THE SECOND AND THE THIRD SMALLEST DISTANCES
ON THE SPHERE

By

Zoltán Füredi

IMA Preprint Series # 405
March 1988
THE SECOND AND THE THIRD SMALLEST DISTANCES ON THE SPHERE

ZOLTÁN FÜREDI†

Abstract. Let \(s_1(n) \) denote the largest possible minimal distance among \(n \) distinct points on the unit sphere \(S^2 \). In general, let \(s_k(n) \) denote the supremum of the \(k \)-th minimal distance. In this paper we prove and disprove the following conjecture of A. Bezdek and K. Bezdek: \(s_2(n) = s_1([n/3]) \). This equality holds for \(n > n_0 \) however \(s_2(12) > s_1(4) \).

We set up a conjecture for \(s_k(n) \), that one can always reduce the problem of the \(k \)-th minimum distance to the function \(s_1 \). We prove this conjecture in the case \(k = 3 \) as well, obtaining that \(s_3(n) = s_1([n/5]) \) for sufficiently large \(n \).

1. Introduction, Results. Let \(\mathcal{P} \) be a finite pointset on the 2-dimensional unit sphere \(S^2 \) in \(\mathbb{R}^3 \). The spherical distance between the points \(x, y \in S^2 \) is denoted by \(d(x, y) \). Consider the set of distances between the points of \(\mathcal{P} \),

\[
D(\mathcal{P}) = \{d(x, y) : x, y \in \mathcal{P}, x \neq y\}.
\]

Order the elements in \(D(\mathcal{P}) = \{d_1, \ldots, d_t\} \) such that \(d_1 < d_2 < \cdots < d_t \). Then \(d_t \) is the diameter of \(\mathcal{P} \) and the \(k \)-th smallest distance, \(d_k \) is denoted by \(s_k(\mathcal{P}) \). (If \(t > k \), define \(s_k(\mathcal{P}) = \infty \).) So \(s_1(\mathcal{P}) \) is the minimum distance.

Let \(s_k(n) \) denote the supremum of the \(k \)-th smallest distance in \(n \)-point sets on the sphere, i.e.,

\[
s_k(n) = \sup\{s_k(\mathcal{P}) : |\mathcal{P}| = n, \quad \mathcal{P} \subset S^2\}.
\]

The problem of finding \(s_1(n) \) was raised by Tammes [T] in 1930. The exact value of \(s_1(n) \) and the extremal arrangements are known for a couple of small values of \(n \). \(n = 5, 7, 8 \) by Schütte and Van der Waerden [SW], \(n = 10, 11 \) by Danzer [D], \(n = 11 \) by Böröczky [Bö], \(n = 24 \) by Robinson [R] and \(n = 3, 4, 6, 12 \) by L. Fejes Tóth [FT]. More on these results see [D2].) Here we will use the asymptotic result

\[
s_1(n) = (1 + o(1))\sqrt[4]{\frac{8\pi}{\sqrt{3}} n},
\]

(1.1)

This formula means that \(\lim_{n \to \infty} ns_1(n)^2 = 8\pi/\sqrt{3} \). L. Fejes Tóth proved the following

\[
s_1(n) \leq \arccos \left(\frac{1}{2} \left(\cot^2 \frac{n}{n-2} \frac{\pi}{6} - 1 \right) \right)
\]

(1.2)

which yields the upper bound in (1.1). The lower bound can be obtained a hexagonal like packing of circles.

The problem of \(s_2(n) \) was recently proposed by A. Bezdek and K. Bezdek [BB]. They proved that \(s_2(9) = 2\pi/3 \) and that

\[
s_2(n) > s_1([n/3]) - \epsilon
\]

(1.3)

†Mathematical Institute, Hung. Acad. Sci., 1364 Budapest, P.O.B. 127, Hungary
holds for all $\epsilon > 0$. (Here $[x]$ denotes the smallest integer not smaller than x.) The construction giving (1.3) is obtained from an s_1-extremal arrangement \mathcal{P}' with $|\mathcal{P}'| = [n/3]$, i.e., $s_1(\mathcal{P}') = s_1([\mathcal{P}'])$. Then replace each point $p \in \mathcal{P}'$ by a regular triangle of side length $\epsilon/2$ and with a vertex in p.

In [BB] an upper bound (which was twice the right hand side of (1.2)) was proved and they asked whether equality holds in (1.3) for all $n > 4$. The aim of this paper is to answer this question.

The 12 vertices of the regular icosahedron show that

$$s_2(12) > s_1(4).$$

However for large n Bezdek's conjecture is true:

Theorem 1.1. For $n > n_0$ one has $s_2(n) = s_1([n/3])$.

Let $f(k)$ denote the largest integer f such that for all $\epsilon > 0$ there exists a k-distance set of size f and of diameters less than ϵ. We have $f(0) = 1$, $f(1) = 3$, $f(2) = 5$, $f(3) = 7$. For large k the best known upper bound is $O(k^{2/4})$ due to Chung, Szemerédi and Trotter [CSzT], and it is still a challenging problem to decide whether $f(k) = O(k)$, or not. (Recently, Erdős, Hickerson and Pach [EHP] proved some results which give some support to the conjecture that $\lim f(k)/k = \infty$.) Replacing the points of an s_1-extremal set on the sphere by congruent small copies of a $(k-1)$-distance set we obtain

$$s_k(n) \geq s_1([n/f(k-1)]).$$

Conjecture 1.2. For $n > n_0(k)$ one has $s_k(n) = s([n/f(k-1)])$.

Theorem 1.3. For $n > n_0$ one has $s_3(n) = s_1([n/5])$.

In general we can only prove a weaker upper bound.

Theorem 1.4. For $n > n_0(k)$ one has $s_k(n) \leq s_1([n/6f(k-1)])$.

2. **A Lemma on the Ratio of s_1 and s_2.** Let $\Delta \geq 0$ be an integer, $0 < s < \pi/2$. Define the regular Δ-gon (on the unit sphere S^2) with center c and inscribed radius s as follows:

- for $\Delta = 0$ the whole sphere,
- for $\Delta = 1$ halfsphere including c such that the distance from c to the boundary is s,
- for $\Delta = 2$ a digon with symmetry center c whose distance from the sides is s,
- for $\Delta \geq 3$ as usual.
We can extend these definitions to the Euclidean plane, in the cases $\Delta = 0, 1, 2$ the regular Δ-gon is the whole plane, a halfplane or an infinite strip of width $2s$. Define the function $A(\Delta, D, s)$ as the area of the intersection of a regular Δ-gon with inscribed radius $s/2$ and a circle of diameter D with the same center. The same function on the plane is denoted by $A_\infty(\Delta, D, s)$. Clearly,

$$A_\infty(\Delta, D, s) = s^2 A_\infty(\Delta, \frac{D}{s}, 1),$$

and if Δ and D/s are given then

$$\lim_{s \to 0} \frac{A(\Delta, D, s)}{s^2} = A_\infty(\Delta, \frac{D}{s}, 1).$$

For brevity we use $A(\Delta, x)$ for $A_\infty(\Delta, x, 1)$. E.g., $A(0, x) = x^2 \pi/4$, $A(4, \infty) = 1$, $A(6, \infty) = \sqrt{3}/2$.

Let \mathcal{P} be an n-element set on S^2, $s_i = s_i(\mathcal{P}), (n > 4)$. Define the minimum distance graph $\mathcal{G} = \mathcal{G}(\mathcal{P})$ with vertex set \mathcal{P} as follows: two points are connected if their distance is s_1. Obviously, every point has at most 5 neighbours, so for the maximum degree, $\Delta(\mathcal{G})$, of \mathcal{G} we have

$$\Delta(\mathcal{G}) \leq 5.$$

Lemma 2.1. Let $0.1 > \epsilon > 0$ and suppose that $n > n_1(\epsilon), s_2 < \epsilon$. Then

$$s_1(\mathcal{P}) < s_1(n)(1 + \epsilon)\sqrt{\frac{\sqrt{3}/2}{A(\Delta, s_2/s_1)}}.$$

Proof. By (1.1) for every $\epsilon > 0$ there exists an $n_1(\epsilon)$ such that

$$\epsilon s_2(n) \frac{\sqrt{3}}{2} n > \text{Area } S^2 = 4\pi.$$

On the other hand for every $p \in \mathcal{P}$ define its Dirichlet cell, $C(p) = \{q \in S^2 : d(p, q) = d(\mathcal{P}, q)\}$. Let p_1, \ldots, p_t be the neighbors of p in \mathcal{G}, and let H_i be the half sphere containing p which perpendicularly bisects pp_i. Then $C(p)$ contains the intersection of $H_i - s$ and a spherical circle of radius $s_2/2$ around p. Hence Area $C(p) \geq A(\Delta, s_2, s_1)$. Obviously, $A(\Delta, s_2, s_1) > A(\Delta, s_2/s_1)s_1^2/(1 + \epsilon)$. Then

$$4\pi \geq \sum \text{Area } C(p) > n A(\Delta, s_2/s_1)s_1^2/(1 + \epsilon).$$

Finally, (2.2) and (2.3) imply the Lemma. []

3
3. The Proof of Theorem 1.4. Let \(P \) be a finite point-set on \(S^2 \). Consider the minimum \((k - 1)\)-distance graph \(G^{k-1} = G(P) \), i.e., two points \(x, y \) in \(P \) are connected if \(d(x, y) \leq s_{k-1}(P) \). Let \(f(k - 1, \varepsilon) \) denote the maximum size of a \((k - 1)\)-distance set of diameter at most \(\varepsilon \).

Proposition 3.1. Every point in \(G^{k-1} \) is connected by less than \(6f(k - 1, s_{k-1}) - 6 \) other points.

Proof. Let \(p \in P \), and consider a closed circle \(C \) with radius \(s_{k-1} \) and center \(p \). Divide \(C \) into 6 congruent pieces with 3 diagonals through \(p \), any two of them have an angle \(\pi/3 \). Then the diameters of each piece is \(s_{k-1} \), so it contains at most \(f(k - 1, s_{k-1}) \) elements of \(P \).

Proof of Theorem 1.4. There exists an \(\varepsilon > 0 \) such that \(f(k - 1, \varepsilon) = f(k - 1) \). We have an \(n_0(k) \) such that for \(n > n_0(k) \) \(s_{k-1}(n) < \varepsilon \) holds. Then \(G^{k-1} \) does not contain a complete subgraph of \(6f(k - 1) - 5 \) vertices \((k \geq 2) \), but every degree is not larger than \(6f(k - 1) - 6 \). One can use Brook's theorem (see, e.g., in Bollobás' book [Bo]), that the chromatic numbers of \(G^{k-1} \) is at most \(6f - 6 \). So there exists a \(P' \subset P \) with \(|P'| \geq |P|/(6f - 6) \) such that \(s_1(P') \geq s_k(P) \).

4. The Proof of Theorem 1.1. By (1.1) we have an \(n_2 \) such that for all \(n > n_2 \)

\[
\frac{s_1([n/3])}{s_1(n)} > 1.71
\]

holds. Suppose that \(P \) is an arbitrary \(n \)-set on the sphere with \(n > n_2 \). To prove the theorem we have to show that

\[
s_2(P) < s_1([n/3]).
\]

We may suppose that

\[
s_2(P) > 1.71s_1(n),
\]

otherwise (1.1) implies (2.2).

As \(s_1(n) \to 0 \) if \(n \to \infty \) we have an \(n_3 \) such that \(s_1([n/4]) < 0.01 \) holds for all \(n > n_3 \). Then by Proposition 1.4 we have

\[
s_2(P) < 0.01.
\]

So we may apply Lemma 2.1 to \(P \) with \(n > \max\{n_2, n_3\} \), \(\Delta = 5 \) and \(\varepsilon = 0.01. \) We have

\[
A(5, 1.71) = A(5, \infty) = \frac{5}{4} \tan 36^\circ \sim 0.908 \ldots \text{ so by Lemma 2.1}
\]

\[
s_1(P) < s_1(n) \cdot 0.986 \ldots
\]
Then (4.5) and (4.3) imply that

\[(4.6) \quad s_2(\mathcal{P})/s_1(\mathcal{P}) > 1.733 \cdots > \sqrt{3}.\]

Claim 4.1. \(\Delta(\mathcal{G}) \leq 3.\)

Proof. Suppose on the contrary that \(p \in \mathcal{P}, \ q_1, \ldots, q_4 \in \mathcal{P}\) with \(d(p, q_i) = s_1.\) If the distances \(d(q_i, q_j)\) are all at least \(\sqrt{3}s_1,\) then each angle \(q_ipq_{i+1}\) is at least 120°, a contradiction. So we have, say, \(d(q_1, q_2) = s_1.\) If \(d(q_i, q_1) \quad (i = 3, 4)\) is less than \(\sqrt{3}s_1\) then it is also \(s_1,\) but then \(s_1 < d(q_2, q_i) < \sqrt{3}s_1 < s_2,\) a contradiction. Hence \(d(q_i, q_j) \geq \sqrt{3}s_1\) for \(i = 1, 2, j = 3, 4.\) Then we obtain the contradiction \(d(q_3, q_4) < s_1.\)

In the same way we can obtain:

Fact 4.2. If \(\Delta(\mathcal{G}) = 3\) and \(s_2 \geq \sqrt{3}s_1\) then \(s_2 < 2s_1 \sin 75° < s_1 1.931\ldots.\)

Apply again Lemma 2.1 to \(\mathcal{P}\) with \(\Delta = 3, \ s_2/s_1 > \sqrt{3},\) and \(\epsilon = 0.01.\) Then \(A(3, \sqrt{3}) = 1.267\ldots,\) hence

\[(4.7) \quad s_1(\mathcal{P}) < s_1(n)0.834\ldots\]

Then (4.7) and (4.3) imply

\[(4.8) \quad s_2(\mathcal{P})/s_1(\mathcal{P}) > 2.048 \cdots > 2.\]

Then, obviously, we have

\[(4.9) \quad \Delta(\mathcal{G}) \leq 2.\]

Finally, we are going to use the following (simple) fact (see, e.g., in Bollobás’ Book [Bo]): If for a graph \(\mathcal{H}\) on the vertex set \(V\) and with \(\Delta(\mathcal{H}) \leq 2\) then there exists a \(V' \subset V, \ |V'| \geq |V|/3\) such that \(V'\) does not contain any edge of \(\mathcal{H}\) (i.e., \(V'\) is an empty or independent set of vertices). So by (4.9) there exists a \(\mathcal{P}' \subset \mathcal{P}, \ |\mathcal{P}'| \geq \lceil n/3 \rceil,\) such that \(s_1(\mathcal{P}') > s_1(\mathcal{P}).\) Then we have

\[s_1(\lceil n/3 \rceil) \geq s_1(\mathcal{P}') \geq s_2(\mathcal{P}),\]

and the proof of 1.1 is complete.

5. The Proof of Theorem 1.3. We are going to use the method of the proof of Theorem 1.1 but we have to investigate more subcases. We will use the following simple facts on 2-distance sets \(\mathcal{R}\) on the sphere. Suppose that the distances are \(a < b < 0.001.\)
FACT 5.1. $|\mathcal{R}| \leq 5$ with equality if and only if \mathcal{R} is a regular pentagon. Then

\[(5.1) \quad 1.61801 \cdots = 2 \sin 54^\circ < \frac{b}{a} < 1.62.\]

FACT 5.2. If $|\mathcal{R}| = 4$ then one of the following six cases holds (see Fig. 1):

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{}
\end{figure}

(i) \mathcal{R} consists of 2 regular triangles of side length a, with a common side. Then $(1 + \cos a)(1 + \cos b) = 4 \cos^2 a$, hence

\[1.732 \cdots = \sqrt{3} < \frac{b}{a} < 1.733.\]

(ii) \mathcal{R} is a regular quadrilateral. Then $1.414 \cdots = \sqrt{2} < \frac{b}{a} < 1.415.$

(iii) \mathcal{R} consists of four vertices of a regular pentagon. Then (5.1) holds.

(iv) \mathcal{R} is a convex quadrilateral with diagonals of length b, and sides a, a, b, b. Then

\[\cos a = \cos^2 b + \sin^2 b \sqrt{\frac{1 + 2 \cos b}{2 + 2 \cos b}},\]

hence \((b/a) \sim \sqrt{2 + \sqrt{3}}\), i.e.,

\[(5.2) \quad 1.931 < \frac{b}{a} < 1.932\]

(v) \mathcal{R} is a triangle of side lengths b, b, and a and its center with circumscribed radius a. Then

\[\cos b = \cos^2 a - \sin^2 a \sqrt{\frac{1 + 2 \cos a}{2 + 2 \cos a}},\]

hence $b/a \sim \sqrt{2 + \sqrt{3}}$, i.e., (5.2) holds.
(vi) \mathcal{R} is a regular triangle of side length b and its center. Then $\cos b = 1 - 1.5 \sin^2 b$, hence
\[
1.732 < \frac{b}{a} < \sqrt{3} = 1.732 \ldots \quad \Box
\]

By (1.1) the limit of $s_1(\lfloor n/5 \rfloor)/s_1(n)$ is $\sqrt{5} = 2.236 \ldots$, so there exists an n_4 such that for all $n > n_4$
\[(5.3) \quad \frac{s_1(\lfloor n/5 \rfloor)}{s_1(n)} > 2.236 \]
holds. Suppose that \mathcal{P} is an arbitrary n-set on the sphere with $n > n_2$. To prove our theorem we have to show that
\[(5.4) \quad s_3(\mathcal{P}) < s_1(\lfloor n/5 \rfloor). \]

We may suppose that
\[(5.5) \quad s_3(\mathcal{P}) > 2.236s_1(n), \]
otherwise (5.3) implies (5.4).

By Proposition 1.4 there exists an n_5 such that $s_3(n) < 0.001$ holds for all $n > n_5$. From now on we suppose that $n > \max\{n_4, n_5 \}$. We need a definition. Let $\mathcal{G}^2 = \mathcal{G}^2(\mathcal{P})$ be a graph with vertex set \mathcal{P} defined in the following way: connect two points $p, q \in \mathcal{P}$ with an arc (with the shortest path on S^2) if $d(p, q) = s_1$ or s_2. If these arcs form a planar representation of \mathcal{G}^2 then (by the four color theorem) there exists a $\mathcal{P}' \subset \mathcal{P}$, $|\mathcal{P}'| \geq |\mathcal{P}|/4$ such that $s_3(\mathcal{P}) \leq s_1(\mathcal{P}') \leq s_1(\lfloor |\mathcal{P}'|/4 \rfloor)$.

From now on we suppose that there exist two arcs ac and bd such that $\{a, b, c, d\} \subset \mathcal{P}$, $d(ac)$ and $d(bd) \in \{s_1, s_2\}$ and $\text{int } \widehat{ac} \cap \text{int } \widehat{bd} \neq \emptyset$.

FACT 5.3. If a, b, c, d from a convex quadrilateral with diagonals ac, bd then $d(ab) + d(cd) \leq d(ac) + d(bd)$ and $d(ad) + d(bc) \leq d(ac) + d(bd)$. Here equality can hold if a, b, c, d are lying on a great circle. \Box

Now Fact 5.3 implies that the total sum of opposite sides is less than $2s_2$, so one of them is s_1. We may suppose that, e.g., $d(a, b) = d(a, d) = s_1$. We distinguish 4 cases (Fig. 2).

![Diagram](image)

Figure 2.

a) $d(a, c) = d(b, d) = s_1$, i.e., both diagonals have length s_1. Then a side of $\{a, b, c, d\}$ is
shorter than \(s_1 \), by Fact 5.3, a contradiction.

\(\beta \) \(d(a, c) = s_1, \ d(b, d) = s_2 \). Then the point \(a \) lies in the center of the triangle \(bcd \) and the circumscribed radius is \(s_1 \). Then all distances in \(\{a, b, c, d\} \) is not more than \(2s_1 \), i.e., it is a 2 distance set. Only the case 5.2 (i) can hold, i.e., \(b/a \sim \sqrt{3} \).

\(\gamma \) \(d(a, c) = s_2, \ d(b, d) = s_1 \). The bad angle is less than 61° so the distance of \(c \) from \(b \) and \(d \) is less than \(s_2 \). Again we have obtained the case 5.2 (i).

\(\delta \) The lengths of both diagonals are \(s_2 \). Then \(s_2 \leq 2s_1 \). We obtained that in all the four cases \(\alpha, \ldots, \delta \) we have

\[
(5.6) \quad s_2 \leq 2s_1.
\]

We claim that in \(\mathcal{G} \) (not in \(\mathcal{G}^2 \) !) every degree is small:

Claim 5.4. \(\Delta(\mathcal{G}) \leq 3 \).

Indeed if \(p \in \mathcal{P} \) and \(\Gamma(p) \) is the set of its neighbors then \(p \cup \Gamma(p) \) is a 2 distance set by (5.5) and (5.6). Then \(|p \cup \Gamma(p)| \leq 5 \) by Fact 5.1. Moreover, if \(|p \cup \Gamma(p)| = 5 \) then it is a regular pentagon, but in that case \(|\Gamma(p)| = 2 \), a contradiction. \(\square \)

Proposition 5.5. \(s_3 > s_1 + s_2 \).

Proof. We will prove that for every Dirichlet cell \(D \) we have

\[
(5.7) \quad \text{Area } D > 0.1734(s_1 + s_2)^2.
\]

This implies the Proposition as follows:

\[
1.001 \frac{\sqrt{3}}{2} - \frac{1}{2.236^2} (s_1 + s_2)^2 < 0.1734(s_1 + s_2)^2 \leq \frac{4\pi}{n} < 1.001 \frac{\sqrt{3}}{2} s_1(n)^2,
\]

i.e., \(s_1 + s_2 < 2.236s_1(n) \). Then (5.5) implies Proposition 5.5. To prove (5.7) we have two cases. Let \(p = \mathcal{P} \cap D \).

- If \(\deg_{\mathcal{G}}(p) \leq 2 \) (i.e., \(p \) has at most 2 neighbours in \(\mathcal{G} \)) then we can apply Lemma 2.1 with \(\Delta = 2 \), i.e.,

\[
\text{Area } D > A(2, s_2, s_1)
\]

\[
(5.8) \quad > 0.999 \left(s_1 \sqrt{s_2^2 - s_1^2} + s_2 \arcsin \frac{s_1}{s_2} \right).
\]

Here, the right hand side is larger than \(0.1734(s_1 + s_2)^2 \) for \(0 \leq s_1 \leq s_2 \leq 2s_1 \).

- If \(\deg_{\mathcal{G}}(p) \geq 3 \) then \(\deg_{\mathcal{G}}(p) = 3 \) by Claim 5.4. Let \(\Gamma(p) = \{u, v, w\} \). Then every distance in \(\{p, u, v, w\} \) is either \(s_1 \) or \(s_2 \). Then one of the following three subcases holds (by Fact 5.2)
-- \{p, u, v, w\} is isomorphic to 5.2 (i). Then \(D\) contains the intersection of 3 halfspheres and a circle of radius \(s_2/2\). (see Fig. 3). Hence \(\sqrt{3} s_1 < s_2 < 1.733s_1\) and

\[
\text{Area } D > 0.999 \left(\frac{\sqrt{3}}{6} + \frac{\sqrt{2}}{4} + \frac{3}{8} \left(\frac{4}{3} \pi - 2 \arctan \sqrt{2} \right) \right) s_1^2 > 1.48 s_1^2
\]

\[0.1734(s_1 + 1.733s_1)^2 > 0.1734(s_1 + s_2)^2.\]

-- \{p, u, v, w\} is isomorphic to 5.2 (v) (Fig.4). Then \(1.931 < s_2/s_1 < 1.932\) and Area \(D > 0.990(1.497 \ldots s_1^2) > 1.495s_1^2 > 0.1734(s_1 + s_2)^2.\)

-- \{p, u, v, w\} is isomorphic to 5.2 (vi). (See Fig. 5). Then \(\sqrt{3} s_1 > s_2 > 1.732s_1\), hence Lemma 2.1 yields (with \(\epsilon = 0.001\), \(\Delta = 3\), \(s_2 = s_1.1732\)) that

\[s_1(P) < s_1(n)0.828.\]

Thus by (5.5) we have

(5.9) \[s_3 > 2.7s_1.\]

We claim that in this case there are no two crossing edges of \(G^2\), a contradiction to our earlier assumptions. If \{p, u, v, w\} is a 2-distance set of type (vi) then there is no other type of 4-element 2-distance set in \(G^2\). Consider the crossing edges \(ac\) and \(bd\). The cases \(\alpha, \beta, \gamma\) are impossible so we have that \(s_1 = d(a, b) = d(a, d), s_2 = d(a, c) = d(b, d) \sim 1.73s_1\). This is not a 2-distance set so we may suppose that, e.g., \(d(d, c) > s_3 > 2.7s_1\). Then \(d(b, c) \leq s_2\), too. It is easy to check, that such a convex quadrilateral does not exist.

The proof of Proposition 5.5 is complete. \[\square\]

Proposition 5.6. If \(ac\) and \(bd\) are two crossing arcs in \(G^2\) then \(\min\{\deg_G(x) : x \in \{a, b, c, d\}\} \leq 4. \]

Proof. As we have seen above, we may suppose that \(d(a, b) = d(a, d) = s_1, d(a, c) = s_2 \) and \(d(b, d) = s_1 \) or \(s_2\). Then, by Proposition 5.5, \(\{a, b, c, d\}\) is a 2-distance set. So its type
is among (i)–(iv), by Fact 5.2. We claim that \(\deg_{G^2}(a) \leq 4 \). If \(e \in \mathcal{P} - \{a, b, c, d\} \) and \(d(a, e) = s_1 \), then \(\{a, b, c, d, e\} \) is a 2-distance set with \(\deg_\mathcal{G}(a) \geq 3 \), which contradicts to Fact 5.1. If \(d(a, e) = s_2 \) then \(\{a, b, c, d\} \) and \(\{a, b, c, e\} \) are similar 2-distance sets. This is impossible in the cases (i), (ii) and (iv), and in the case (iii) we obtain a regular pentagon. \(\square \)

Proposition 5.7. There exists a \(\mathcal{P}' \subset \mathcal{P} \), \(|\mathcal{P}'| \leq |\mathcal{P}|/5 \) such that \(s_1(\mathcal{P}') \geq s_3(\mathcal{P}) \).

Proof. Let \(\mathcal{P}_0 = \mathcal{P} \) and consider two crossing edges. An endpoint of them has degree at most 4 (in \(G^2 \)). Denote this point by \(p_1 \) and let \(\mathcal{P}_1 = \mathcal{P} - \{p\} - \{\Gamma(p)\} \). Repeat this step until we have crossing edges of length at most \(s_2 \) in \(\mathcal{P}_i \). Finally, we have a set \(Q = \{p_1, \ldots, p_t\} \) such that \(d(q, p) > s_2 \) for \(q \in Q \), and \(p \in \mathcal{P}_t \cup Q \), and \(|\mathcal{P}_t| \geq |\mathcal{P}| - 5|Q| \). Then, by the four color theorem we have a \(Q' \subset \mathcal{P}_t \), \(|Q'| \geq |\mathcal{P}_t|/4 \) with \(s_1(Q') > s_2 \). Then let \(\mathcal{P}' = Q \cup Q' \). \(\square \)

Finally, Proposition 5.7 obviously implies (5.4). \(\square \)

References

[CSzT] F.R.K. Chung, E. Szemerédi and W.T. Trotter, Jr., *The number of distinct distances determined by a finite point set in the plane.*

