 1.779997e-09 3.98 5.977013e-07 2.98

Table 4.9: 2D elasticity degree 3

We then study the convergence rates in 3D. The linear elasticity equation is solved on the

unit cube with the following exact solution:

u =


sin(πx)sin(πy)sin(πz)

15x(1− x)y(1− y)z(1− z)

7x(1− x)sin(πy)sin(πz)

 ∈ C∞∩ H̊1.

A sequence of randomly perturbed meshes, like the one in Figure 4.5, are generated in the

same way as in the 3D biharmonic case.

Table 4.10 shows the convergence test results for 3D with r = 1. Due to a regression bug

in FEniCS, the bilinear form fails to assemble for r ≥ 2. It seems that what was observed in

2D still holds, that the L2 convergence rate is optimal for u but 1 order suboptimal for σ.

Mesh size ‖u−uh‖ Rate ‖σ−σh‖ Rate

2 3.391169e-01 1.832970e+00

4 1.049142e-01 1.86 1.048096e+00 0.89

6 4.901894e-02 1.54 7.042752e-01 0.81

8 2.892313e-02 2.01 5.382773e-01 1.02

10 1.908383e-02 2.07 4.314971e-01 1.10

Table 4.10: 3D elasticity degree 1

We then look at a more interesting 2D example. The domain and its unstructured mesh

is shown in Figure 4.6. It is given by the rectangle [0,3]×[0,1] with three disks removed, one

of radius 0.2 centered at (0.4,0.3), one of radius 0.375 centered at (1.5.0.5), and one of radius

0.3 centered at (2.4,0.6). The material is isotropic and homogeneous, that is, the stress and
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the strain are related by

εu = (1+ν)σ−νI trσ
E

,

where the Young’s modulus E = 10 and the Poisson’s ratio ν = 0.2. The boundary condition

is given as follows. It is clamped on the left-side u = [0,0] and compressed on the right-side

u = [−1,0]. The top-side, bottom-side, along with the holes are traction-free σn = 0. No

external force is applied to this body.

Figure 4.6: Domain and mesh for the 2D elasticity example

We note that in the TDNNS formulation, the tangential part of the displacement uτ is

an essential boundary condition, while the normal part is a natural boundary condition.

Suppose un = gn on the part of the boundary ΓN . Then we get∫
ΓN

τnn gn

in the right-hand side of the first equation of (4.14). Similarly, the normal-normal traction is

an essential boundary condition, while the normal-tangential traction is a natural boundary

condition. The normal-tangential traction leads to an analogous additional boundary integral

term in the right-hand side of the second equation of (4.14).

This problem is solved with degree r = 1. A plot of the solution is shown in Figuer 4.7.

Here the domain is deformed using the displacement vector field and colored by the von Mises

stress, which is proportion to σd :σd where the deviatoric stress σd :=σ− 1
2 I trσ.
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Figure 4.7: Visualization of the 2D solution with Poisson ratio ν= 0.2

In linear elasticity, it is well-known that the primal method (using the displacement alone

as the main variable) suffers from the locking phenomenon: when the Poisson’s ration is close

to 0.5, the quality of the numerical solution degrades substantially. Mixed methods should

not suffer from this. In Figure 4.8, we show the solution of the same problem when the

Poisson’s ratio is ν= 0.499999. It is clear that the numerical solution is free of artifacts and

is only slightly different from the previous case as expected. This confirms that this method

does not suffer from locking.

113



Figure 4.8: Visualization of the 2D solution with Poisson ratio ν= 0.499999

We then look at a more interesting problem in 3D. The domain is the box [0,4]×[0,2]×[0,1]

with two cylindrical holes, one along the y-axis centered at (4/3,0,1/2) with radius 0.3 and

another one along the z-axis centered at (8/3,1,0) with radius 0.7. A mesh is created from

this domain using mshr. The domain and the mesh are shown in Figure 4.9 and Figure 4.10.
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Figure 4.9: 3D problem domain

Figure 4.10: 3D problem mesh

The material is again isotropic and homogeneous with Young’s modulus E = 1.0 and Pois-
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son’s ratio ν= 0.2. The boundary condition is as follows. The left-end is clamped u = [0,0,0],

while the right-end is been rotated by π/6. There is no external force. Figure 4.11 shows a vi-

sualization of the numerical solution. Again the domain is deformed using the displacement

vector field and colored by the von Mises stress which is proportion to σd : σd where the 3D

deviatoric stress σd :=σ− 1
3 I trσ.

Figure 4.11: Visualization of the 3D solution with Poisson ratio ν= 0.2

Figure 4.12 shows a visualization of the numerical solution when the Poisson’s ratio is

ν= 0.499999 instead. Again we observe that the solution is free of artifacts and fairly similar

to the previous solution as expected. This confirms that this method does not suffer from

locking in 3D as well.
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Figure 4.12: Visualization of the 3D solution with Poisson ratio ν= 0.499999

4.4 Connection with numerical relativity

We end this chapter by describing the connection of the two problems studied in this chapter

to numerical relativity. It will be shown in the model problems chapter of this thesis that the

linearized Einstein equation (around the Minkowski metric) reads:

divdivSγ= 0,

divSγ′+curlcurlβ= 0,

Sγ′′+2einγ+S∇∇α−2Sεβ′ = 0.

where α is scalar field, β is a vector field, γ is a symmetric matrix field, primes indicate the

time derivatives, and ein is the linearized (Euclidean) Einstein tensor. This system has the

structure of a constrained evolution equation, where the first two equations are constraints

and the last equation is the evolution equation.

We would eventually want to solve this equation using the generalized Regge elements for

the variable γ. For example, we would at least want to know to what extent the constraints

are satisfied. We then need to look at divdivS and divS of functions in REGr. Notices that

these two are exactly the main operators in the HHJ mixed formulation of the biharmonic

equation and the TDNNS formulation of the linear elasticity equation we studied in this
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chapter.

In some sense, these two are the most natural equations derived from the operators

divdivS and divS. If an operator L is invertible, then we naturally would study the so-

lution of Lσ= f . When the operator L has a nontrivial kernel, like the two operators here, it

is natural to study the regularized problem:

min‖σ‖, subject to Lσ= f .

Indeed the mixed formulations are just Lagrange multiplier versions of these regularized

problems. The studies of these problems reveal a lot of useful information on the discretiza-

tion these operators.

As will be shown later in this thesis, the Einstein equation as given has robustness is-

sues and its discretization requires regularization. One of the most promising approaches

is to add functions of the constraints into the evolution equation to regularize it. Hence the

understanding of discretization divdivS and divS provides useful information for the dis-

cretization of the Einstein equation as well. For example, what we learned in this chapter

would suggest that the constraint equation involving divdivSγ is likely to hold in the dis-

crete sense, when tested against CGr+1, while the constraint involving divSγ′ is likely to

hold when tested against P rΛ1.
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Chapter 5

Model problems in relativity for
discretization

In this chapter, we first identify two linear problems below which are of key importance

for developing and analyzing the Galerkin discretization of the fully nonlinear space-time

Einstein equation. They are the Cauchy Problem 5.1 and the Source Problem 5.2. Both are

quoted below for the convenience of reader. Here S and J are two algebraic operators on

symmetric matrix-valued functions:

Su = u− I tru, Ju = u− 1
2

I tru,

and ein is a second-order linear differential operator derived from linearizing the Einstein

tensor at the Euclidean metric (defined in equation (5.5)).

Cauchy Problem. Given two smooth symmetric matrix fields γ0,γ1 satisfying the com-

patibility conditions:

divdivSγ0 = 0, divSγ1 = 0,

find a symmetric matrix field, such that γ(0)= γ0, γ′(0)= γ1, and for all t > 0:

Sγ′′+2einγ= 0.

Source Problem. Given a smooth symmetric matrix field f in the range of ein, find a

symmetric matrix field u such that

2einu = f , div Ju = 0.

The derivation of the two problems from the fully nonlinear space-time Einstein equation

is cut into 5 parts, from Section 5.1 to Section 5.5. We also discuss why they are important

and other applications of these two problems.
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In Section 5.6, we prove that both model problems are well-posed on the flat torus (a

cube with periodic boundary conditions): Theorem 5.2 for the Cauchy Problem and Theo-

rem 5.1 for the Source Problem. However, we point out that both problems are flawed in

some sense and need regularization. In particular, the Source Problem is only solvable for

special divergence-free data. With numerical errors, it is likely that any discretization will

lead to an inconsistent linear system. There is also no efficient solvers for such potentially

inconsistent linear systems. Thus it is not suitable for direct discretization. The Cauchy

Problem is only weakly hyperbolic but not strongly hyperbolic. As will be shown, this means

that though the equation itself is well-posed, it can become ill-posed with either lower-order

terms or variable coefficients. Since these two are inevitable eventually for solving the non-

linear problem, the Cauchy Problem is not suitable for direct discretization either.

In Section 5.7, we introduce the regularized versions of the two model problems: Regu-

larized Source Problem 5.3 and Regularized Cauchy Problem 5.4. These two are also quoted

below for the convenience of the reader. Let Ω be a bounded smooth contractible domains in

R3 and n its unit outward normal vector on the boundary. Then τ := I −nnT is the projection

to the tangential space of the boundary. For a symmetric matrix-valued function u on Ω, on

the boundary we define

unn := nT un, unτ := nT uτ, uτn := τT un = uT
nτ, uττ := τT uτ (5.1)

to be the normal-normal, normal-tangential, tangential-normal, and tangential-tangential

part of u respectively. Set

V := {u ∈ H1 ⊗S3 |uττ = 0, unn = 0 on ∂Ω}, Y :=V ∩ {u ∈ H2 ⊗S3 |∂nunτ = 0 on ∂Ω}.

Regularized Source Problem. Given f ∈ L2 ⊗S3, find u ∈Y such that

−∆u = f .

To simplify the notation, time dependent function spaces like C0([0,T],H1) is shortened

to C0H1.

Regularized Hyperbolic Problem. Given u0,u1 ∈Y and f ∈ C0(L2⊗S3), find u ∈ C0Y∩
C1V ∩C2(L2 ⊗S3) such that u(0)= u0, u′(0)= u1, and for all t > 0,

u′′−∆u = f .

Theorem 5.3 shows that the Regularized Source Problem is a well-posed elliptic problem.

Theorem 5.4 proves that the Source Problem can be solved using the Regularized Source

Problem with the right-hand side S f . Theorem 5.5 shows that the Regularized Hyperbolic
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Problem is also well-posed. In fact it is strongly hyperbolic. Theorem 5.6 proves that we can

use the Regularized Hyperbolic Problem to solve the Cauchy Problem. The key conclusion

is that the two regularized problems are suitable for discretization and can be used to solve

problems in relativity.

Finally in the last Section 5.8, we hint at how generalized Regge elements can be used to

solve these two regularized problems. This study is still in its very early stages and will be

future work.

5.1 The fully nonlinear space-time Einstein equation

The Einstein field equation [36] is a well-established model for large-scale structures of the

universe. It is a nonlinear second-order partial differential equation for symmetric 2-tensor

fields. Relevant facts are recalled here for the convenience of the reader. Further details can

be found in many textbooks, for example [49,81,111].

We will write down the Einstein equation in coordinates following the notation in [5]. The

4 dimensions of the spacetime are labeled by integers 0,1,2,3, where 0 is for the time. When

used as indices, lower case Greek letters α,β, . . . are for the spacetime and can take the values

0,1,2,3, while lower case Latin letters i, j, . . . are for the spatial part only and can take the

values 1,2,3. Einstein’s summation convention (repeated indices are always summed over)

is assumed.

The unknown of the Einstein equation is the spacetime metric gαβ, which is a pseudo-

Riemannian metric of the signature (−,+,+,+). Its associated Christoffel symbol is a nonlin-

ear function of the metric containing its first-order derivatives [5, Equation (1.8.12)]:

Γαβγ := 1
2

gαµ(∂γgβµ+∂βgγµ−∂µgβγ),

where gαβ is the inverse of gµν, that is, gαβgβµ = δαµ . With that, the Riemann curvature tensor

is defined as a nonlinear function containing the first-order derivatives of the Christoffel

symbol [5, Equation (1.9.2)]:

Rα
βµν := ∂µΓαβν−∂νΓαβµ+ΓαρµΓρβν−ΓαρνΓ

ρ

βµ
.

The Einstein tensor is then defined in terms of the Riemann tensor [5, Equation (1.10.4)]:

Gµν := Rα
µαν−

1
2

gµνgβγRα
βαγ,

Our main equation, the vacuum Einstein field equation is:

Gµν = 0. (5.2)
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Following the convention, we simplify the notation by using the metric gαβ to raise and

lower the indices implicitly: for example, given uαβ, uµ
β

is defined as uαβgµα.

Proposition 5.1. The Einstein tensor as a function of the metric splits as a second-order

principal term and lower-order terms:

Gµν = 1
2

(
−∂λ∂λgµν+∂µ∂λgλν+∂ν∂λgλµ− gαβ∂µ∂νgαβ− gµν∂α∂βgαβ+ gµνgαβ∂λ∂λgαβ

)
+Qµν,

(5.3)

where each component of Qµν is a polynomial in gαβ, gαβ, and ∂λgαβ. In particular, each term

of each component of Qµν is exactly quadratic in ∂λgαβ.

Proof. Notes that derivatives on the inverse metric can be moved to the metric via:

0= ∂ν(δαµ)= ∂ν(gαβgβµ)= gβµ∂νgαβ+ gαβ∂νgβµ.

Then the definitions of the Christoffel symbol and the Riemann tensor imply:

Rα
βµν =

1
2

gαλ[∂µ(∂βgλν−∂λgβν)−∂ν(∂βgλµ−∂λgβµ)]+Pα
βµν,

where Pα
βµν

is a polynomial in gαβ and ∂λgαβ, each term of each component of which is exactly

quadratic in the latter. Taking the αµ trace, we get,

Rα
βαν =−1

2
∂λ∂λgβν+ 1

2
(∂β∂λgλν+∂ν∂λgλβ)− 1

2
gαλ∂β∂νgαλ+Sβν,

where Sβν is a quadratic polynomial in gαβ and ∂λgαβ, each term of each component of which

is exactly quadratic in the latter. Taking another trace using the metric:

gβνRα
βαν = ∂ν∂λgλν− gβν∂λ∂λgβν+ gβνSβν,

Plugging these into the definition of the Einstein tensor proves the claim.

5.2 Linearized space-time Einstein equation

From the perspective of numerical analysis of Galerkin methods, broadly speaking, the fol-

lowing diagram commutes:

Continuous nonlinear problem Discrete nonlinear problem

Continuous linear problem Discrete linear problem

Galerkin discretization

Iterative linearization Iterative linearization

Galerkin discretization
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where iterative linearization means solving nonlinear problems via solving a sequence of lin-

earized problems (for example, via Newton’s method). Hence for sufficiently regular nonlin-

ear problems, a good discretization scheme for the linearized problem directly gives a method

to solve the nonlinear problem.

It is clear that the Minkowski metric ηµν = diag[−1,1,1,1] on R4 satisfies the Einstein

equation. As a first step, we linearize the Einstein equation around that. Physically, this

leads to models of gravitational waves passing through the empty space. The theorem below

holds for gµν = ḡµν+ shµν with any constant background ḡµν in Rm with the same proof. But

we only state it for the Minkowski metric ηµν to simplify the notation.

Proposition 5.2. Let gµν = ηµν+ shµν for some symmetric 2-tensor field hµν with s ∈ R and

Gµν the Einstein tensor of gµν. We define a linear operator ein on symmetric 2-tensor fields by

(einh)µν := d
ds

Gµν

∣∣∣
s=0

.

Then,

(2einh)µν =−∂λ∂λhµν+∂µ∂λhλν+∂ν∂λhλµ−∂µ∂νhαα−ηµν∂α∂βhαβ+ηµν∂λ∂λhαα, (5.4)

where the background metric ηµν is used to raise and lower indices.

Proof. Plug gµν := ηµν+ shµν into equation (5.3) of Proposition 5.1 and compute to the first-

order in s. Because ∂λgαβ = ε∂λhαβ, the Qµν part, having each term of each component

exactly quadratic in ∂λgαβ, is of the order Qµν ∼O(s2). Further, the inverse metric of gµν is:

gµν = ηµν− shµν+O(s2).

Then the first three principal terms of the Einstein tensor gives:

s
2

(
−∂λ∂λhµν+∂µ∂λhλν+∂ν∂λhλµ

)
+O(s2),

where the s2 term comes from the fact that in the nonlinear formula gµν is used to raise the

index in ∂λ. The computation for the rest three principal terms is tedious. For example: the

gµνgαβ∂λ∂λgαβ term becomes:

(ηµν+ shµν)(ηαβ− shαβ)(ηλτ− shλτ)∂τ∂λ(ηαβ+ shαβ)

= sηµνηαβηλτ∂τ∂λhαβ + o(s2)= sηµν∂λ∂λhαα+O(s2).

The computation for the other two are similar. In all last three principal terms contribute:

s
2

(
−∂µ∂νhαα−ηµν∂α∂βhαβ+ηµν∂λ∂λhαα

)
+O(s2).

Combining these, we get the claim.
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In fact, if we were to linearized at some other solutions to the nonlinear Einstein equation,

the form of the principal part of the linearized Einstein tensor would be the exactly same as

(einh)µν, except that the indices are raise by a different background metric. Hence, up to

low lower-order terms and variable coefficients in the principal part, the linearized Einstein

tensor at any solutions is of the form

(einh)µν = 0.

We therefore, reduce the problem of developing and analysing numerical methods for the full

nonlinear Einstein equation to the same problem for the much simpler linear equation above,

requiring the numerical methods to be robust against variable coefficients and lower-order

terms.

5.3 Matrix calculus notation

In this section, we switch from the index notation to matrix calculus notation, which is more

familiar. The background Minkowski metric on R4 establishes a canonical Euclidean coor-

dinate system, under which symmetric 2-tensor fields are identified with symmetric matrix

fields and ein becomes a matrix of familiar differential operators in calculus.

First, we recall some basic operators. For any scalar field u and vector field v, we have

the gradient, hessian, and the symmetric gradient:

(∇u)α := ∂αu, (∇∇u)αβ := ∂α∂βu, (εv)αβ := 1
2

(∂αvβ+∂βvα).

The next batch of the differential operators depend on the metric. For us, this metric is

either Euclidean I := diag[1, . . . ,1] or Minkowskian η := diag[−1,1, . . . ,1]. The divergence and

the Laplacian under a metric g is:

(divg u) := gαβ∂αuβ, (divg v)β := gαλ∂λvαβ, ∆g := gαβ∂α∂β.

The Laplacian can act on tensor fields of any shape component by component. We further

define some algebraic operators: the trace, the two operators frequently used in relativity J

and S: for a matrix field u,

(trg u) := gαβuαβ, Jgu := u− 1
2

g(trg u), Sgu := u− g(trg u).

To further simply the notation, the subscript for the metric is omitted when it is clear from

the context.

124



Under Minkowski metric η, the linearized Einstein operator (5.4) becomes:

2einu =−∆u+2εdivu−∇∇tru−ηdivdivu+η∆tru.

We immediately see that if u happens to be divergence-free and trace-free, then 2einu is the

d’Alembertian of u. In that case, the linearized Einstein equation is just a component-wise

wave equation.

Several calculus identities which will be used very frequently are collected here:

Lemma 5.1. In dimension m, under any constant background pseudo-Riemannian metric g,

the following identities hold:

J−1u = u− 1
m−2

g(tru), S−1u = u− 1
m−1

g(tru),

divε= 1
2
∆+ 1

2
∇div, div Jε= 1

2
∆,

divS∇∇= 0, divdivSε= 0

For example, we have a more compact formula for the linearized Einstein:

2ein=−J∆+2Jεdiv J. (5.5)

Proposition 5.3.

divein= 0, einε= 0.

Proof. This is a direct consequence of div Jε= 1
2∆ in Lemma 5.1:

divein=−1
2

div J∆+ (div Jε)div J =−1
2

div J∆+ 1
2
∆div J = 0.

einε=−1
2
∆Jε+ Jε(div Jε)=−1

2
∆Jε+ 1

2
Jε∆= 0.

The second identity in the above reveals the gauge freedom of the linearized Einstein

equation. If a symmetric matrix field u is a solution to einu = 0, then u+εφ is also a solution

for any vector field φ. This is an important feature of the Einstein equation.

5.4 Model linear Cauchy problem

As note before, the principal part of the Einstein equation can be understood as a d’Alembertian

plus some unhelpful terms. To use the Einstein equation, it is reasonable to setup initial-

value problems or Cauchy problems. How to setup a well-posed hyperbolic problem in the
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fully nonlinear case is well-understood. For details, see monographs [26, 98]. Here we only

need to set up an initial-value problem for the linearized Einstein equation. This is the topic

of this section.

For the purpose of computation, we consider the background manifold ([0,T]×Ω,η) where

Ω is a bounded smooth domain in R3 and η the Minkowski metric. We will defer the discussion

on boundary conditions later when we discuss well-posedness.

We start by carrying out what is known as the (1+ 3)-decomposition: separating the

temporal and spatial part of the matrix fields according to the natural factorization of [0,T]×
Ω. To make the notation less confusing, we will use the subscript (4) to remind us that

the operator or variable is in 4D and no special notation for 3D objects. When in 4D, the

background metric is always the Minkowski metric while in 3D the background metric is

always the Euclidean metric. For symmetric matrix fields, we use the matrix notation:

h(4) =
α βT

β γ

 ,

where α is a scalar field for h00, β is a 3D vector field for h0i, and γ is a 3D symmetric

matrix field for hi j. All these fields are still defined on [0,T]×Ω and are now interpreted as

time-dependent functions. Similarly, 4D vector fields are decomposed as:

u(4) =
φ

w

 ,

where φ is a scalar field for u0 and w is a 3D vector for ui. The time derivative ∂0 will be

denoted by prime ′ while spatial differential operators will continue be denoted using the

matrix calculus notation. The following is proved by a direct computation:

Proposition 5.4.

∇(4)u =
 u′

∇u

 , ∇∇(4)u =
 u′′ (∇u′)T

∇u′ ∇∇u

 , ε(4)

φ
w

=
 φ′ 1

2 (∇φ+w′)T

1
2 (∇φ+w′) εw


tr(4)

α βT

β γ

=−α+ trγ, div(4)

φ
w

=−φ′+divw, div(4)

α βT

β γ

=
−α′+divβ

−β′+divγ

 ,

J(4)

α βT

β γ

=
1

2 (α+ trγ) βT

β Jγ+ 1
2 Iα

 , ∆(4)w =−w′′+∆w.

Given this, we can compute the (1+3) decomposition of ein:

Proposition 5.5.

2ein(4)

α βT

β γ

=
 divdivSγ [divS(γ′−2εβ)]T

divS(γ′−2εβ) Sγ′′+2einγ+S∇∇α−2Sεβ′

 . (5.6)
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Proof. This is a long computation using the previous theorem and formula (5.5). Since we

know the matrices are symmetric, to simplify the notation, we omit the upper right corner.

First,

−1
2

J∆(4)

α βT

β γ

=
1

4 (α′′−∆α+ trγ′′−∆trγ) . . .
1
2 (β′′−∆β) 1

2 (Jγ′′−∆Jγ)+ 1
4 I(α′′−∆α)

 .

Second,

Jεdiv J(4)

α βT

β γ

= Jεdiv(4)

1
2 (α+ trγ) . . .

β Jγ+ 1
2 Iα

= Jε(4)

−1
2 (α′+ trγ′)+divβ

−β′+div Jγ+ 1
2∇α


= J(4)

 −1
2 (α′′+ trγ′′)+divβ′ . . .

1
2 (−β′′+divγ′−∇trγ′+∇divβ) −εβ′+εdiv Jγ+ 1

2∇∇α


=

1
4 (−α′′− trγ′′+∆α)+ 1

2 divdiv Jγ . . .
1
2 (−β′′+divγ′−∇trγ′+∇divβ) Jεdiv Jγ+ 1

2 J∇∇α− 1
4 I(α′′+ trγ′′)−Sεβ′

 .

Combining these two parts, we get the claim.

Identity (5.6) is valid in (1+m)-dimension for all m ≥ 1. We have some extra identities

which are only true for the case we care about m = 3 and are convenient:

Lemma 5.2. In dimension 3 under the Euclidean metric, for a vector field u and a symmetric

matrix field w,

J−1 = S, ∇divu−∆u = curlcurlu, divSεu =−1
2

curlcurlu, 2einw = curl(curlw)T ,

where curl of a matrix is defined row by row.

The proof is a direct computation. In 3D, 2ein is also known as the Saint-Venant’s opera-

tor or the incompatibility operator in the solid mechanics literature.

We thus arrived at the (1+ 3) linearized Einstein equation: a triple (α,β,γ) of time-

dependent scalar, vector, symmetric matrix fields on Ω are components of a solution to the

linearized Einstein equation if and only if:

divdivSγ= 0,

divS(γ′−2εβ)= 0,

Sγ′′+2einγ+S∇∇α−2Sεβ′ = 0.

(5.7)

This should be interpreted as a constrained evolution system, where the first two equations

are constraints while the last one is the evolution equation. This is justified by the following:
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Proposition 5.6. The evolution equation propagates the constraints: suppose (α(t),β(t),γ(t))

solves the evolution equation and satisfies the two constraint equations at t = 0, then it satisfies

the two constraints for all t.

Proof. By Lemma 5.1 and Proposition 5.3, divS∇∇ = 0 and divein = 0. Take the divergence

of the evolution equation:

divSγ′′−2divSεβ′ = 0.

This is the time derivative of the second constraint equation. Hence if the second constraint

is satisfied at a time, it is satisfied at all times. Now take the divergence of the second

constraint equation. By the third identity in Lemma 5.2,

divdivSγ′ = 0.

This is the time derivative of the first constraint equation. Hence if the first constraint is

satisfied at a time, it is also satisfied at all times.

Before we state the initial-value problem, we interpret the decomposition of the 4-metric:

h(4) =
α βT

β γ

 .

Consider another coordinate system (t̂, x̂) related to the Euclidean (t, x) on [0,T]×Ω via a

linear reparameterization of time:

t = Ht̂+FT x̂, x = x̂,

for some H ∈R and F ∈R3. Then the pullback metric in the hat coordinates is:H FT

0 I

α βT

β γ

H 0

F I

=
αH2 +2HβT F +FTγF (Hβ+γF)T

Hβ+γF γ

 .

This shows that α and β component of the 4-metric can be interpreted as a choice for the

linear parameterization of the t-coordinates. For the formulation of initial-value problems,

we can therefore consider α and β as given data and consider the evolution of γ alone.

We then derive the (1+3) initial-value model problem for linearized relativity from sys-

tem (5.7). Given a smooth scalar field α(t), a smooth vector field β(t), and two smooth sym-

metric matrix fields γ0,γ1 satisfying:

divdivSγ0 = 0, divS(γ1 −2εβ(0))= 0,
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we find a symmetric matrix field γ(t) on Ω, such that γ(0)= γ0, γ′(0)= γ1, and for all t > 0:

S(γ′′+∇∇α−2εβ′)+2einγ= 0.

Note that ∇∇α−2εβ′ = ε(∇α−2β′) is in the image of ε, which is in turn in the kernel of ein.

This means that α and β terms do not contribute to the evolution equation. Indeed, define:

γ̂(t)= γ(t)+
∫ t

0

∫ s

0
∇∇α(v)dv ds−2

∫ t

0
εβ(s)ds.

Then γ(t) solves the problem with the given α and β if and only if γ̂(t) solves the same system

with α= 0 and β= 0. Thus without loss of generality, we can set α= 0 and β= 0.

We are ready to state the model problem for linearized Einstein equation:

Problem 5.1 (Linearized Cauchy problem). Given two smooth symmetric matrix fields γ0,γ1

satisfying the compatibility conditions:

divdivSγ0 = 0, divSγ1 = 0,

find a symmetric matrix field γ(t), such that γ(0)= γ0, γ′(0)= γ1, and for all t > 0:

Sγ′′+2einγ= 0.

This should be compared with the nonlinear Cauchy problem for the Einstein equa-

tion [64, Definition 3].

5.5 Model linear source problem

A further simplification can be made by removing the time-dependence altogether. This leads

us to study the steady state problem for the linearized Einstein equation. Moreover, it is well-

known in the finite element literature that the understanding of the corresponding source

problem is the first step in analyzing the discretization of time-dependent problems (for ex-

ample see [107]). Here it turns out that the steady state problem has applications in solid

mechanics and is of independent interest as well.

Setting the time derivative to zero, the steady state equation corresponding to the lin-

earized evolution equation (5.7) is:

2einγ= 0.

The source problem is thus, given a symmetric matrix field f , find a symmetric matrix field

u such that

2einu = f .
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It is clear that this problem cannot be well-posed because divein = 0 is an obstruction to

existence while einε = 0 is an obstruction to uniqueness. From these considerations, we

formulate the following problem:

Problem 5.2. Given a symmetric matrix field f in the range of ein, find a symmetric matrix

field u such that

2einu = f , div Ju = 0.

The reason for the choice of div Ju = 0 for removing the kernel of ein will become clear

later.

Problem 5.2 also shows up in the geometric theory for defects and plasticity. This has

a long history in mathematics, solid mechanics, and physics. It started with Volterra’s pa-

per [109] on plasticity, where curvature is used to model certain types of disclinations. This

was subsequently picked up and developed further by engineers and physicists with a sub-

stantial literature. For good surveys, see [59,65–67,70,87,120]. Of these, Kröner [70] studied

this problem explicitly with a different constraint divu = 0 instead of div Ju = 0. He related

this problem to the component-wise biharmonic equation on the whole space and solved it us-

ing the fundamental solution. On the more direct application side, the review [58] describes

a model of growth in blood vessel walls using this problem, where f is related to the growth of

the blood vessels and u is the residual stress caused by the growth. The author is not aware

of any treatment of this problem in numerical analysis literature yet.

5.6 Fourier analysis: well-posedness and weak hyperbolicity

In this section, we analyze the Cauchy Problem 5.1 and the source Problem 5.2 on the flat

torus T3 via Fourier analysis. The goals are two. First we prove that both problems are

well-posed. Second, we show that the hyperbolic Problem 5.1 is not strongly hyperbolic.

This means that although it is well-posedness in the sense of Hadamard, adding lower-order

perturbations and variable coefficients can make it ill-posed. Since our goal eventually is

to solve the nonlinear Einstein equation, where such lower-order perturbations and variable

coefficients are inevitable, we have to regularize Problem 5.1. That will be the subject of the

next section.

The flat torus, T3, is the cube of side length 2π with the periodic boundary conditions. It is

very convenient mainly because linear differential calculus is reduced to algebra via Fourier

series here. On T3, a scalar field u can be represented as a formal infinite sum:

u(x)= ∑
k∈Z3

ukeik·x,
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where uk ∈C are constants. We need norms to make these sums well-defined. Let Hs be the

usual Sobolev spaces. It can be characterized by the Fourier coefficients: for s ≥ 0,

u = ∑
k∈Z3

ukeik·x ∈ Hs if and only if
∑

k∈Z3
(1+|k|2)

s/2|uk|2 <∞

For linear differential operators, it is sufficient to study their behavior for each k individ-

ually. Fix k ∈ Z3, k 6= 0. Let m := k/‖k‖, n any unit vector orthogonal to k, and l := m× n.

The triple (m,n, l) establishes an orthonormal basis for R3 adapted to k. We use the following

matrix notation in this coordinate:

[a]k := aeik·x,


a

b

c


k

:= (am+bn+ cl)eik·x,


a b c

d e f

g h j


k

:= (ammT +bmnT + cmlT +dnmT + ennT + f nlT + glmT +hlnT + jllT )eik·x.

Because the basis is orthonormal, the trace and transpose work directly in the matrix nota-

tion:

tr


a b c

d e f

g h j


k

= [a+ e+ j]k,


a b c

d e f

g h j


T

k

=


a d g

b e h

c f j


k

.

Matrix calculus is reduced to matrix algebra in this notation:

Proposition 5.7. The following holds:

∇[a]k = i|k|


a

0

0


k

, curl


a

b

c


k

= i|k|


0

−c

b


k

, div


a

b

c


k

= i|k|[a]k,

ε


a

b

c


k

= i|k|


a b/2 c/2

b/2 0 0

c/2 0 0


k

, div


a b c

d e f

g h j


k

= i|k|


a

d

g


k

,

2ein


a b c

b d e

c e f


k

= |k|2


0 0 0

0 − f e

0 e −d


k

.

The proof is just a direct computation. Given this, for example, it is obvious that:

curl∇= 0, divcurl= 0, einε= 0, divein= 0.

We first show the source problem is well-posed:
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Theorem 5.1. Problem 5.2 is elliptic on T3. Given f ∈ H−1(T3) satisfying div f = 0 and
∫

f = 0,

there exists a unique u ∈ H1 ⊗S3 satisfying

2einu = f , div Ju = 0,
∫

u = 0.

Further, there exists a constant C > 0 independent of f such that

‖u‖H1 ≤ C‖ f ‖H−1 .

Proof. By linearity, we examine the system for each k independently. The zero integral con-

dition means that all components of the coefficient for k = 0 vanishes. For a fixed k 6= 0,

let

u =


a b c

b d e

c e f


k

.

Because div f = 0, the k component of f can be written as

f =


0 0 0

0 g h

0 h l


k

.

The equation system is thus

|k|2


0 0 0

0 − f e

0 e −d


k

=


0 0 0

0 g h

0 h l


k

, ik


(a−d− f )/2

b

c


k

= 0.

All the claims of the theorem are then clear.

The linearized Einstein equation is more interesting. Let γ be a symmetric matrix field

for a fixed nonzero k ∈Z3 of the form:

γ=


a b c

b d e

c e f


k

.

The Sγ′′+2einγ= 0 reads:
−d− f b c

b −a− f e

c e −a−d


′′

k

+|k|2


0 0 0

0 − f e

0 e −d


k

= 0.
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Equivalently, it is an ODE system:

b′′ = 0, c′′ = 0, (d+ f )′′ = 0,

e′′+|k|2e = 0,

(a+ f )′′+|k|2 f = 0,

(a+d)′′+|k|2d = 0.

Define g = d+ f
2 and h = d− f

2 . Eliminate d and f from the above using g and h, we get:

b′′ = 0, c′′ = 0, g′′ = 0,

e′′+|k|2e = 0,

h′′+|k|2h = 0,

a′′+|k|2 g = 0.

(5.8)

The constraint divdivSγ(0)= 0 reads:

g(0)= 0,

and divSγ′ = 0 reads:

g′(0)= 0, b′(0)= 0, c′(0)= 0.

The compatible initial data thus reads:

a(0)= a0, a′(0)= a1, b(0)= b0, b′(0)= 0,

c(0)= c0, c′(0)= 0, e(0)= e0, e′(0)= e1,

g(0)= 0, g′(0)= 0, h(0)= h0, h′(0)= h1.

We see that g ≡ 0, which implies a′′ = 0. Thus a(t) is linear in time, b(t) and c(t) are constant

in time. Then there are two oscillatory components e and h, both of which are sinusoidal

with frequency |k|. In the physics literature, h is called the + polarization while e is called ×
polarization of the gravitational wave.

For k = 0, the equation simply reads γ′′ = 0. Hence overall, all components of γ(t) can

grow at most linear in t independent of k. This proves the following theorem:

Theorem 5.2. The linear hyperbolic Problem 5.1 is well-posed. In particular, for the unique

solution γ(t), there exist constants C and D independent of γ0 and γ1 such that

‖γ(t)‖H1 +‖γ′(t)‖L2 ≤ (Ct+D)(‖γ0‖H1 +‖γ1‖L2)

for all t ≥ 0.
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For the purpose as a model problem for the nonlinear Einstein equation, Theorem 5.2

is not enough. This relates to the well-known problem of weak hyperbolicity, which we will

demonstrate here. For general theory on the well-posedness hyperbolic problems in the pres-

ence of lower-order terms and variable coefficients, see [68].

First, the study of hyperbolicity looks at the equation with arbitrary initial data, includ-

ing incompatible ones. This is realistic because in the discretization, it is usually impossible

to impose the compatibility conditions exactly. The ODE system (5.8) decouples. We only

need to look at the offending subsystem:

g′′ = 0, a′′+|k|2 g = 0.

Introduce two auxiliary variables: the scalar l := g′ and the vector m := ikg. We rewrite the

above into a first-order system:
a

m

g

l



′

=


0 ikT 0 0

0 0 ik 0

0 0 0 1

0 0 0 0




a

m

g

l

 .

For a first-order system like the one above, it is called weakly hyperbolic if all the eigenvalues

of the matrix are real. It is easy to see that a weakly hyperbolic system is well-posed in the

sense of Hadamard in the L2-norm.

It is strongly hyperbolic if the matrix is further diagonalizable. It can be proven that

strongly hyperbolic systems are still well-posed with variable coefficients and additional

lower-order terms [68]. The system above is only weakly hyperbolic but not strongly hy-

perbolic because the geometric multiplicity of the only eigenvalue 0, which is the dimension

of its kernel, is just 1, instead of 4.

The lack of robustness of the above first order system against lower-order perturbation

is easy to demonstrate. Suppose the linearized Einstein equation is perturbed by a zero-th

order term such that instead of g′′ = 0, we have g′′ = 4a. The system above becomes:
a

m

g

l



′

=


0 ikT 0 0

0 0 ik 0

0 0 0 1

4 0 0 0




a

m

g

l

 .

The eigenvalues of the above matrix matrix are:

λ=±1± i
√

|k|.
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For k 6= 0, both a and g can grow at least as fast as e
p

|k|t. This is clearly ill-posed because

there does not exist any C > 0 and M > 0 independent of k, such that the solution in L2 norm

is bounded by CeMt. It was shown in [68] that this is in fact the typical behavior of such

weakly but not strongly hyperbolic equations.

5.7 Regularized well-posed model problems on bounded smooth

domains

Although the Cauchy Problem 5.1 and Source Problem 5.2 are well-posed. Both have fatal

flaws making them unsuitable for discretization. The source problem is only solvable for com-

patible data. It can be difficult to ensure the discrete data is compatible. Thus its discretiza-

tion can lead to inconsistent linear systems. The Cauchy problem is only weakly hyperbolic,

so both numerical error and potential lower-order terms and variable coefficients can make

it ill-posed. In this section, we regularize these problems to symmetric matrix-valued Pois-

son equation and wave equation with special boundary conditions, which are suitable for

discretization. Moreover, we show that they can be used to solve the unregularized problems.

The first goal is to prove the well-posedness of the symmetric matrix-valued Poisson prob-

lem

−∆u = f

and the symmetric matrix-valued wave equation

u′′−∆u = f ,

subject to boundary conditions:

uττ = 0, unn = 0, ∂nunτ = 0,

where these boundary components are defined as in equation (5.1).

Note that there are exactly 3+1+2 = 6 boundary conditions for the 6 components of u.

We will show that the Poisson problem is well-posed for all right-hand sides and the wave

equation is strongly hyperbolic.

We start from the weak form of the elliptic problem. Define the following subspace of

H1 ⊗S3:

V := {u ∈ H1 ⊗S3 |on ∂Ω: uττ = 0, unn = 0} (5.9)

and a symmetric bilinear form B : V ×V →R:

B(u,v)=
∫
Ω
∇u :∇v. (5.10)

135



Lemma 5.3. On a bounded connected smooth domain Ω in R3, if u is a constant symmetric

matrix-valued function satisfying uττ = 0, then u = 0.

Proof. Since Ω is connected, u can be identified with its value, a symmetric matrix, C. Since

Ω is bounded, there is at least one point p in Ω with the largest x-coordinate. Clearly p ∈ ∂Ω.

Because Ω is smooth, the normal vector at p is just [1,0,0] and the yz-coordinate plane is

parallel to the tangent space at p. The boundary conditions then imply that

C =


a b c

b 0 0

c 0 0


for some a,b, c ∈ R. Repeat the same argument with a point having the largest y-coordinate,

we get a = c = 0. Repeat again the same argument with a point having the largest z-

coordinate, we get b = a = 0. Hence u = 0.

The dimension and the smoothness requirement can be substantially weakened. In fact,

as long as a connected domain has three linearly independent normal vector, then the above

holds by a similar argument.

Proposition 5.8. On a bounded connected smooth domain Ω in R3, the symmetric bilinear

form B in equation (5.10) is symmetric, bounded, and coercive. Moreover, for any f ∈ L2 ⊗S3,

there exists a unique u ∈V such that

B(u,v)= 〈 f ,v〉, ∀v ∈V ,

and there exists a constant C > 0 only depending on the domain such that

‖u‖H1 ≤ C‖ f ‖L2 .

Proof. From the definition, it is clear that B is symmetric and bounded. Suppose B fails to

be coercive. Then there exists a sequence un ∈ V such that ‖un‖H1 = 1 but B(un,un) → 0 as

n →∞. Since V ⊂ H1 ⊗S3 is compact in L2 ⊗S3, we can find a subsequence unk such that

unk → u in L2 for some u ∈ L2 and B(unk ,unk ) → 0. The last fact implies that ∇u = 0 in L2.

The boundary conditions are clearly preserved by taking the limit. Hence u is a constant

function in V . By Lemma 5.3, u = 0. This is a contradiction because u is the L2-limit of

unk with ‖unk‖L2 = 1. Hence B is coercive. Then the final claim follows from Lax-Milgram

Theorem.
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We note that in this proposition, f can be taken from the dual space V ′ in general and

the norm on f can be weakened. But we do not need that for the purpose here.

We then proceed to study the strong solutions to the elliptic problem. Define the following

subspace of V :

Y := {u ∈V |u ∈ H2 ⊗S3 and on ∂Ω: ∂nunτ = 0}. (5.11)

We state the full source problem first:

Problem 5.3 (Regularized Elliptic Problem). On a bounded connected smooth domain Ω in

R3, let Y be defined as in equation (5.11). Given f ∈ L2 ⊗S3, find u ∈Y such that

−∆u = f .

Theorem 5.3. Problem 5.3 has a unique solution u ∈ Y . Moreover, there exists a constant C

depending only on the domain such that

‖u‖H2 ≤ C‖ f ‖L2 .

Proof. First, by Proposition 5.8 there exists a unique u ∈V satisfying

B(u,v)= ( f ,v), ∀v ∈V .

Second, we need to show u ∈Y . This uses the standard Agmon-Douglis-Nirenberg theory

of elliptic systems [3, 4]. In particular, the version stated as Theorem 9.31 of [97] is applied.

The fact that −∆ has an elliptic symbol is clear. The only additional thing necessary is

to show that the boundary conditions on Y are complementary to −∆u = 0 as defined in

Definition 9.28 of [97]. We notice that all the operators are invariant under rotations. So

without loss of generality, we only need to prove this for the upper half plane. Suppose

u(x1, x2, z)= eiξ·xv(z) ∈V , z ≥ 0, solves −∆u = 0, where v → 0 as z →∞. We need to show that

u = 0. First, the equation −∆u = 0 implies that:

v′′−|ξ|2v = 0.

For ξ 6= 0, the decay condition on v implies that

v(z)= Ce−|ξ|z, z ≥ 0

for some symmetric matrix C. Then uττ = 0 and unn = 0 at z = 0 implies that C can be written

in the form:

C =


0 0 c

0 0 e

c e 0

 .

137



Then ∂nunτ = 0 at z = 0 implies:

−|ξ|c = 0, −|ξ|e = 0.

Hence c = e = 0. Thus C = 0 which implies v = 0 and in turn u = 0. On bounded domains,

there is no nontrivial constant function in V by assumption. This shows that the boundary

conditions are complementary.

The boundary conditions on Y implies more useful identities:

Lemma 5.4. Suppose u ∈Y , then on the boundary, we further have

tru = 0, (divu)×n = 0, divdivu = ∂n∂nunn =∆unn.

Proof. For u ∈ Y , we have uττ = 0, unn = 0, and ∂nunτ = 0 on the boundary. First tru =
truττ + unn = 0. Second, we use divτ to denote the divergence on ∂Ω. Under this, in the

coordinate system straightening out the boundary,

divu = div

uττ unτ

uT
nτ unn

=
 ∂nunτ

divτ unτ+∂nunn

 .

In particular, the tangential part of divu is ∂nunτ which vanishes. Equivalently, this means

(divu)×n = 0. Third, taking the divergence of the above, we further get,

divdivu = ∂n(divτ unτ+∂nunn)= divτ∂nunτ+∂n∂nunn = ∂n∂nunn,

where the first term vanishes because ∂nunτ = 0 is constant on the boundary. Let ∆τ be the

Laplacian on the boundary. Then,

−∆unn =−∆τunn −∂n∂nunn =−∂n∂nunn,

where the first term vanishes because unn = 0 is constant on the boundary. This proves the

claim.

We then state in what sense Regularized Source Problem 5.3 solves Source Problem 5.2:

Theorem 5.4. Suppose f is a smooth symmetric matrix-valued function in the image of ein

satisfying fnn = 0 on the boundary. Let φ be the solution to Regularized Source Problem 5.3

with the right-hand side f . Then u := Sφ ∈ Y solves the corresponding Source Problem 5.2 in

the sense that div Ju = 0 and 2einu = f .
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Proof. By Theorem 5.3, we can find a unique φ ∈ Y solving −∆φ = f . In particular, divφ ∈
H1 ⊗R3 satisfies a vector Laplace equation:

−∆divφ= div f = 0.

On the boundary, by Lemma 5.4, we have

(divφ)×n = 0, div(divφ)=∆φnn =− fnn = 0.

This is a well-known set of complementary boundary conditions for the vector Laplacian (see,

for example equation (64) of [10]). Hence divφ = 0 on the whole domain. Finally, recall the

identity (5.5)

2ein=−J∆+2Jεdiv J

and the fact that in 3D, J = S−1. First, combining the two, we get

2S ein−2εdiv J =−∆. (5.12)

Let u := Sφ. On the boundary, φ is trace-free. Further, S does not change the tangential-

normal and the normal-tangential components. Hence u ∈Y as well. Clearly div Ju = divφ=
0. Now,

S f =−S∆φ=−∆Sφ=−∆u = 2S einu−2εdiv Ju = 2S einu.

Applying J to both sides, we get 2einu = f as claimed.

We then look at the corresponding wave equation. In what follows, the time domain is

always assumed to be the interval [0,T] for some T > 0. For linear hyperbolic equations,

solutions are always global in time so T is not interesting. To simplify the notation, we write

time-dependent function spaces like C0([0,T],V ) simply as C0V .

Problem 5.4 (Regularized Hyperbolic Problem). On a bounded connected smooth domain,

let V and Y be defined as in equation (5.9) and (5.11) respectively. Given u0,u1 ∈ Y and

f ∈ C0(L2 ⊗S3), find u ∈ C0Y ∩C1V ∩C2(L2 ⊗S3) such that u(0) = u0, u′(0) = u1, and for all

t > 0,

u′′−∆u = f .

Theorem 5.5. Problem 5.4 is well-posed. It has a unique solution u satisfying the energy

estimate: for some absolute constant C > 0,

|u(t)|H1 +‖u′(t)‖L2 ≤ C(|u0|H1 +‖u1‖L2 +
∫ t

0
‖ f ‖L2).
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Proof. For this, we use the standard semi-group theory [97, Chapter 12]. We write the wave

equation as a first-order in time system by introducing v = u′. Define an operator:

A =
0 I

∆ 0

 : Y ×V ⊂ (V × (L2 ⊗S3))→ (V × (L2 ⊗S3)).

By Proposition 5.8, we can use the H1-seminorm as the norm on V . If A generates a contin-

uous semi-group, then the following abstract ODE has a unique solution:u

v

′

=
0 I

∆ 0

u

v

+
0

f

 .

This u then solves the wave equation as required. We prove A indeed generates a contraction

semi-group using Lumer-Phillips Theorem [97, Theorem 12.22]. In particular, we need to

check that A is densely defined, (x, Ax) ≤ 0 for x in the domain of A, and there exists λ > 0

such that A−λI is onto.

First, clearly, A is densely defined because test functions are dense in L2. Second, we

note for u ∈Y and v ∈V ,∫
Ω
−∆u : v =

∫
Ω
∇u :∇v−

∫
∂Ω

v : ∂nu =
∫
Ω
∇u :∇v.

The boundary term vanishes because vττ = 0, vnn = 0 while by symmetry ∂nunτ = ∂nuT
τn = 0.

Thus, A is dissipative (as defined in Definition 12.25 of [97]):u

v

 , A

u

v


V×L2

= (∇u,∇v)+ (∆u,v)= 0.

Finally, given (g,h) ∈V ×L2 ⊗R3, we need one λ> 0 such that we can solve

(A−λI)

u

v

=
g

h

 .

Equivalently,

(−∆+λ2)u =−h−λg.

−∆ alone is already coercive over V . So a solution u ∈ V exists. Now apply Theorem 5.3 to

−∆u =−λ2u−h−λg ∈ L2 ⊗S3. We get u ∈ Y as needed. Thus by Lumer-Phillips theorem, A

generates a contraction semi-group, which gives us a unique solution u to the wave equation.

Finally, multiplying u′ on both sides of the equation and integration by parts:

1
2

[(u′,u′)′+ (∇u,∇u)]= ( f ,u).

Integrate this in time gives the energy estimate.
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At last, we show how to use this wave equation to solve the Cauchy Problem 5.1. This

requires several lemmas. The first lemma concerns the boundary condition:

Lemma 5.5. For a scalar field w and a vector field u, on the boundary

(∇∇w)ττ = (∇∇)∂Ωw, (εu)ττ = ε∂Ωuτ,

where uτ is the tangential part of u, (∇∇)∂Ω is the tangential Hessian on the boundary, and ε∂Ω
is the tangential symmetric gradient on the boundary. In particular, if w = 0 on the boundary,

then (∇∇w)ττ = 0. Similarly, if u×n = 0, then (εu)ττ = 0.

Proof. Due to rotational invariance of ε, ∇∇, and the tangential trace, it is enough to show

this for the upper half-plane, where this is obvious.

The second lemma concerns the structure of the compatibility condition for the Cauchy

problem (5.1).

Lemma 5.6. Let Ω be a bounded smooth contractible domain in R3. Suppose u ∈ Y satisfies

divdivSu = 0. Then there exists a vector field ξ ∈ H3 ⊗R3 such that ū := u+εξ ∈Y satisfies:

tr ū = 0, div ū = 0, in Ω.

Proof. For this, we need the standard well-posedness and elliptic regularity of scalar and

vector Poisson problems. First, define a vector field v ∈ H1 ⊗R3 as the unique solution to the

vector Poisson problem:

−∆v = divSu,

with the boundary condition v× n = 0 and divv = 0 (this is the well-posed 1-form Hodge

Laplacian problem in 3D [10]). Using elliptic regularity, v ∈ H3 because divSu ∈ H1. Further

divv ∈ H2 satisfies the homogeneous scalar Laplace equation with homogeneous Dirichlet

boundary conditions because divdivSu = 0. Hence in Ω,

divv = 0.

We know on vector fields:

−∆=−∇div+curlcurl .

Hence, −∆v = divSu implies

curlcurlv = divSu.

Second, define φ ∈ H1 as the unique solution to the scalar Poisson problem:

−∆φ= 1
2

tru,
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with the boundary condition φ= 0. This is well-known to be well-posed. By elliptic regularity,

φ ∈ H4 because tru ∈ H2.

Now we define ξ := v+∇φ and ū := u+2εξ. First, it is clear that ū ∈ H2.

Second, in Ω, using the identities trε= div and tr∇∇=∆, by the definition of v and φ, we

have,

tr ū = tr(u+2εv+2∇∇φ)= tru+2divv+2∆φ= tru+0− tru = 0.

Moreover, recall from Lemma 5.2, 2divSε = −curlcurl and from Lemma 5.1, divS∇∇ = 0.

Hence,

divSū = divS(u+2εv+2∇∇φ)= divSu−curlcurl(v+∇φ)= divSu−curlcurlv = 0.

This further implies that div ū = 0. Third, by Lemma 5.5, ūττ = 0. But because tr ū = 0,

ūnn = 0 on the boundary as well. Finally, div ū = 0 and ūττ = 0 implies that ∂nūnτ = 0 on the

boundary because it is exactly the tangential part of divu there. Hence ū ∈Y .

Finally, we can state how to use the Regularized Hyperbolic Problem 5.4 to solve the

Cauchy Problem 5.1.

Theorem 5.6. Given γ0,γ1 ∈Y satisfying the compatibility conditions

divdivSγ0 = 0, divSγ1 = 0.

Let ξ0,ξ1 ∈ H3 ⊗R3 be the vector fields for γ0 and γ1 respectively, as defined in Lemma 5.6,

such that both γ̄0 := γ0+εξ0 and γ̄1 := γ1+εξ1 are divergence-free, trace-free, and in Y . Let γ̄(t)

be the solution to Problem 5.4 with zero right-hand side and initial data γ̄(0) = γ̄0, γ̄′(0) = γ̄1.

Then

γ(t) := γ̄(t)−εξ0 − tεξ1

solves Problem 5.1.

Proof. First, it is clear that γ(0)= γ0 and γ′(0)= γ1. It remains to check that Sγ′′+2einγ= 0.

Second, we prove that the boundary conditions on Y propagates the conditions that tr γ̄=
0 and div γ̄ = 0. First, it is clear that tr γ̄ satisfies a homogeneous scalar wave equation and

by Lemma 5.4 tr γ̄= 0 on the boundary. Hence tr γ̄= 0 for all time. Moreover, div γ̄ satisfies a

vector wave equation. By Lemma 5.4 again, we have on the boundary,

(div γ̄)×n = 0, div(div γ̄)=∆γ̄nn = γ̄′′nn = 0.

These ensure that div γ̄ = 0 for all time. Finally, we again use the identity (5.12). The fact

that γ̄′′−∆γ̄= 0 implies

γ̄′′+2S ein γ̄−2εdiv Jγ̄= 0.
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Because div γ̄= 0 and tr γ̄= 0, div Jγ̄= 0. Further, tr γ̄= 0 also implies that Sγ̄= S−1γ̄. Hence

the wave equation for γ̄ implies:

Sγ̄′′+2ein γ̄= 0.

Finally, the difference between γ and γ̄ is linear in time and a symmetric gradient. Since

einε= 0, γ satisfies the equation above as well. This proves the claim.

We have shown that with proper boundary conditions and transformations, the well-

posed Poisson equation and the wave equation on symmetric matrix-valued functions can

be used to solve the elliptic and hyperbolic model problems from relativity. These clarify in

a Hilbert space context exactly what it means to solve the model problems. Second, the two

regularized continuous problems can then be used as a starting point for discretization. This

approach, for example, is very different from and more likely to be successful than the Regge

Calculus approach, which tries to discretize a weakly hyperbolic continuous system.

5.8 Regge elements discretization

In this final section, we hint at how Regge elements can be used to solve the regularized

elliptic Problem 5.3 and regularized hyperbolic Problem 5.4. This is largely inspired by the

success of Finite Element Exterior Calculus for the Hodge Laplacian problems [8,10]. There

we try to solve the Poisson problems on anti-symmetric tensor-valued functions with their ap-

propriate boundary conditions. The strategy was to break the Laplacian into different terms

using the boundary conditions as a hint and construct a mixed formulation. The detailed

study of the methods mentioned here will be future work.

In the previous chapters, we showed that REGr paired with CGr+1 can be used to dis-

cretize the bilinear form 〈divdivSu,η〉 and REGr paired with NEDr can be used to discretize

the bilinear form 〈divSu, p〉. In Christiansen’s work [29], we saw that at least REG0 paired

with itself can be used to discretize the bilinear form 〈einu,v〉. Here we propose a way to

connect all these together to use REGr to solve Problem 5.3 and Problem 5.4.

The key is the following identity:

Proposition 5.9.

−S∆= 2ein−2SεdivS−S∇∇tr−I divdivS. (5.13)

Proof. We derive it from identity (5.12):

−∆= 2S ein−2εdiv J.
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Using trS =−2tr, the above implies

2trein=−divdivS.

Use this to expand 2S ein. Note 2εdiv J = 2εdivS+∇∇tr. Identity (5.12) becomes:

−∆= 2ein−I divdivS−2εdivS−∇∇tr .

Apply S to both sides. Use SI =−2I and the trace ein formula again, we get the claim.

The crucial unintuitive idea is to solve problems associated with −S∆ instead of the

Laplacian itself. The operator −S∆ is not elliptic. Nevertheless, the associated source and

Cauchy problems are still well-posed because it differs from −∆ by just a point-wise linear

algebraic operation.

For the regularized source problem 5.3, −∆u = f , we use a mixed formulation for −S∆u =
S f . Let

p = divSu, η= tru, θ = divdivSu.

We have a system:

η− tru = 0,

p−divSu = 0,

θ−divdivSu = 0,

2einu−2Sεp−S∇∇η− Iθ = S f .

The boundary conditions for Y defined in equation 5.11 becomes:

η= 0, pτ = 0, θ = 0, uττ = 0,

by Lemma 5.4. These exactly matches the boundary conditions where the discretizations of

divdivS, divS, and ein using REGr are valid. For example, we can write down an imple-

mentable mixed method via the Lagrange multipliers. On a triangulation of Ω, define

Vh = (CGr+1∩H̊1)× (NEDr ∩H̊(curl))× (CGr+1∩H̊1)× {u ∈REGr, uττ = 0}.

Given f ∈ L2 ⊗S3, we find (η, p,θ,u) ∈Vh such that for all (λ, q,ξ,v) ∈Vh,

(η,λ)− (tru,λ)= 0,

(p, q)−〈divSu, q〉 = 0,

(θ,ξ)−〈divdivSu,ξ〉 = 0,

2(einu,v)+2〈p,divSv〉−〈η,divdivSv〉− (θ, trv)= (S f ,v).
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All the integration by parts are allowed by the boundary conditions. It remains to be seen if

this is indeed a stable mixed method.

For the regularized hyperbolic Problem 5.4, we again solve the trace-shifted version:

Su′′−S∆u = 0.

Using identity (5.13), the above is equivalent to:

Su′′+2einu−2SεdivSu−S∇∇tru− I divdivSu = 0.

This is basically the evolution equation in the linearized Einstein equation system (5.7) with

some additional terms. Two of the terms are related to the constraints. The −S∇∇tr =
2ein I term brings control of the trace of the metric to the evolution equation. Recall that

for Sγ′′+2einγ= 0, we have instead, −2trγ′′+2treinγ= 0 implies trγ′′ = 0 by the constraint

0 = divdivSγ = −2treinγ. This was exactly the cause of weak hyperbolicity for constraint-

violating solutions.

For discretization using REGr, we again introduce auxiliary variables to get a first-order

in time system. Rewrite the wave equation as:

η′ = tru,

p′ = divSu,

θ′ = divdivSu,

w′ = 2einu,

Su′+w−2Sεp−S∇∇η− Iθ = 0.

We again have an implementable mixed discretization. On a triangulation of Ω, define

Qh = (CGr+1∩H̊1)× (NEDr ∩H̊(curl))× (CGr+1∩H̊1)× {u ∈REGr, uττ = 0}2.

Given initial data, we find (η(t), p(t),θ(t),w(t),u(t)) ∈ Vh such that for all (λ, q,ξ, y,v) ∈ Vh at

each time t,

(η′,λ)− (tru,λ)= 0,

(p′, q)−〈divSu, q〉 = 0,

(θ′,ξ)−〈divdivSu,ξ〉 = 0,

(w′, y)−2〈einu, y〉 = 0,

(u′,Sv)+ (w,v)+2〈p,divSv〉−〈η,divdivSv〉− (θ, trv)= 0.

It remains to be seen if this is stable.
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Chapter 6

Two failure modes of Regge
Calculus

In 1961, Regge [96] proposed Regge Calculus as a space-time geometric discretization of the

Einstein field equation. Only a decade later, Sorkin [103], proposed the first Regge Calculus-

based scheme to solve the initial-value problem for the Einstein equation. Sorkin’s scheme

was further developed and modified by physicists ever since. Two comprehensive review

papers are [40, 117]. As of today, all these methods bear a very similar structure: the 4D

discrete Regge-Einstein equation is used to form a marching scheme on a space-time mesh.

We will refer to these scheme as Regge-Sorkin schemes. However, it is known that Regge-

Sorkin schemes are unstable, see for example [92, Section 3.4].

In this chapter, we illustrate some essential features of Regge-Sorkin scheme using sim-

pler model problems and replicate the observed known failure modes. The goals are two.

First, we want to explain why this method fails. Second, given the known positive results

in the mathematical literature regarding the Riemannian Regge Calculus [25, 29], that is

Regge Calculus for the spatial part only, we propose that a (1+3) finite element approach has

a high chance of success. Indeed, solutions to both failure modes mentioned here are well-

understood for similar problems in the numerical relativity and finite element literature.

This chapter has two sections, one on failure due to the infinite dimension kernel and

the other on failure due to the space-time scheme for the second-order time derivative. Both

sections are organized in the same way. First, we introduce the continuous model problem

and show how it is related to the Einstein equation. Second, we prove the continuous well-

posedness of the model problem. We then introduce a seemingly reasonable discretization in

some aspect resembling the Regge-Sorkin scheme. After that, we show through numerical
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examples that these schemes fail in a way similar to how Regge-Sorkin scheme fails. Finally,

we analyze how the failures happen mathematically, argue why Regge-Sorkin scheme has

the same problem, and list well-known ways to fix these problems in the literature.

The conclusion of this chapter is, that the good way to solve the initial-value problem for

the Einstein field equation should:

1. use a (1+3) approach to separate space and time,

2. regularize the evolution equation so that even constraint violating solutions are guar-

anteed to be bounded in time,

3. use a method of lines approach to discretize the regularized evolution equation,

4. use generalized Regge finite elements to discretize the spatial part of the metric where

ein is the main operator.

In particular, the methods proposed at the end of Chapter 5 are examples of such methods.

6.1 Failure due to the infinite dimensional kernel

The model problem of this section is the Maxwell wave equation. To start, recall the Maxwell

equations in natural units:

divE = ρ,

divB = 0,

curlE+B′ = 0,

curlB−E′ = j,

where E is the electric field, B is the magnetic field, ρ is the charge density, and j is the

current. The right-hand side is required to satisfy the conservation law:

ρ′+div j = 0.

We look at a simple case where ρ = 0. This implies div j = 0. Taking the time derivative of the

fourth equation and eliminating B using the third equation, we get a constrained evolution

system:

divE = 0,

E′′+curlcurlE =− j′.

This is the vector analog of the linearized Einstein equation from the previous chapter:

divγ= divγ′ = 0, trγ= trγ′ = 0,

Sγ′′+2einγ= 0.

147



The key point of this analogy is that both curlcurl and ein has an infinite dimensional kernel.

So both evolution equations cannot ensure all components of the solutions to be bounded in

time. The divergence-free or divergence-free trace-free constraints get rid of the part which

grows in time. This way, constrained evolution systems exhibit the correct oscillatory behav-

ior.

6.1.1 Well-posedness at continuous level

The Maxwell wave equation leads to our model problem. For simplicity, let the domain be

the flat 3-torus T3, that is, a cube of side length 2π with periodic boundary condition. Given

smooth vector fields a,b : T3 → R3 and f : [0,T]×T3 → R3 satisfying the compatibility condi-

tions: ∫
T3

a =
∫
T3

b = 0,
∫
T3

f (t)= 0, ∀t ∈ [0,T],

diva = divb = 0, div f = 0, ∀t ∈ [0,T],

find u : [0,T]×T3 →R3 such that u(0)= a, u′(0)= b, and

u′′+curlcurlu = f . (6.1)

The zero spatial average conditions get rid of global constant functions on the flat torus,

which ensures the well-posedness of the problem. This will be explained further in a later

part of this section.

This evolution problem solves the Maxwell problem because equation (6.1) propagates

the divergence-free constraint:

Theorem 6.1. Let u be any smooth solutions to (6.1) with compatible data. Then u is

divergence-free and has zero average for all time.

Proof. Taking the divergence of the evolution equation, we get

divu′′ = 0.

By assumption divu(0)= divu′(0)= 0. Hence any solution u also satisfies divu ≡ 0. Integrat-

ing the evolution equation on T3, by Stokes’ theorem, we get

d2

dt2

∫
T3

u = 0.

Again by assumption u(0) and u′(0) have zero averages, hence any solution u also has zero

average for all t > 0.
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The evolution problem (6.1) with compatible data is related to the component-wise wave

equation. Recall the vector identity:

curlcurl−∇div=−∆, (6.2)

where ∆ is the component-wise Laplace operator. Thus the solution u in the above theorem

will also satisfy the component-wise wave equation:

u′′−∆u = f . (6.3)

This works in the reverse direction as well. Suppose v is any smooth solution to the wave

equation (6.3) with v(0) = a, v′(0) = b, and right-hand side f , where a,b, f are compatible.

Then it is clear that the divergence and the average of v satisfy the homogeneous scalar

wave equation with zero initial data. Hence v is divergence-free with zero average for all

time. By the same vector identity (6.2), this v also solves the curl-curl wave equation (6.1). It

is well-known that the wave equation is well-posed on T3 and has a unique smooth solution

given smooth data (we proved this in the last chapter via Fourier analysis). We therefore

proved the following theorem:

Theorem 6.2. The curl-curl wave equation (6.1) with compatible data is well-posed.

To better understand our model problem, we need the Hodge decomposition proved in the

previous chapter: a smooth vector field on T3 can be decomposed into a sum of a gradient of

a scalar field, the curl of another vector field, and a harmonic vector field:

C∞⊗R3 = curl(C∞⊗R3)⊕∇(C∞)⊕R3,

where the three components are orthogonal under the Euclidean inner product and the har-

monic form part R3 consists of vector-valued global constant functions on T3. The first com-

ponent is divergence-free. The last two components form the kernel of curl. The structure of

equation (6.1) with compatible data becomes clear: the evolution equation is linear and oper-

ates on each component independently. On the curl part, the evolution equation is equivalent

to the wave equation, due to vector identity (6.2). On the gradient part, the equation is equiv-

alent to the ordinary differential equation (ODE):

w′′ = 0, w(0)= w′(0)= 0,

which is trivially solvable by w = 0. On the harmonic form part, the equation is trivial 0= 0.

This also explains the zero average conditions we required: on the initial data, the zero

average condition ensures the uniqueness of the solution, while on the right-hand side, it

ensures the existence of a solution. The analogy between the structure of this problem and

the linearized Einstein equation at the end of last chapter is very clear.
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6.1.2 Discretization

In this section, we directly discretize the curl-curl evolution equation (6.1) using the standard

method of lines.

The spatial part is discretized using the Nédéléc edge elements [86], which is known to be

a good spatial discretization for problems involving the curl operator [10, 53, 83]. Let NED1

be the finite element space of Nédéléc edge elements of degree 1 on a uniform mesh of T3.

We solve the problem: given ah,bh ∈ NED1 and f : [0,T]×T3 → R3, find uh : [0,T] → NED1

satisfying uh(0)= ah, u′
h(0)= bh, and

(u′′
h,w)+ (curluh,curlw)= ( f ,w), ∀w ∈NED1, (6.4)

where ( · , · ) denotes the L2-inner product.

Then the temporal part is discretized using the Crank-Nicolson scheme [32], which is an

implicit time stepping scheme known to be unconditionally stable and second-order accurate.

For this problem, we introduce an auxiliary variable v = u′ and rewrite the semi-discrete

equation as: uh(0)= ah, vh(0)= bh,

(u′
h, y)− (vh, y)= 0, ∀y ∈NED1,

(v′h,w)+ (curluh,curlw)= ( f ,w), ∀w ∈NED1 .

Finally, the Crank-Nicolson scheme is applied to this system: for time step size k,(
un+1

h −un
h

k
, y

)
−

(vn+1
h , y)+ (vn

h, y)

2
= 0, ∀y ∈NED1,(

vn+1
h −vn

h

k
,w

)
+

(curlun+1
h ,curlw)+ (curlun

h,w)

2
= ( f (n+1)k,w)+ ( f (nk),w)

2
, ∀w ∈NED1,

with initial data u0
h = ah and v0

h = bh.

This fully discretized system can be solved using a Schur complement approach. First,

we rewrite it in the matrix notation. We use the capital letters like U to denote the coefficient

vector corresponding to the finite element function u in the basis representation. Let M be

the mass matrix and A the stiffness matrix, that is,

(u,v)=V T MU , (curlu,curlv)=V T AU .

Define vectors Fn via the identity:

UT Fn = ( f (nk),u).
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The fully discrete system becomes:

Un+1 −Un

k
− 1

2
(V n+1 +V n)= 0,

V n+1 −V n

k
+ 1

2
A(Un+1 +Un)= 1

2
(Fn+1 +Fn).

Solve for V n+1 in the first equation gives:

V n+1 = 2
k

(Un+1 −Un)−V n.

Substitute this into the second equation to eliminate V n+1:

(4+k2 A)Un+1 = 4(Un +kV n)+k2(Fn+1 +Fn − AUn).

Notice that the above equation has only values known at step n on the right-hand side. So

at each time step, we solve the above equation for Un+1. Then we use it to evaluate V n+1

directly using the previous equation. When k is substantially smaller than the mesh size,

the matrix (4+ k2 A) is a small perturbation of four times the identity matrix. In this case,

the Un+1 equation can be solved efficiently using the algebraic multigrid method.

6.1.3 Numerical examples and discussion

For all numerical examples of this section, we use a travelling wave on T as the exact solution:

u =


sin(z− t)

sin(x− t)

sin(y− t)

 .

It is clear that u is divergence-free and has zero average. Further, it satisfies the curl-curl

wave equation (6.1) with right-hand side f = 0.

The fully discretized solver described in the previous section was implemented in FEn-

iCS. All the source code can be found under the curlcurl_wave_equation directory in the

companion repository of the thesis.

The numerical examples in this section are all carried out on an 8×8×8 uniform mesh of

T3. The solution is computed up T = 200 with a time step size k = 0.1.

For the first numerical experiment, we interpolate the initial data into the finite element

space and run the solver. Figure 6.1 shows a plot of the numerical solution and the exact

solution at the point (0,0,0).
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Figure 6.1: Plot of numerical and exact solution

It is clear that this method does not work. Though the oscillatory behavior was correctly

captured, there is a linear growing trend in the center of the oscillation. The exactly same

behavior was observed in the numerical experiments using Sorkin-style Regge Calculus for

a linear wave solution (see Figure 3.33 and Figure 3.34 of [92]). The reason for this is easy

to explain. It is known [8, 10] that our discrete space Nédéléc also has a discrete Hodge

decomposition:

NED1 =∇CG1⊕R3 ⊕Vh,

where CG1 is the space of Lagrange elements of degree 1 on the same mesh and Vh is a

subspace of NED1 which is orthogonal to the first two components under the Euclidean inner

product. The structure of the semi-discrete equation (6.4) is the same as the continuous

equation (6.1). Again, the three components above evolve separately in time. In particular,

on the ∇CG1 part, the equation is just an ODE: w′′ = 0. On the harmonic form part R3 the

equation trivially holds. On the Vh part, the equation is a well-posed semi-discrete hyperbolic

equation, which is second-order in both space and time. The problem here is that when we

interpolate a divergence-free function with zero average into NED1, its interpolant is not

entirely in Vh. Figure 6.2 shows growth the norm of the ∇CG1 and R3 component of the

numerical solution in time. In particular, the ∇CG1 part grows linearly as it should for the

ODE w′′ = 0 with non-zero initial data. This leads to the linear trend we observe and causes
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a fast loss of accuracy.

Figure 6.2: Plot of the growth of the gradient and harmonic part of the numerical solution

One way to deal with this problem is to project the initial data into the Vh space. This can

be done in the following way. First, solve an auxiliary problem: given u ∈NED1, find φ ∈CG1

satisfying:

(∇φ,∇ψ)= (u,∇ψ), ∀ψ ∈CG1 .

Then set:

Qu := u−∇φ−
∫
T3

u.

It is clear that Q : NED1 → Vh. After we interpolate the initial data into NED1, we further

use Q to project the discrete initial data into the Vh space. If this projected initial data is

used, the method has much better accuracy. Figure 6.3 again shows the plot of the value of

the exact and numerical solution at (0,0,0) and Figure 6.4 shows the plot of the growth of the

norms of the ∇(CG1) and R3 component of the solution. Two observations are made. First, the

amplitude of the numerical solution is smaller. This is because the projection removed part

of the energy in the oscillation. Second, the non-Vh part of the solution still grows linearly

but just with a much smaller initial data. The correct solution, the Vh part, however has

constant amplitude. So eventually the solution will still be dominated by the bad part.
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Figure 6.3: Plot of numerical and exact solution with projected initial data

Figure 6.4: Plot of the growth of the gradient and harmonic part of the numerical solution

with projected initial data

This problem becomes much more severe for nonlinear problems. Next, we look at a
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nonlinear perturbed problem:

u′′+curl(1+εu×)curl= f ,

where ε is a small positive number. The form of the perturbation here is very similar to the

nonlinear Einstein equation. With minimal modifications to the discretization and numerical

scheme explained before, we can solve this perturbed problem with the same exact solution

and mesh. First we use the interpolant of the initial data directly and solve the nonlinear

perturbed problem with ε = 0.1. Figure 6.5 shows the plot of the value of the exact and

numerical solution at (0,0,0) and Figure 6.6 shows the plot of the growth of the norms of

the ∇(CG1) and R3 component of the solution. The numerical solution blows up at time

t = 71.3. This is because the linear drift term moved the solution off the stability regime of

this nonlinear equation. This should be compared to Figure 3.38 of [92] showing the blow-up

of the Sorkin-style space-time Regge calculus.

Figure 6.5: Plot of numerical and exact solution for the nonlinear problem
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Figure 6.6: Plot of the growth of the gradient and harmonic part of the numerical solution to

the nonlinear problem

For the nonlinear problem, the projection of the initial data is no longer sufficient. With

the projected initial data, Figure 6.7 shows the plot of the value of the exact and numerical

solution at (0,0,0) and Figure 6.8 shows the plot of the growth of the norms of the ∇(CG1)

and R3 component of the solution. The numerical solution blows up at a slightly later time

t = 100.7. This time it is the growth of the harmonic part that drives the solution off its

stability regime.
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Figure 6.7: Plot of numerical and exact solution with projected initial data

Figure 6.8: Plot of the growth of the gradient and harmonic part of the numerical solution

with projected initial data
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6.1.4 Implications for Regge Calculus

Regge Calculus, directly applied to the Einstein field equation where the metric is a small

perturbation of the Minkowski metric, is very similar to the situation here. As alraedy shown

by numerical experiments in the literature [92], the behavior is indeed very similar. This

shows that due to the infinite dimensional kernel of the Einstein tensor, Regge Calculus is

not a viable numerical method.

If, however, a method-of-lines approach is used, there is a chance that Regge calculus can

be salvaged. Indeed, there are two well-established ways to deal with this problem. Both in-

volve regularizing the evolution itself. One approach is Chorin’s projection method [27]. This

basically means that we apply the projection operator Q at each time step of the evolution.

This is an expensive method because an elliptic equation has to be solved at each time step.

Another approach is to regularize the evolution equation. For example, the curl-curl wave

equation can be regularized as:

σ′ =−divu,

u′ = v,

v′ =−curlcurlu+∇σ+ f .

Intuitively, By taking the time derivative of the last equation and substituting in the previ-

ous two equations, we get a full component-wise wave equation for v. This way the evolution

equation itself has control over all components of the solution and exhibit the correct os-

cillatory behavior, even without any constraints. At the discrete level, constraint violating

components oscillates at a small amplitude and does not significantly pollute the solution

even for large time. Both methods are well-known and used in the numerical relativity liter-

ature using the (1+3) decomposition approach. The same should happen for Regge calculus

as well.

It should be stressed here that in this example it is the continuous curl-curl wave equation

itself that is bad and not suitable for direct discretization, no matter which discretization

method is used. It is the evolution equation itself that needs regularization.

6.2 Failure due to the space-time scheme for the second-order

time derivative

The model problem of this section is the scalar wave equation:

u′′−∆u = 0.
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This can be written equivalently in the space-time form:

�u = div(η∇u)= 0, (6.5)

where � is the d’Lambertian, η is the 4D Minkowski metric, u is interpreted as scalar fields

on the space-time. This is an simpler space-time model problem for the 4D space-time lin-

earized Einstein equation:

ein g = 0.

As a companion to his space-time Regge Calculus paper [103], Sorkin [102] also proposed

methods to discretize matter fields in a way that is compatible with the Regge Calculus

discretization of the Einstein equation. In particular, a space-time discretization of the scalar

wave equation using essentially the Lagrange finite elements was proposed as an analog of

the space-time Regge Calculus scheme. In this section, we show that this method also fails,

albeit in a subtle way.

The space-time scalar wave equation is a simpler problem than the Einstein equation

because there is no infinite dimensional kernel in the previous section in this case. It will

be argued that the Sorkin-style space-time still fails due to the way the second-order time

derivative is discretized. Hence even with arbitrarily high precision floating point arith-

metics along with discrete initial data somehow perfectly lie in the correct space for the

linearized Einstein equation, Regge calculus will still fail. In that case, the discrete equa-

tions are equivalent to the component-wise wave equation with a discretization of the time

derivative similar to that in the discrete space-time scalar wave equation here.

Since the point here is that the discretization of the time derivative is bad, for the ease of

discussion and visualization, the scalar wave equation in (1+1) dimensions will be used. The

Sorkin-style space-time discretization of the scalar wave equation fails in (1+n) dimensions

for all n ≥ 1. It works only for the uninteresting case n = 0, where the equation is an ordinary

differential equation (ODE) and the corresponding method is the well-known finite element

in time method for second-order ODEs.

6.2.1 Regge-calculus style derivation of the model problem

We derive the space-time discretization using a Regge calculus-style approach. Let Ω= [0,1]

be our spatial domain and T > 0 some positive real number. The space-time is [0,T]×Ω.

For scalar fields u and v on the space-time, we use single parenthesis for the spatial

L2-inner product and double parenthesis for the space-time L2-inner product:

(u,v) :=
∫
Ω

uv, ((u,v)) :=
∫

[0,T]×Ω
uv.
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The action S for a scalar field u on the space-time is given by:

S(u) :=
∫

[0,T]×Ω
ηαµ(∂αu)(∂βu)= 1

2
[−((u′,u′))+ ((∇u,∇u))]. (6.6)

We derive its equation of motion by taking the first variation:

−((u′,v′))+ ((∇u,∇v))= 0,

for any scalar field v on the space-time. For test functions v, integrate by parts, we indeed

get the scalar wave equation:

u′′−∆u = 0.

Again, to formulate an initial-value problem from this, we need to specify more information.

6.2.2 Initial-value problem and well-posedness

Our model problem is the initial-boundary value problem for the scalar wave equation: given

a scalar field a on Ω, find u on [0,T]×Ω satisfying u(0)= 0, u′(0)= a, and

u′′−∆u = 0, in [0,T]×Ω,

u = 0, on [0,T]×∂Ω,

The initial data u(0) = 0 is set merely for simplicity. The homogeneous spatial boundary

conditions are used here to further exclude the possibility that the harmonic forms pollute

the solution as in the T3 case studied previously.

To properly formulate a continuous problem, we will need the Hilbert space framework.

Space-time function spaces like L2([0,T],H1(Ω)) are abbreviated as L2H1. Let

X := H1L2 ∩L2H̊1, X0 = {u ∈ X |u(0)= 0}, X T = {u ∈ X |u(T)= 0},

where H̊1 is the space of functions which are in spatial H1 and vanish on the spatial bound-

ary.

From the form of the variation of the action (6.6), we define a bilinear B : X0 × X T → 0 by

B(u,v) :=−((u′,v′))+ ((∇u,∇v)).

The continuous weak form of the scalar wave equation is: given a ∈ H1, find u ∈ X0 such that

B(u,v)= (b,v(0)), ∀v ∈ X T . (6.7)

Theorem 6.3. Problem (6.7) is well-posed. Further the solution u satisfies the scalar wave

equation as a distribution.
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Proof. Restrict v to test functions. The equation implies that u satisfies the scalar wave

equation as a distribution. Testing against v ∈ X T further shows that u′′ ∈ L2H−1. The well-

posedness of the wave equation in this case can be established using standard semi-group

approaches, see for example [22, Section 2.6.4].

6.2.3 Regge calculus-like space-time discretization and finite element view

In this section, we first derive Regge calculus-like space-time discretization of our model

problem. Then we interpret this discretization as a finite element method.

Let T be a uniform mesh of [0,T]×Ω with some temporal mesh size k and spatial mesh

size h. A discrete scalar field is a continuous piecewise linear function on T , parameterized

by its values at the nodal points. We write down the discrete action, which is the same as the

continuous one (6.6): for a discrete scalar field u,

Sh(u) :=
∫

[0,T]×Ω
ηαµ(∂αu)(∂βu)= 1

2
[−((u′,u′))+ ((∇u,∇u))].

We derive its equation of motion by taking the first variation, which again leads to the same

equations

−((u′,v′))+ ((∇u,∇v))= 0,

for any discrete scalar field v on T . This is the Regge calculus-style discrete wave equation.

This is very natural from the finite element point of view. Let CG1 be the space of La-

grange elements of degree 1 on T . It is well-known that CG1 ⊂ H1H1. Define discrete

subspaces with temporal and spatial boundary conditions:

Xh :=CG1∩L2H̊1, X0
h = {u ∈ Xh|u(0)= 0}, X T

h = {u ∈ Xh|u(T)= 0},

Clearly,

Xh ⊂ X , X0
h ⊂ X0, X T

h ⊂ X T .

We thus get a conforming discretization of equation (6.7) via the Galerkin projection: find

u ∈ X0
h such that

B(u,v)= (b,v(0)), ∀v ∈ X T
h . (6.8)

This is straightforward to implement. The resulting linear system can actually be solved

locally. This has a marching structure very similar to Sorkin-style space-time Regge calculus.

It can be best described through Figure 6.9. There the values at the purple nodes are already

known from the spatial boundary condition. The first two layers of solid green nodes are

known from the initial data. First, we take the tent function centered at the blue node as the

test function. Its support is marked by the thickened lines. Out of the 7 nodes in the support
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of this test function, the value of the solution at only one node, at the dashed circle, is not yet

known. The discrete equation (6.8) can be applied here to solve for the value there. Once this

is done, we can choose the tent function centered at the node immediately to the left of the

blue node. The situation is the same and we can use equation (6.8) again to fill in one more

value in the third temporal slice. Repeating this, we fill the whole third temporal slice. The

situation will look exactly the same as we started but with three layers of green nodes. We

can thus repeat this and fill in the entire mesh to obtain the solution.

Figure 6.9: Illustration of the marching scheme

This scheme can be highly parallelized. Figure 6.10 shows that after the computing the

value at the second node in the third layer, we can already start to fill the fourth layer, at the

same time the third layer is filled.

Figure 6.10: Parallel marching scheme

6.3 Numerical example

The behavior of the discrete problem (6.8) is subtle. In this section, we show some intriguing

numerical examples. In the next section, we give a full explanation and analysis.
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The discrete problem (6.8) is implemented in FEniCS. All the source code can be found

under the spacetime_wave_equation directory in the companion repository of the thesis.

We choose the following standing wave as the exact solution:

u(t, x)= sin(3πx)sin(3πt).

It is clear that u ∈ X0. The right-hand side is just 0. We always compute to T = 15.0.

First, we take a uniform mesh with spatial size h = 0.02 and temporal size k = 0.01.

The gives a Courant-Friedrichs-Lewy (CFL) number of 0.5, far from the critical value 1.

Figure 6.11 shows the result. The upper panel shows a zoomed in view of the mesh. The

middle panel plots the numerical solution as a heat map. The bottom panel plots the spatial

L2-norm in time. In this case, this method works and the numerical solution is very close to

the exact solution.

Figure 6.11: Uniform mesh

Now, we take the same uniform mesh as before, then randomly perturbed each internal

mesh points by at most 14% of the radius of inscribed circle of a triangle in the original mesh.

Figure 6.12 shows the result in the same format as before. This is a fairly small perturbation.

Yet, it is clear that the method is unstable.
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x

t

Figure 6.12: Randomly perturbed mesh

We then take the good uniform mesh in the first time and move all the internal nodes in

every second spatial slices by 0.2h together (deterministically). Figure 6.13 shows the result

in the same format as before. The method seems stable.

Figure 6.13: Perturb every second spatial slice
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Finally, we do the same as the previous experiment, but move all the internal nodes in

every third spatial slices by 0.2h together (deterministically). Figure 6.13 shows the result

in the same format as before. The method is extremely unstable and blows up quicklly (notice

the scale of the y-axis on the bottom panel).

t

x

Figure 6.14: Perturb every third spatial slice

6.3.1 von Neumann stability analysis

In this section, we explain the reason behind the previous numerical experiments.

As mentioned previously, the discretization (6.8) can be understood as a marching scheme.

Set Um
n to be the value of the numerical solution at the n-th node in space and m-th node in

time. We thus only need to understand the situation for the one patch:

Um−1
n−1 Um−1

n

Um
n−1 Um

n
Um

n+1

Um+1
n Um+1

n+1
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where all but Um+1
n are known. We take the tent function centered at Um

n as the test function.

On a uniform mesh with temporal size k and spatial size h, equation (6.8) can be assem-

bled by hand. This is a tedious computation. The result is:

Um+1
n −2Um

n +Um−1
n

k2 − Um
n−1 −2Um

n +Um
n+1

h2 = 0. (6.9)

Thus on a uniform grid, this method is exactly the central finite difference method for the

scalar wave equation. It is stable as long as the CFL condition is satisfied:

k/h ≤ 1. (6.10)

This explains why the method works nicely on a uniform mesh. Notice that on the uniform

mesh, all though the two diagonal nodes Um−1
n−1 and Um+1

n+1 are in the support of the test

function, they do not enter the final equation due to cancellations by symmetry. This leaves

us with the classical 5-point stencil.

When the mesh is any perturbation of the uniform mesh, this is no longer the case. In

particular, both Um−1
n−1 and Um+1

n+1 enters the equation. Since the mesh is a small perturbation

from the uniform mesh, we can still use the numbering as before. We can analyze this method

using standard von Neumann stability analysis [72, Section 9.6]. The idea is simple: we check

the behavior of the method by marching a discrete function of the form

Um
n = rmeinθ.

For plug the above formula into the marching equation similar to equation (6.9) and then

solve for the magnification factor r as a function of θ. Our method is stable if |r| ≤ 1 for all θ.

Now the hand assembly approach becomes quite unwieldy. The marching equation sim-

ilar to equation (6.9) can be evaluated numerically. The relevant code can be found in the

python notebook spacetime_wave_equation/analysis.ipynb. The results are summarized

here.

Because the patch involves three time levels, we have r−1,1, r in the equation for the

magnification factor. This means that r is a quadratic polynomial in eiθ. In Figure 6.15, we

show the situation on the uniform mesh when k = 0.5 and h = 1.0. The left panel shows the

weight for each node in the marching equation. The right panel shows the image of g(θ) for

θ ∈ [0,2π]. The orange and blue colors stand for the two different roots g1, g2 of the quadratic

equation for g. In this case, it is already at the boundary of stability because the right-most

part of the curve touches 1.
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Figure 6.15: Uniform mesh k = 0.5 and h = 1.0

Figure 6.16 shows the same information on the uniform mesh when k = 1.0 and h = 1.0.

It is clear that it is still stable.

Figure 6.16: Uniform mesh k = 1.0 and h = 1.0

Figure 6.16 shows the situation on the uniform mesh when k = 1.0 and h = 0.5. In this

case the CFL condition fails. It is clear from the magnification factor plot that it is unstable.
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Figure 6.17: Uniform mesh k = 1.0 and h = 0.5

In the next few figures, we will look at different types of perturbations of the good uniform

mesh k = 0.5 and h = 1.0. First, Figure 6.18 shows the situation where the very middle node

is perturbed by a small amount in the spatial direction. This is not stable.

Figure 6.18: Perturb the middle node spatially

Figure 6.18 shows the situation where the very middle node is perturbed by a large
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amount in the temporal direction. This, however, is still stable.

Figure 6.19: Perturb the middle node temporally

Figure 6.20 shows the situation where the very middle node is perturbed a small amount

in both the spatial and temporal direction. It turned out that it is stable when ∆x ≤ ∆t for

the perturbation. This includes the previous two situations as special cases.

Figure 6.20: General perturbation of the middle node

Now we look at a different type of perturbation. Figure 6.21 shows the situation where all
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the middle nodes for the same spatial position are moved by a small amount in the temporal

direction. This is unstable.

Figure 6.21: Move all middle nodes temporally

Figure 6.22 shows the situation where all the middle nodes for the same spatial position

are moved by a small amount in the spatial direction. This is also unstable.

Figure 6.22: Move all middle nodes spatially

Figure 6.23 shows the situation where all the nodes on the middle spatial slice are moved

by a small amount in the spatial direction. This is again unstable.
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Figure 6.23: Move all middle nodes spatially

In sum, the stability of the discretization (6.8) depends on how the mesh is perturbed but

not how big the perturbation is. In particular, there are many ways we can perturb a uniform

mesh very far away from the CFL limit such that the method is unstable for arbitrarily small

amount of perturbation.

Finally, we explain why perturbing every other spatial slice does not blow up but per-

turbing every third spatial slice does. The reason becomes clear in Figure 6.24. The patch

involves three spatial slices. If we perturb every other slice, the perturbation at one spatial

slice is exactly the opposite of that on the next slice. Hence the effect cancels each other.

However, there is no such cancellation when we perturb every third spatial slice. In this

case, the perturbation is of the type depicted in Figure 6.23 every three spatial slice. The

method blows up exponentially because the magnification factor |g| > 1.
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Figure 6.24: Uniform mesh k = 0.5 and h = 1.0

6.3.2 Implication for Regge calculus

We have shown that Sorkin-style space-time method for the scalar wave equation is unstable

on general meshes. However, stable space-time finite element methods for hyperbolic equa-

tions abound, for example [39, 56, 57]. The main difference between these ones and the one

here is how the second-order time-derivative is handled. The stable schemes discretize it as:

((u′,v))− ((p,v))= 0, ∀v

((p′, q))+ A(u, q)= 0, ∀q,

where A(u, q) is some bilinear form for the spatial part. The discrete spaces are constructed

so that we can choose v = p′ and q = u′ as test functions. Adding the two equations together,

we get

((p, p′))+ A(u,u′)= 1
2

[((p, p))+ A(u,u)]′ = 0,

which is the natural energy estimate for this equation.

In Sorkin-style space-time methods, this is however formulated as:

−((u′,v′))+ A(u,v)= 0, ∀v

It is not clear if it is even possible to get an energy estimates by a choice of test function.

It is clear that in space-time Regge calculus, the situation is very similar to the unstable

discretization (6.8). Because of this, the space-time aspect in the Sorkin’s Regge Calculus

scheme is very unlikely to work. We note that here again it is the form of the discrete equation

that is bad. It matters little which finite element was used. In order to get out of this problem,

we need to abandon the direct space-time approach.
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