THE STRONG $\phi$ TOPOLOGY ON SYMMETRIC SEQUENCE SPACES

William H. Ruckle
Clemson University
Clemson, South Carolina 29631
1. **Introduction - The Strong \( \phi \) Topology**

Let \( S \) be a linear space of real sequences written in functional notation

\[
s = (s(j)) = (s(1), s(2), \ldots)
\]

There is a natural duality between \( S \) and the space \( \phi \) of sequences which are eventually 0 given by the equation

\[
<s, t> = \sum_j s(j)t(j) \quad s \in S, \ t \in \phi
\]

The series has only a finite number of nonzero terms since \( t \) is in \( \phi \).

A subset \( B \) of \( \phi \) is called **S-bounded** if

\[
p_B(s) = \sup\left\{\left|\sum_j s(j)t(j)\right| : t \in B\right\} < \infty
\]

for each \( s \) in \( S \).

The **strong** \( \phi \) (\( \beta\phi \)-) topology on \( S \) is the locally convex topology determined by all seminorms of the form \( p_B \) as \( B \) ranges over all S-bounded subsets of \( \phi \).

Most familiar sequence spaces bear the \( \beta\phi \) topology, e.g., \( \phi \) with the strongest locally convex topology, the \( \ell^p \)-spaces \( 1 \leq p \leq \infty \) with the BK topology, and \( \omega \) (all sequences) with the topology of coordinate-wise convergence, but not \( \ell^p \) \((0 < p < 1)\) with the FK topology. The concept of \( \beta\phi \) topology is related to the concept of norming biorthogonal sequence; see, e.g., [11]. A biorthogonal sequence \( \{e_n, E_n\} \) in a Banach space \( X \) is called **norming** if there is a bounded subset \( B \) of \( [E_n] \) the linear span \( \{E_n\} \) in the dual space \( X' \) of \( X \) such that

\[
\|x\| \leq \sup \{\|f(x)\| : f \in B\}
\]

It is easy to conclude from the relevant definitions that a total biorthogonal sequence \( \{e_n, E_n\} \) is norming if and only if the BK space \( S \) consisting of all sequences \( (E_n(x)) \) as \( x \) ranges over \( X \) bears its \( \beta\phi \) topology. Here the BK topology induced
upon \( S \) is given by the norm
\[
\|E_n(x)\| = \|x\| \quad x \in X.
\]

A space \( S \) of sequences is called symmetric if the sequence \( s_\pi \) is in \( S \) for every \( s \) is in \( S \) and every permutation \( \pi \) on the set of indices. Here \( s_\pi \) is the sequence given by
\[
s_\pi = (s(\pi(1)), s(\pi(2)), \ldots).
\]

Symmetric sequence spaces are considered in the 1934 paper of Köthe and Toeplitz [3], in the three papers of Garling [4 - 6] and two papers of the author [8, 9]. Besides \( \phi \), \( \omega \) and the \( \ell^p \)-spaces, two additional types of symmetric sequence spaces, Lorentz sequence spaces and Orlicz sequence spaces have been the object of intense investigation. See, for example, [7].

The purpose of this paper is to consider the relation between the combinatorial structure of a sequence space and its \( \beta\phi \) topology. The departure from previous work is our greater emphasis upon the combinatorial properties of the space. In particular, we study the following target problem: Is every symmetric sequence space \( S \) barrelled in its \( \beta\phi \) topology? We shall prove that the answer to this problem is "yes" for three of the four categories of symmetric spaces, but the answer in general is "no." The main positive result in this paper is Theorem 5.3 which asserts that every symmetric space of bounded sequences which contains a nonconvergent sequence is barrelled in its \( \beta\phi \) topology, and the \( \beta\phi \) topology coincides with the relative topology of the BK-space \( m \) of bounded sequences. This is a generalization of a result of Seever [13] for the particular space of finitely valued sequences. The main negative result is an example of a nonseparable symmetric BK-space which is not barrelled in its \( \beta\phi \) topology.
2. Symmetry and the Classification of Symmetric Sequence Spaces

For any sequence and any permutation of indices, the sequence \( s_\pi \) is given by the formula

\[
s_\pi(j) = s(\pi(j)) \quad j \in \mathbb{N}.
\]

A sequence space \( S \) is called symmetric if \( s_\pi \) is in \( S \) whenever \( s \) is in \( S \).

For any sequence space \( S \) the \( \alpha \)-dual or Köthe dual of \( S \) is the space \( S^\alpha \) determined by the equation

\[
S^\alpha = \left\{ t : \sum_j |s(j)t(j)| < \infty, \forall s \in S \right\}.
\]

A sequence space \( S \) is called perfect if \( S^{\alpha\alpha} = S \). Köthe and Toeplitz [3] showed in 1934 that if \( S \) is perfect and symmetric then \( S = \phi \), \( S = \omega \), \( S = m \) or \( l^1 \subseteq S \not\subseteq c_0 \). This permits us to classify symmetric sequence spaces \( S \) which may not be perfect in terms of \( S^\alpha \) (which is perfect).

- \( S \) is very large if \( S^\alpha = \phi \)
- \( S \) is large if \( S^\alpha = l^1 \)
- \( S \) is medium if \( l^1 \not\subseteq S \not\subseteq c_0 \)
- \( S \) is small if \( S^\alpha = m \).

If \( S \) is a symmetric sequence space and \( S^\alpha = \omega \) then \( S \subseteq \phi \) so either \( S = \phi \) or \( S = \{ s \in \phi : \sum_j s(j) = 0 \} \). Henceforth we assume that all sequence spaces mentioned contain \( \phi \). Thus if \( S^\alpha = \omega \) and \( S \supseteq \phi \), \( S = \phi \); the \( \beta \phi \) topology on \( \phi \) is the strongest locally convex topology whose various properties are well known.

We shall see that for small, large and very large symmetric sequence spaces the \( \beta \phi \) topology is the relative FK topology of \( l^1 \), \( m \) and \( \omega \) respectively, and all of these spaces are barrelled. On the other hand, the collection of medium spaces admits a variety of topologies, some of which are not barrelled.
3. **Very Large Symmetric Sequence Spaces \((S^\alpha = \emptyset)\)**

It is easy to see that a symmetric sequence space is very large if and only if it contains an unbounded sequence. The space \(\omega\) is very large, and seems to be the only very large space mentioned in the literature. Here is an example which shows that many very large symmetric sequence spaces are possible.

3.1 Example of a very large sequence space distinct from \(\omega\). Let \(D\) consist of all finite linear combinations of rational sequences. Then \(D\) is a very large symmetric sequence space. If \(u\) is a sequence of real numbers which is linearly independent over the rationals, then \(u\) is not in \(D\). To see this suppose

\[
u = \sum_{n=1}^{k} a_n v_n\]

where each \(v_n\) is a sequence of rationals and each \(a_n\) is a real number \(n = 1, 2, \ldots, k\). But this means that each \(u(j)\) is a finite rational combination of \(\{a_1, \ldots, a_k\}\), contradicting the assumption that \(u\) is linearly independent over the rationals.

3.2 Theorem. If \(S\) is a symmetric sequence space which contains an unbounded sequence, then

(a) \(S\) is very large;

(b) the \(\beta\emptyset\) topology on \(S\) is the relative topology of \(\omega\) (the product topology);

(c) \(S\) is barrelled in the \(\beta\emptyset\) topology.

Proof. We omit the straightforward proof of conclusion (a).

Conclusion (b) follows from the proof of Proposition 2 of \([5]\) which does not use the fact that \((e_n)\) forms a basis for the space.

(c) First we shall prove that if \(B\) is an \(S\)-bounded subset of \(\emptyset\) then

(i) For each \(n\)

\[
\sup \{ |x(n)| : x \in B \} = M_n < \infty .
\]
(ii) There is $N$ such that for each $x$ in $B$ and $j > N$,
\[ x(j) = 0. \]

Assertion (i) is true since by our standing assumption $e_n$ is in $S$ for each $n$. To establish (ii), we assume the contrary, for the sake of obtaining a contradiction. This means we assume there is a sequence $(x^n)_{n}$ in $B$ and a sequence of indices $(i^n_{n})$ such that $i^n_{n-1} + 1$ and $x^n_{i^n_{n}}$ is the last nonzero term in $x^n_{n}$ for each $n$. Let $v$ be an unbounded sequence in $S$. We define a permutation $\theta$ on the set of indices by induction. For $n < i^n_{1}$ let $\theta(n) = n$; let $\theta(i^n_{1})$ be the smallest index $h^n_{1}$ such that
\[
|v(h^n_{1})x^n_{i^n_{1}}| > 1 + \sum_{j < i^n_{1}} |v(\theta(j))| M_j.
\]

If $\theta(n)$ has been defined for $n < i^n_{k}$ let $\theta(i^n_{k})$ be the smallest index $h^n_{k}$ such that
\[
|v(h^n_{k})x^n_{i^n_{k}}| > k + \sum_{j < i^n_{k}} |v(\theta(j))| M_j.
\]

Finally, let $\theta(i^n_{k} + 1)$ be the smallest index in the complement of $\{\theta(j) : j < i^n_{k}\}$ to ensure that $\theta$ is onto. If $\omega = v_\theta$ then
\[
\left| \sum_{j} x^n_{j}v_\theta(j) \right| \geq \left| x^n_{i^n_{n}}v_\theta(i^n_{n}) \right| - \left| \sum_{j < i^n_{n}} x^n_{j}v_\theta(j) \right|
\]
\[
\geq \left| x^n_{i^n_{n}}v_\theta(i^n_{n}) \right| - \sum_{j < i^n_{n}} |x^n_{j}| M_j
\]
\[
> n.
\]

This shows $\omega$ is not bounded on $B$, contradicting the fact that $B$ is $S$-bounded.

Since the $\beta\phi$ topology on $S$ is the relative $\omega$ topology, it follows that the dual space of $S$ is the space $\phi$ with the natural duality. If $B$ is an $S$-bounded
subset of \( \phi \), then it satisfies (i) and (ii) so it is \( \omega \)-bounded; see [3]. But the \( \beta \phi \) topology on \( \omega \) is an FK topology so that it is barreled. Therefore, \( B \) is equicontinuous. Since \( S \)-bounded implies \( S \)-equicontinuous it follows that \( S \) is barreled. \( \square \)
4. **Small Symmetric Sequence Spaces \( S^c = m \)**

Examples of small symmetric sequence spaces are \( l^p (0 < p < 1) \). In [10] it is shown that the intersection of all small symmetric sequence spaces is \( \phi \).

In other words, for each sequence \( u \) not in \( \phi \) there is a small symmetric sequence space which does not contain \( u \).

**4.1 Lemma.** Suppose \( S \) is a symmetric sequence space which properly contains \( \phi \) but is contained in \( l^1 \). If \( A \) is an unbounded subset of \( m \), i.e., if

\[
\sup \left\{ \sup_j |x(j)| : x \in m \right\} = \infty,
\]

then there is \( s \) in \( S \) such that

\[
\sup \left\{ \left| \sum_j s(j)x(j) \right| : x \in A \right\} = \infty. \tag{4.1}
\]

**Proof.** For each \( k = 1, 2, \ldots \), let

\[
M(k) = \sup \left\{ |x(k)| : x \in A \right\}.
\]

If for any \( k \), \( M(k) = \infty \) then we may take \( s \) to be \( e \) and conclude the proof. Thus for the remainder of the proof we may assume \( M(k) < \infty \) for each \( k \). Of course, since \( A \) is unbounded in \( m \) it follows that \( \sup_k M(k) = \infty \).

Let \( t \) be any sequence in \( S \) but not in \( \phi \). Let \( h_1 < h_2 < \ldots \) be a sequence of positive integers such that for each \( j \), \( h_j - h_{j-1} > 1 \) and \( |t(h_j)| < |t(h_{j-1})| \). Let \( \pi \) be the permutation on the integers which interchanges \( h_{2n-1} \) and \( h_{2n} \) for all \( n = 1, 2, \ldots \) and leaves other integers the same. If \( v = t - t_\pi \) then \( v \) is in \( S \), \( v(j) = 0 \) for \( j \notin \{h_1, h_2, \ldots \} \) and \( v(h_{2n-1}) = -v(h_{2n}) \neq 0 \) for \( n = 1, 2, \ldots \). Let \( \{n_1, n_2, \ldots \} \) be a sequence of integers for which

\[
\sum_{j > m} |v(h_{2n_j-1})| + |v(h_{2n_j})| < 2^{-(m+1)} |v(h_n_m)|. \tag{4.2}
\]

This is possible because \( S \subseteq l^1 \). Denote by \( \theta \) the permutation which interchanges
\[ \sum_{k > m} a_k < 2^{-m} a \_m \].

We shall now define a sequence \( s \) which is a permutation of \( u \) and satisfies (4.1). Let \( x_1 \) be any sequence in \( A \) such that
\[ \| x_1 \| > \max \left\{ 1/a_1, M(1), M(2) \right\} + 1. \]

Here \( \| \| \) denotes the norm in \( m \), the sup-norm. Let \( m_1 \) be the smallest positive integer such that
\[ | x_1(m_1) | > \| x_1 \| - 1/2. \]

Since \( | x_1(m_1) | \) is larger than \( M(1) \) and \( M(2) \) it follows that \( m_1 > 2 \). Let
\[ s(1) = - (\text{sgn} x_1(m_1)) a_1 \]
\[ s(j) = 0 \quad 1 < j < m_1 \]
\[ s(m_1) = \text{sgn} x_1(m_1) a_1. \]

Suppose we have defined \( x_n \), \( m_n \) for \( h < n \) and \( s(j) \) for \( j \leq m_{n-1} \). Let \( x_n \) in \( A \) be such that
\[ \| x_n \| > 1 + \max \left\{ a_n^{-1} (1 - 2^{-n})^{-1} \left( 2^n + \sum_{j < m_{n-1}} |s(j)| M(j) \right) \right\}. \]

Let \( m_n \) be the smallest positive integer such that
\[ | x_n(m_n) | > \| x_n \| - 2^{-n}. \]

Note that \( m_n > m_{n-1} + 2 \). Let
\[ s(m_{n-1} + 1) = (-\text{sgn} \times (m_n)) a_n \]
\[ s(j) = 0 \quad m_{n-1} + 1 < j < m_n \]
\[ s(m_n) = (\text{sgn} \times (m_n)) a_n . \]

Then \( s \) is a permutation of \( u \) since it exhausts the nonzero elements \( \pm a_n \) and contains infinitely many 0's as well. This implies \( s \in S \). For each \( n \) we have
\[
\left| \sum_j s(j)x_n(j) \right| \geq \left| s(m_n)x_n(m_n) \right| - \sum_{j < m_n} \left| s(j)x_n(j) \right| - \sum_{j > m_n} \left| s(j)x_n(j) \right|
\geq a_n \left( \| x_n \| - 2^{-n} \right) - \sum_{j < m_{n-1}} \left| s(j) \right| M(j) - a_n M(m_{n-1} + 1) - \| x_n \| \sum_{j > m_n} \left| s(j) \right| \]
\geq a_n \left( \| x_n \| - 2^{-n} \right) - \sum_{j < m_{n-1}} \left| s(j) \right| M(j) - a_n M(m_{n-1} + 1) - \| x_n \| 2^{-n} a_n \]
\geq a_n \left( (1 - 2^{-n}) \| x_n \| - 2^{-n} \right) - \sum_{j < m_{n-1}} \left| s(j) \right| M(j) - a_n M(m_{n-1} + 1) \]
\geq 2^n - 2^{-n} a_n .

Consequently we conclude that (4.1) holds for \( s \). \( \square \)

4.2 Theorem. If \( S \) is a small symmetric sequence space then

(a) The \( \beta \phi \) topology on \( S \) is the relative topology of the BK space \( \ell^1 \).

(b) \( S \) is barrelled in the \( \beta \phi \) topology.

Proof. If \( B \) is an \( S \)-bounded subset of \( \phi \) then by Lemma 4.1 \( B \) is absorbed by the set \( U_\infty = \{ x \in \phi : \sup_n |x(n)| = 1 \} \). Since \( S \) is contained in \( \ell^1 \), \( U_\infty \) is \( S \)-bounded. Therefore, the \( \beta \phi \) topology on \( S \) is determined by the norm
\[ p_{U \infty} (u) = \sup \left\{ \sum_{j} u(j) x(j) : x \in U \infty \right\} = \sum_{j} |u(j)|. \]

This confirms conclusion (a).

Conclusion (b) now follows from Lemma 4.1 just as (c) of Theorem 3.2 follows from (i) and (ii) in the proof of that Theorem. Since the \( \beta \Phi \) topology on \( S \) is the relative topology of \( l^1 \), the dual space of \( S \) is \( m \). If \( B \) is an \( S \)-bounded subset of \( m \) then by Lemma 4.1 it is uniformly bounded hence equicontinuous. Therefore, \( S \) is barrelled. □
5. **Large Symmetric Sequence Spaces \((S^\alpha = \ell')\)**

There are three classes of large symmetric sequence spaces

I. \(S \subseteq c_0\)

II. \(S \subseteq c\) convergent sequences, but \(S \not\subseteq c_0\)

III. \(S \subseteq m\), but \(S\) contains a nonconvergent sequence.

We first consider large symmetric sequence spaces of the first class. An example of such a space not \(c_0\) is \(c_0 \cap D\) where \(D\) is given by 3.1.

5.1 Lemma. Suppose \(S\) is a large symmetric sequence space. A subset \(B\) of \(\ell^1\) is \(S\)-bounded if and only if

\[
\sup \left\{ \sum_j |y(j)| : y \in B \right\} < \infty.
\] (5.1)

Proof. Condition (5.1) implies \(B\) is bounded in the BK topology of \(\ell^1\) hence \(m\)-bounded. Since \(S^\alpha = \ell^1\), \(S \subseteq S^\alpha = m\) so \(B\) is \(S\)-bounded. This shows (5.1) is sufficient.

If \(x\) is in \(S\) then the set \(\langle x \rangle\) consisting of all sequences \(x_\pi\) where \(\pi\) ranges over all permutations is \(\ell^1\)-bounded because \(\langle x \rangle\) is uniformly bounded. Since \(\langle x \rangle\) is bounded, by Satz 1, §5 of [3] it is completely bounded. Hence, if \(B\) is an \(S\)-bounded subset of \(\ell^1\), so is \(\langle B \rangle = \left\{ y_\pi : y \in B, \pi\ is\ a\ permutation \right\}\).

This is because for \(x\) in \(S\)

\[
\sup \left\{ \sum_j x(j)y_\pi(j) : y \in B \right\} = \sup \left\{ \sum_j u(j)y(j) : u \in \langle x \rangle, y \in B \right\} < \infty.
\]

Now assume, for the sake of obtaining a contradiction, that \(B\) is an \(S\)-bounded subset of \(\ell^1\) which does not satisfy (5.1). For each \(n\) let \(x_n\) in \(B\) satisfy

\[
\sum_j |x_n(j)| > 4^n + 1
\]
Since each \( x_n \) is in \( \ell^1 \) we can find a sequence \( (\pi_n) \) of permutations and a sequence \( (M_n) \) of disjoint subsets of indices such that

\[
\sum_{j \notin M_n} |(x_n \pi_n)(j)| < 1.
\]

It follows that

\[
\sum_{j \in M_n} |(x_n \pi_n)(j)| > 4^n
\]

for each \( n \). Each \( (x_n \pi_n) \) is a member of the set \( <B> \) which is \( S \)-bounded. Therefore, the partial sums of \( \sum_{n} 2^{-n}(x_n \pi_n) \) form a Cauchy sequence in the \( \sigma(\ell^1, S) \) topology on \( \ell^1 \). By Satz 2, §4 of [3] there is \( x \) in \( \ell^1 \) such that \( \sum_{n} 2^{-n}(x_n \pi_n) = x \) in the \( \sigma(\ell^1, S) \) topology. Since \( \phi \subset S \), \( \sum_{n} 2^{-n}(x_n \pi_n)(j) = x(j) \) for each \( j \), we have

\[
\sum_{j \in M_n} |x(j)| > 2^{-n} \sum_{j \in M_n} |(x_n \pi_n)(j)| - \sum_{m \neq n} 2^{-m} \sum_{j \in M_m} |(x_m \pi_m)(j)|
\]

\[
> 2^n - 1
\]

This contradicts the fact that \( x \) is in \( \ell^1 \). \( \square \)

The following theorem follows from Lemma 5.1 very much as Theorem 4.2 follows from 4.1. Therefore, we omit the proof.

5.2 Theorem. If \( S \) is a large symmetric sequence space which is contained in \( c_0 \) then

(a) The \( \beta\phi \) topology on \( S \) is the relative topology of the BK space \( c_0 \);

(b) \( S \) is barrelled in the \( \beta\phi \) topology.
If $S$ is of class II then $S = [e]$ the span of $e = (1, 1, \ldots)$ or $S = T \oplus [e]$ where $T$ is a symmetric sequence space which is small, medium or large of class I. This $S$ is barrelled if and only if $T$ is. This essentially reduces the study of large symmetric sequence spaces of class II to those which are small, medium, or large, class I.

For symmetric sequence spaces of class III we have the following result.

5.3 Theorem. If $S$ is a large symmetric sequence space which contains a divergent sequence then

(a) The $\beta_\phi$ topology on $S$ is the relative topology of $m$;

(b) $S$ is dense in $m$;

(c) $S$ is barrelled in the $\beta_\phi$ topology.

The remainder of this section is devoted to the proof of 5.3. First we establish several lemmas.

5.4 Lemma. Suppose $S$ is a symmetric space of sequences which contains $\phi$ and also contains a divergent sequence. For each subset $M$ of indices and $\epsilon > 0$ there is a sequence $e_{\epsilon M, \epsilon}$ in $S$ such that (a) $|e_{\epsilon M, \epsilon}(j)| < \epsilon$ for $j \notin M$;

(b) $|e_{\epsilon M, \epsilon}(j) - 1| < \epsilon$ for $j \in M$;

(c) $e_{\epsilon M, \epsilon}(j) - e_{\epsilon M, 0}(j) = \epsilon$ where $e_{\epsilon M, \epsilon}(j) = 1$ for $j \in M$ and $e_{\epsilon M, \epsilon}(j) = 0$ for $j \notin M$.

Proof. We first prove the lemma under the assumption that $M$ is infinite and has an infinite complement. Let $s$ be a bounded nonconvergent sequence in $S$. Let $h_1 < h_2 < \ldots$ and $k_1 < k_2 < \ldots$ be two sequences of indices such that $h_n < k_n < n+1$ for each $n$ while $\lim_n s(h_n) = a$ and $\lim_n s(k_n) = b$ exist and are distinct. Let $\tau$ be the permutation which interchanges $h(n)$ and $k(n)$ for $n = 1, 2, \ldots$ and leaves the other integers the same. Let $t = s - s_1$; then $t(h_n) = -t(k_n)$, $\lim_n t(h_n) = a - b$, $\lim_n t(k_n) = b - a$. If $u = (a - b)^{-1} t$ we have $\lim_n u(h_n) = 1$ and $\lim_n u(k_n) = -1$. Given $\epsilon > 0$, let $N$ be such that $|u(h_n) - 1| < \epsilon/2$ and $|u(k_n) + 1| < \epsilon/2$ if $h_n$ or $k_n > N$. Let $v$ be the sequence for which $v(j) = 0$ for $j \leq N$ and $v(j) = u(j)$ for $j > N$. Since $S$ contains $\phi$, $v$ is
in $S$. For simplicity we shall assume that $h_n$ and $k_n$ are greater than $N$. Let $	heta$ be a permutation on the indices which (a) leaves each index in $\sim\{h_n\} \cup \{k_n\}$, the complement of $\{h_n\} \cup \{k_n\}$, the same; (b) maps $h_{2n}$ onto $k_n$ for each $n = 1, 2, \ldots$; (c) maps $k_n$ onto $h_{2n}$ for each $n = 1, 2, \ldots$; (d) leaves each $h_{2n-1}$ unchanged. If $w = (v + v_\theta)/2$ then $w(j) = 0$ for $j$ in $\sim\{h_n\} \cup \{k_n\}$;

$$|w(j)| = |v(k_n) + v(h_{2n})|/2 \leq |v(k_n) + 1|/2 + |v(h_{2n}) - 1|/2 < \epsilon/2$$ for $j = k_n$;

$$|w(j)| = |u(h_{2n}) + u(k_n)|/2 < \epsilon/2$$ for $j = h_{2n}$; while for $j = h_{2n-1}$,

$$|v(j) - 1| = |v(h_{2n-1}) - 1| < \epsilon/2.$$

Since $\{h_{2n-1}\}$ is an infinite subset of indices with an infinite complement, there is a permutation $\rho$ which takes $\{h_{2n-1}\}$ onto $M$ and the complement of $\{h_{2n-1}\}$ onto the complement of $M$. If $e_M, \epsilon = w, e_M, \epsilon$ satisfies (a), (b) and (c).

If $M$ is a finite set of indices then $e_M, \epsilon \in \mathcal{S}$. If $M$ has a finite complement let $\sigma$ be the permutation of indices which maps $\{h_{2n-1}\}$ onto $\sim\{h_{2n-1}\}$ and let $e_M, \epsilon = w + w_\sigma - e_{\sim K}$. $lacklozenge$

The following lemma is found on p. 108 of [12] as well as in the book of Köthe [2] and the works of Bourbaki [1].

5.5 Lemma. Let $(f_n)$ be a sequence of continuous linear functions on $m$ and let $(M_j)$ be a sequence of finite subsets of indices. There is a set $M$ of indices which is a union of a subsequence of $(M_j)$ such that whenever $s$ is a member of $m$ with support on $M$ we have

$$f_n(s) = \sum_{j \in M} s(j)f_n(e_j).$$

Conclusion of the proof of Theorem 5.3.

Let $m_0$ be the space of finitely valued sequences. It is well known (see, e.g., [15]) that $m_0$ is dense in $m$. It is clear that $m_0$ is the linear span of all sequences $e_M$ as $M$ ranges over all sets of indices. By Lemma 5.4 if $S$ is a
large symmetric sequence space which contains a divergent sequence, \( e^*_M \) is in the closure of \( S \) in \( m \) for each \( M \). Therefore, \( S \) must be dense in \( m \). This establishes conclusion (b).

In order to verify conclusions (a) and (c) we shall prove that if \( B \) is a subset of \( m^* \), the dual space of \( m \), which is \( S \)-bounded, then \( B \) is \( m \)-bounded. Then (a) and (c) will follow by the same argument that works for small symmetric sequence spaces.

Suppose, for the sake of obtaining a contradiction, that \( B \) is a subset of \( m^* \) which is \( S \)-bounded but not \( m \)-bounded. Then there is a subset \( M \) of indices such that

\[
\sup \{ |f(e^*_M)| : f \in B \} = \infty .
\]

See Lemma 7.2 of [14]. By Lemma 5.4 there is \( e^*_{M,1/2} \) in \( S \) such that

\[
e^*_{M} - e^*_{M,1/2} = v \in c_0 .
\]

Since

\[
\sup \{ |f(e^*_M)| : f \in B \} = \infty
\]

and

\[
\sup \{ |f(e^*_{M,1/2})| : f \in B \} < \infty
\]

it follows that

\[
\sup \{ |f(v)| : f \in B \} = \infty .
\]

But since \( v \in c_0 \),

\[
f(v) = \sum_j v(j) f(e_j)
\]

for each \( f \) in \( B \). This implies that

\[
\sup \sum_j |f(e_j)| : f \in B = \infty .
\]
However, since \( e_{\mathcal{M}} \) is in \( \mathcal{P} \subset \mathcal{S} \) for each finite subset \( \mathcal{M} \) of indices we conclude that

\[
\sup \left\{ \sum_{j \in \mathcal{M}} |f(e_j)| : f \in \mathcal{B} \right\} = b(\mathcal{M}) < \infty
\]

for each finite \( \mathcal{M} \).

Let \( f_1 \) be any member of \( \mathcal{B} \) such that

\[
\sum_{j} |f_1(e_j)| > 2
\]

and let \( N_1 \) be any integer such that

\[
\sum_{j \leq N_1} |f_1(e_j)| > 2 \quad \text{and} \quad \sum_{j > N_1} |f_1(e_j)| < 1/2.
\]

If \( f_1, \ldots, f_n \) in \( \mathcal{B} \) and integers \( N_n, \ldots, N_n \) have been constructed, let \( f_{n+1} \) be any member of \( \mathcal{B} \) such that

\[
\sum_{j} |f_{n+1}(e_j)| > 2^{n+1} + 1 + 4b(\{1, 2, \ldots, N_n\})
\]

Let \( N_{n+1} \) be any integer such that

\[
\sum_{j} |f_{n+1}(e_j)| < 2^{-n}
\]

Then it follows that

\[
\sum_{N_n < j \leq N_{n+1}} |f_{n+1}(e_j)| > 2^{n+1} + 3b(\{1, 2, \ldots, N_n\})
\]

By induction we construct functionals \( (f_n) \) and indices \( (N_n) \) which satisfy (5.2) for all \( n \).
For each $k$ let $M_k = \{ j : N_{k-1} < j \leq N_k \}$ and suppose $M = \bigcup_{h=1}^{\infty} M_{k_h}$ satisfies the conclusion of Lemma 5.3. Let $w$ be a sequence in $S$ such that $w(j) = 0$ for $j \notin \bigcup_{h=1}^{\infty} M_{k_h}$, $|w(j)| < 1/2$ for $j \in M_{k_h}, \ h \ even$, $|\text{sgn} f_{k_h}(e_j) - w(j)| < 1/2$ for $j \in M_{k_h}, \ h \ odd$. Here we use Lemma 5.4 and the fact we can find in $S$ a sequence with infinitely many zeros and transfer them to the complement of $M$. Then if $h$ is odd,

$$|f_{k_h}(w)| = \left| \sum_{j \in M_{k_h}} f_{k_h}(e_j)w(j) \right|$$

$$\geq (1/2) \sum_{j \in M_{k_h}} |f_{k_h}(e_j)| - (3/2) \sum_{j \notin M_{k_h}} |f_{k_h}(e_j)|$$

$$\geq (1/2) \left( 2^{n-1} + 3b(\{1, 2, \ldots, N_{k_h-1}\} \right) - (3/2) \sum_{1 \leq j \leq N_{k_h-1}} |f_{k_h}(e_j)|$$

$$- (3/2) \sum_{j > N_k} |f(e_j)|$$

$$\geq 2^n - 3 \cdot 2^{-n-1}.$$ 

Therefore, $\sup_h |f_{k_h}(w)| = \infty$ contradicting the fact that $B$ is $S$-bounded.
6. **Medium Symmetric Sequence Spaces** \( (\ell^p \subset \mathcal{F} \subset \ell^\infty \subset c_0) \)

Most interesting symmetric sequence spaces are medium; e.g., \( \ell^p \)
\((1 \leq p < \infty)\), Lorentz spaces, Orlicz spaces.

If \( x \) is a sequence in \( c_0 \), then by \( \hat{x} \) we denote the sequence consisting of nonzero members of \( \{ |x(1)|, |x(2)|, \ldots \} \) in decreasing order with repetitions allowed. If \( x \) and \( y \) are in \( c_0 \), then for any permutations \( \pi \) and \( \theta \) we have

\[
\sum_j |x_{\pi}(j)y_{\theta}(j)| \leq \sum_j \hat{x}(j)\hat{y}(j) .
\]

6.1 Lemma. Let \( S \) be a medium symmetric sequence space. A subset \( B \) of \( S^\alpha \) is \( S \)-bounded if and only if for each \( x \) in \( X \)

\[
\sup \left\{ \sum_j |x(j)y(j)| : y \in B \right\} < \infty . \tag{6.1}
\]

Proof. If \( x \) is in \( S \) then the set \( <x> \) of all permutations of \( x \) is \( S^\alpha \)-bounded. To demonstrate this, let \( y \) be any member of \( S^\alpha \). Let \( x_\theta \) be any permutation of \( \alpha \) such that

\[
|x_\theta(1)| \geq |x_\theta(3)| \geq |x_\theta(5)| \geq \ldots
\]

and

\[
\sum_j |x_\theta(2j)| < 1/(\sup_j |y(j)| + 1) .
\]

Let \( z \) be the sequence for which \( (z(1), z(3), \ldots) \) are the nonzero members of \( (|y(1)|, |y(3)|, \ldots) \) in descending order and \( y(2j) = 0 \) for each \( j \). It is not hard to verify that \( z \) is in \( S^\alpha \) since \( S^\alpha \) is symmetric and normal. For each \( j = 1, 2, \ldots \) let \( u(j) = \text{sgn}x_\theta(j) \); then \( uz = (u(j)z(j)) \) is also in \( S^\alpha \). For any permutation \( \pi \) of indices
\[ \left| \sum_j x_\pi(j) y(j) \right| \leq \sum_j |y_\pi(j)| y(j) \leq \sum_j x_\theta(j) z(j) u(j) + 1 < \infty . \]

Therefore,

\[ \sup_\pi \left| \sum_j x_\pi(j) y(j) \right| < \infty . \]

If \( B \) is an \( S \)-bounded subset of \( S^\alpha \) so is \( \langle B \rangle \) consisting of all \( y_\pi \) as \( y \) ranges over \( B \) since

\[ \sup \left\{ \sum_j x(j) y_\pi(j) : y \in B \right\} = \sup \left\{ \sum_j u(j) y(j) : u \in \langle x \rangle, y \in B \right\} < \infty . \]

The last inequality follows from Satz 1, §5 of [5] since \( \langle x \rangle \) must be completely bounded.

Suppose now for the sake of obtaining a contradiction that \( B \) is an \( S \)-bounded subset of \( S^\alpha \) for which (6.1) does not hold. Then there is \( x \) in \( S \) for which

\[ \sup \left\{ \sum_j x(j) y(j) : y \in B \right\} = \infty . \]  

(6.2)

Since \( \emptyset \subset S \), \( \sup \{ |y(j)| : y \in B \} < \infty \) for all \( j \) so that if \( M \) is any finite set of indices

\[ \sup \left\{ \sum_{j \in M} x(j) y(j) : y \in B \right\} = \infty . \]

We define by induction a sequence \( y_n \) in \( B \) and a sequence \( \{ M_n \} \) of disjoint finite subsets of indices such that

\[ \sum_{j \in M_n} |x(j) y_n(j)| > 4^n \]  

(6.3)
\[ \bigcup_{n} M_n \text{ has an infinite complement.} \quad (6.4) \]

Since each \( y_n \) is in \( c_0 \) we can find an infinite subset \( K_n \) of indices such that
\[ \sum_{j \in K_n} |y_n(j)| < 4^{-n}/\sup_{j} |x(j)|. \]
Using the fact that the complement of \( \bigcup_{n} M_n \) is
is infinite we can determine sequences \( z_n \) and a partition \( (H_n) \) of the set of indices
such that (a) each \( z_n \) is a permutation of \( y_n \); (b) \( z_n(j) = y_n(j) \) for \( j \in M_n \);
(c) \( M_n \subseteq H_n \) for each \( n \); (d) each \( H_n \) is infinite; (e) for \( j \notin H_n \), \( z_n(j) = y_n(i) \) for
some \( i \in K_n \). The series \( \sum_{n} 2^{-n} z_n \) converges in the \( \sigma(S^\alpha, S) \) topology since
\( \{z_n\} \) is bounded, being a part of \( <B> \) and \( S^\alpha \) is \( \sigma(S^\alpha, S) \) complete by Satz 2 of
§4 of [5]. If \( z = \sum_{n} 2^{-n} z_n \) we have
\[
\sum_{j \in M_n} |x(j)z(j)| \geq \sum_{j \in M_n} 2^{-n} |x(j)z_n(j)| - \sum_{m \neq n} 2^{-m} \sum_{j \in M_n} |x(j)z_m(j)|
\geq 2^n - \sum_{m \neq n} 2^{-m} \cdot 4^{-n} > 2^n - 1.
\]
This contradicts the assumption that \( z \) is in \( S^\alpha \). Therefore (6.1) must be valid. \( \square \)

6.2 Theorem. If \( S \) is a medium symmetric sequence space then the \( \beta \phi \)
topology on \( S \) coincides with the topology \( \beta(S, S^\alpha) \) on \( S \) determined by the polars
in \( S \) of \( S \)-bounded subsets of \( S^\alpha \).

Proof. Since \( \phi \subseteq S \), \( \beta(S, S^\alpha) \) is a stronger topology than \( \beta(S, \phi) \).

Suppose \( B \) is an \( S \)-bounded subset of \( S^\alpha \). The normal cover \( C \) of \( B \)
defined by
\[ C = \{uy : y \in B, \ |u(j)| \leq 1 \text{ for each } j \} \]
is also \( S \)-bounded by Lemma 6.1. Therefore, \( D = C \cap \phi \) is an \( S \)-bounded subset
of \( \phi \). For \( x \) in \( S \)
\[ p_D(x) = \sup\left\{ \left| \sum_j x(j) y(j) \right| : y \in D \right\} \]

\[ = \sup\left\{ \left| \sum_j x(j) y(j) \right| : y \in D \right\} \]

\[ = \sup\left\{ \left| \sum_j x(j) y(j) \right| : y \in C \right\} \]

\[ = p_C(x) \geq p_B(x) . \]

Therefore \( p_B \) is \( \beta(s, \Phi) \) continuous. \( \square \)

A topological sequence space \( S \) containing \( \Phi \) is said to have AD if \( \Phi \) is dense in \( S \); \( S \) is said to have AK if for each \( x \) in \( S \)

\[ \lim_n [x \preccurlyeq n] = \lim_n \sum_{j=1}^n x(j) e_j = x ; \]

\( S \) is said to have UAK if \( \sum x(j) e_j \) converges unconditionally to \( x \).

6.3 Theorem. If \( S \) is a medium symmetric sequence space which has AD in the \( \beta\Phi \) topology then

(a) \( S \) has UAK in the \( \beta\Phi \) topology,

(b) the dual space \( S' \) of \( S \) is represented by \( S' \) with the usual duality

\[ f \leftrightarrow y \]

\[ f(x) = \sum_j x(j) y(j) , \ f \in S' , \ y \in S', \ x \in S ; \]

(c) \( S \) is barrelled in the \( \beta\Phi \) topology.

Proof. (a) Suppose \( x \) is in \( S \) and \( p \) is a continuous seminorm on \( S \) of the form
\[ p(x) = \sup \left\{ \sum_j x(j) y(j) : y \in B \right\} \]

where \( B \) is an \( S \)-bounded subset of \( \phi \). By Lemma 6.1 the seminorm \( q \) given by

\[ q(x) = \sup \left\{ \sum_j |x(j) y(j)| : y \in B \right\} \]

\[ = \sup \left\{ \sum_y x(j) y(j) : y \in C \right\} \]

where \( C \) is the normal cover of \( B \) is also continuous in the \( \beta \phi \) topology. Since \( S \) has AD there is \( u \in \phi \) such that \( q(x - u) \leq 1 \). If \( M = \{ j : u(j) \neq 0 \} \) then for all \( y \) in \( B \)

\[ \sum_{j \notin M} |x(j) y(j)| \leq \sum_j |x(j) - u(j) y(j)| \leq 1 . \]

Therefore, if \( K \cap M = \emptyset \)

\[ p(x[K]) \leq q(x[K]) \leq 1 , \]

which implies \( \sum_j x(j) e_j \) converges unconditionally to \( x \).

(b) For each \( f \) in \( S' \) and \( x \) in \( S \)

\[ f(x) = \sum_j x(j) f(e_j) \]

and \( (f(e_j)) \) is in \( S' \) since the series converges absolutely. On the other hand if \( y \) is in \( S' \) the linear functional defined by

\[ f(x) = \sum_j x(j) y(j) \]

is continuous with respect to the seminorm
\[ p(x) = \sup_n \left| \sum_{j=1}^{n} x(j)y(j) \right|. \]

which is continuous in the \( \beta \phi \) topology.

(c) If \( B \) is an \( S \)-bounded subset of \( S' \) then \( B \) corresponds to an \( S \)-bounded subset of \( S^\alpha \). Therefore \( B \) is equicontinuous by Theorem 6.2.
7. An Example

In this section we describe an example of a symmetric sequence space which is not barrelled in the $\beta\phi$ topology. Such a space must be a medium symmetric sequence space which does not have AD.

7.1 Lemma. There exists a sequence $(u_n)$ in $c_0$ such that (a) each $u_n$ is positive and decreasing with $u_n(1) = 1$ for each $n$; (b) $\sum_j u_n(j) = \infty$ for each $n$; (c) for each $n$ there is an increasing sequence $m_n$ of indices such that

$$
\lim_{p \to \infty} \frac{m_n(p)}{\sum_{j=1}^{m_n(p)} u_n(j)} = 0 \quad \text{if} \quad k \neq n
$$

and

$$
\frac{m_n(p)}{\sum_{j=1}^{m_n(p)} u_n(j)} \leq 1 \quad \text{for all} \quad k.
$$

Proof. Note that we are using functional notation $m_n(p)$ to describe sequences of indices.

We first establish the existence of a sequence $(u_n)$ in $c_0$ which satisfies (a), (b) and (c') for each $n$ there are increasing sequences $m_{n, n'} m_{n, n+1} \ldots$ of indices such that

(i) $m_{n, r+1}$ is a subsequence of $m_{n, r}$ for each $r$;

(ii) $\lim_{p \to \infty} \frac{m_{n, n'}(p)}{\sum_{j=1}^{m_{n, n'}(p)} u_n(j)} = 0 \quad k < j \quad (7.1)$

24
\[
\lim_{p} \frac{\sum_{j=1}^{m_{n,n+h}(p)} u_{n-h}(j)}{\sum_{j=1}^{m_{n,n+h}(p)} u_{n}(j)} = 0 \quad h = 1, 2, \ldots . \tag{7.2}
\]

Each quotient in (7.1) and (7.2) is no greater than 1.

We proceed by induction. Let \( u_{1}(j) = 1/j \) for \( j = 1, 2, \ldots \). Suppose that \( u_{1}, \ldots, u_{n-1} \) have been defined which satisfy (a), (b) and (c'). We must now define a sequence \( u_{n} \) in \( c_{0} \) that satisfies (a) and (b), an increasing sequence \( m_{n,n} \) of indices and subsequences \( m_{k,n} \) of \( m_{k,n-1} \) for \( k = 1, 2, \ldots, n-1 \), such that (7.1) and (7.2) are satisfied and each quotient is \( \leq 1 \). For each \( r \) and \( k \leq n-1 \) let

\[
U_{k}(r) = \sum_{j=1}^{r} u_{k}(j)
\]

and let

\[
V(r) = \max_{k} U_{k}(r).
\]

We define \( u_{n} \), \( m_{n,n} \) and \( m_{k,n} \) inductively. Let \( u_{n}(1) = 1 \). Since each \( u_{k}, k < n \) is in \( c_{0} \), there is an index \( m_{n,n}(1) \) such that \( m_{n,n}(1) > 2V(m_{n,n}(1)) \). Let \( u_{n}(j) = 1 \) for \( j \leq m_{n,n}(1) \). Since \( \sum_{j} u_{1}(j) = \infty \) there is an index \( m_{1,n-1}(h) \) such that

\[
\sum_{j=1}^{m_{1,n-1}(h)} u_{1}(j) > 4m_{n,n}(1) = 4 \sum_{j=1}^{m_{n,n}(1)} u_{n}(j).
\]

Let

\[
c = 3 \sum_{j=1}^{m_{n,n}(1)} u_{n}(j) \left/ \left( m_{1,n-1}(h) - m_{n,n}(1) \right) \right.
\]

Define \( m_{n,n}(1) \) to be \( m_{1,n-1}(h) \) and \( u_{n}(j) = c \) for \( m_{n,n}(1) < j \leq m_{1,n}(1) \). Suppose we have defined

\[
m_{1,n}(1) < m_{2,n}(1) < \ldots < m_{k-1,n}(1),
\]

and \( u_{n}(j) \) for \( j \leq m_{k-1,n}(1) \). Let \( m_{n-1,k}(h) \) be an index \( > m_{n,k-1}(1) \) such that
\[
\sum_{j=1}^{m_{n-1, k}} u_k(j) > 4 \sum_{j=1}^{m_{n, k-1}} u_n(j).
\]

Let \( m_{n, k}^{(1)} = m_{n-1, k}^{(1)} \); let

\[
c = 3 \sum_{j=1}^{m_{n, k-1}^{(1)}} u_n(j) / (m_{n, k}^{(1)} - m_{n, k-1}^{(1)})
\]

and let \( u_n(j) = c \) for \( m_{n, k-1}^{(1)} < j \leq m_{n, k}^{(1)} \).

Now suppose we have defined \( m_{n, n}^{(q)} < m_{1, n}^{(q)} < \ldots < m_{n-1, n}^{(q)} \) and \( u_{n}(j) \) for \( j \leq m_{n-1, n}^{(q)} \) such that

\[
\sum_{j=1}^{m_{n, n}^{(q)}} u_k(j) / \sum_{j=1}^{m_{n, n}^{(q)}} u_n(j) < 1/q \quad (7.3)
\]

and

\[
\sum_{j=1}^{m_{k, n}^{(q)}} u_k(j) / \sum_{j=1}^{m_{k, n}^{(q)}} u_n(j) < 1/q \quad (7.4)
\]

\( k = 1, 2, \ldots, n-1 \).

We accomplished this for \( q = 1 \) in the preceding paragraph. Let \( m_{n, n}^{(q+1)} \) be an index which is greater than \((q+1) V(m_{n, n-1}^{(q+1)}) / u_n(m_{n-1, n}^{(q)})\) and let \( u(j) = u_n(m_{n-1, n}^{(q)}) \) for \( m_{n-1, n}^{(q)} < j \leq m_{n, n}^{(q+1)} \). If we have defined \( m_{n, n}^{(q+1)} < m_{1, n}^{(q+1)} \ldots < m_{k-1, n}^{(q+1)} \) so that (7.3) and (7.4) are satisfied for \( q+1 \) and \( k \leq h-1 \), let \( m_{h, n-1}^{(r)} > m_{h-1, n}^{(q+1)} \) be such that

\[
2(q+1) \sum_{j=1}^{m_{h-1, n}^{(q+1)}} u_n(j) < \sum_{j=1}^{m_{h, n-1}^{(r)}} u_n(j).
\]

Let \( m_{h, n}^{(q+1)} = m_{h, n-1}^{(r)} \); let

26
\[ c = 2 \sum_{j=1}^{m_{h-1,n}^{(q+1)}} u_n(j) \left/ \left( m_{h,n}^{(q+1)} - m_{h-1,n}^{(q+1)} \right) \right. , \]

and let \( u_n(j) = \min \left( c, u_n(m_{h-1,n}^{(q+1)}) \right) \) for \( m_{h-1,n}^{(q+1)} < j \leq m_{h,n}^{(q+1)} \). Then we have

\[
\sum_{j=1}^{m_{h,n}^{(q+1)}} u_n(j) \leq 2 \sum_{j=1}^{m_{h-1,n}^{(q+1)}} u_n(j) < (1/q) \sum_{j=1}^{m_{h,n}^{(q+1)}} u_n(j).
\]

This completes the proof of a sequence which satisfies (a), (b) and (c').

To complete the proof of the lemma we define sequences \( m_n \) for each \( n \).
Let \( m_n(j) = m_{n,n+j-1}^{(q+1)} \) for each \( j \). Then \( m_n[j\geq h] \) is a subsequence of \( m_{n,n+j-1}^{(q+1)} \) for all \( h \) so that (c) follows from (c'). \( \square \)

7.2 Example. A symmetric sequence space which is not barrelled in the \( \beta \sigma \) topology. Let \( (u_n) \) be a sequence in \( c_0 \) which satisfies the conclusion of Lemma 7.1. Let \( (v_n) \) be the collection of all finite sections of the \( u_n \). That is, each \( v_n \) is equal to \( u_p[k\leq k] \) for some \( p \) and some \( k \). Let \( w_n = u_n/n \) for each \( n \).

Let \( S \) consist of all sequences \( s = \sum_n s_n + \sum_n t_n \) such that \( \sum_n p_n(s_n) + \sum_n q_n(t_n) < \infty \)

where

\[
p_n(t) = \sup_k \left( \frac{1}{k} \sum_{j=1}^k s(j) \right) / \sum_{j=1}^k u_n(j),
\]

\[
q_n(t) = \sup_k \left( \frac{1}{k} \sum_{j=1}^k s(j) \right) / \sum_{j=1}^k u_n(j).
\]

Then \( S \) is a BK-space with the norm

\[
\|s\| = \inf \left\{ \sum_n p_n(s_n) + \sum_n q_n(t_n) : \sum_n s_n + \sum_n t_n = s \right\}
\]

27
We omit the proof that $S$ is a BK space as well as the proof that $S$ is symmetric and normal.

For each $n$ and each $k$, $u_n \leq k$ is some $v_m$ so it is in the unit ball $U$ of $S$. On the other hand if $\sum_n s_n + \sum_n t_n = u_k$ then for all $m$

$$\sum_{j=1}^{m} \sum_{n} s_n(j) + \sum_{j=1}^{m} \sum_{n} t_n(j) = \sum_{j=1}^{m} u_k(j)$$

$$\sum_{n} \sum_{j=1}^{m} s_n(j) + \sum_{n} \sum_{j=1}^{m} t_n(j) = \sum_{j=1}^{m} u_k(j).$$

Thus for each $m_k(r)$

$$\sum_n \left( \sum_{j=1}^{m_k(r)} s_n(j) / \sum_{j=1}^{m_k(r)} w_n(j) \right) \left( \sum_{j=1}^{m_k(r)} w_n(j) / \sum_{j=1}^{m_k(r)} u_k(j) \right)$$

$$+ \sum_n \left( \sum_{j=1}^{m_k(r)} t_n(j) / \sum_{j=1}^{m_k(r)} v_n(j) \right) \left( \sum_{j=1}^{m_k(r)} v_n(j) / \sum_{j=1}^{m_k(r)} u_k(j) \right) = 1 \quad (7.5)$$

If $\sum_n p_n(s_n)$ and $\sum_n q_n(t_n)$ are finite the limit on the left hand side of (7.5) as $k \to \infty$ is

$$\sum_n p_n(s_n) \lim_k \left( \sum_{j=1}^{m_k(r)} w_n(j) / \sum_{j=1}^{m_k(r)} u_k(j) \right)$$

$$+ \sum_n q_n(t_n) \lim_k \left( \sum_{j=1}^{m_k(r)} v_n(j) / \sum_{j=1}^{m_k(r)} u_k(j) \right).$$

Because of Lemma 7.1

$$\lim_k \left( \sum_{j=1}^{m_k(r)} w_n(j) / \sum_{j=1}^{m_k(r)} u_k(j) \right) = \begin{cases} 
1/k & \text{if } n = k \\
0 & \text{if } n \neq k
\end{cases}$$
Since \( v_n(j) \) is eventually 0 and \( \sum_j u_k(j) = \infty \) for each \( k \)

\[
\lim_k \left( \frac{m_k(r)}{\sum_{j=1}^n v_n(j)} \right) = 0
\]

for all \( n \). Therefore, we conclude that if \( \sum_n s_n + \sum_n t_n = u_k \), \( p_k(s) \) is at least equal to \( k \). This implies that \( \| u_k \| \geq k \) for each \( k \).

If \( S \) were barrelled in the \( \beta \phi \) topology there would be an \( S \)-bounded subset \( B \) of \( \phi \) and positive numbers \( m \) and \( M \) such that \( m p(s) \leq \| s \| \leq M p(s) \) for \( s \) in \( S \) where

\[
p(s) = \sup \left\{ \left| \sum_j s(j) u(j) \right| : t \in B \right\}.
\]

Since \( \| u_k[<n] \| \leq 1 \) for each \( n \) and each \( k \) it follows that \( p(u_k[<n]) \leq M \) for each \( n \) and each \( k \). But because of the form of \( p \) it results that \( p(u_k) \leq M \) for all \( k \) contradicting the fact that \( (u_k) \) is unbounded in \( (S, \| \cdot \|) \). \( \Box \)
REFERENCES


