BLOW-UP ESTIMATES FOR NONLINEAR HYPERBOLIC HEAT EQUATION

By

Hamid Bellout

and

Avner Friedman

IMA Preprint Series # 356

October 1987

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>Harry Kesten</td>
<td>Scaling Relations for 2D-Percelation</td>
<td>242</td>
<td>A. Leisarowitz</td>
<td>Infinite Horizon Optimization for Markov Processes with Finite States Spaces</td>
</tr>
<tr>
<td>243</td>
<td>Louis H. Y. Chen</td>
<td>The Rate of Convergence in a Central Limit Theorem for Dependent Random Variables with Arbitrary Index Set</td>
<td>244</td>
<td>G. Kallianpur</td>
<td>Stochastic Differential Equations in Duals of Nuclear Spaces with some Applications</td>
</tr>
<tr>
<td>245</td>
<td>Tsuo-Shuh Chiang, Yunshong Chow Yuh-Jia Lee</td>
<td>Evaluation of Certain Functional Integrals</td>
<td>246</td>
<td>L. Karp, M. Pinsky</td>
<td>The First Eigenvalue of a Small Geodesic Ball in a Riemannian Manifold</td>
</tr>
<tr>
<td>247</td>
<td>Chi-Sing Man</td>
<td>Towards an Acoustic Theory for Localized Waves for a Fluid Sphere</td>
<td>248</td>
<td>Andreas Stoll</td>
<td>Invariance Principles for Brownian Intersection of Local Time and Polymer Measures</td>
</tr>
<tr>
<td>251</td>
<td>Suzanne M. Lenhart</td>
<td>Viscosity Solutions for Weakly Coupled Systems of First Order PDEs</td>
<td>252</td>
<td>M. Cranston, E. Fables, Z. Zhao</td>
<td>Condition Gauge and Potential Theory for the Schrödinger Operator</td>
</tr>
<tr>
<td>255</td>
<td>A. Carverhill</td>
<td>Conditioning a 'Lifted' Stochastic System in a Product Case</td>
<td>256</td>
<td>R. J. Williams</td>
<td>Local Time and Excursions of Reflected Brownian Motion</td>
</tr>
<tr>
<td>257</td>
<td>H. Holmer, S. Gey</td>
<td>Large Deviations for the Empirical Field of a Gibbs Measure</td>
<td>258</td>
<td>A. Leisarowitz</td>
<td>Characterization of Optimal Trajectories on an Infinite Horizon</td>
</tr>
<tr>
<td>259</td>
<td>Y. Giga, T. Miyakawa, H. Osada</td>
<td>Two Dimensional Navier Stokes Flow with Measures as Initial Vorticity</td>
<td>260</td>
<td>M. Chipot, V. Oliker</td>
<td>On une proprie De Fonctions Propres De l'opérateur De Laplace Beltrami</td>
</tr>
<tr>
<td>261</td>
<td>V. Perez-Abreu</td>
<td>Decompositions of Seminorms on Duality of Countably Nuclear Spaces</td>
<td>262</td>
<td>J. M. Ball</td>
<td>Does Rank-One Convexity Imply Quasiconvexity?</td>
</tr>
<tr>
<td>265</td>
<td>P. N. Shivakumar, Chi-Sing Man, Simon W. Baker</td>
<td>Modelling of the Heart and Pericardium at End-Diastole</td>
<td>266</td>
<td>Jose-Luis Mernaldi</td>
<td>Probabilistic View of Estimates for Finite Difference Methods</td>
</tr>
<tr>
<td>269</td>
<td>H. R. Jauslin, W. Zimmermann, Jr.</td>
<td>Dynamics of a Model for an Ac Josephson Effect in Superfluid 4He</td>
<td>270</td>
<td>A. K. Kapila</td>
<td>Introductory Lecture on Reacting Flows</td>
</tr>
<tr>
<td>273</td>
<td>Chi-Sing Man, Quan-Xin Sun</td>
<td>On the Significance of Normal Stress Effects in the Flow of Glaciers</td>
<td>274</td>
<td>Omar Hijash</td>
<td>On Partially Observed Control of Markov Processes</td>
</tr>
<tr>
<td>275</td>
<td>Lawrence Gray</td>
<td>The Behavior of Processes with Statistical Mechanical Properties</td>
<td>276</td>
<td>R. Hardt, D. Kinderlehrer, M. Luskin</td>
<td>Remarks about the Mathematical Theory</td>
</tr>
<tr>
<td>279</td>
<td>C. Fain, B. Nicolaenko, G.R.Sell, R. Temam</td>
<td>Inertial Manifolds for the Kuramoto-Sivashinsky Equation and an Estimate of their Lowest Dimension</td>
<td>280</td>
<td>R. Duren</td>
<td>On the Approximation of Miscible Displacement in Porous Media by a Method of Characteristics Combined with a Mixed Method</td>
</tr>
<tr>
<td>287</td>
<td>Li Kaitai, Yan Ningning</td>
<td>The Extrapolation for Boundary Finite Elements</td>
<td>288</td>
<td>R. Durrett, R.H. Schonmann</td>
<td>Stochastic Growth Models</td>
</tr>
<tr>
<td>289</td>
<td>David Kinderlehrer</td>
<td>Remarks about Equilibrium Configurations of Crystals</td>
<td>290</td>
<td>D.G. Aronson, J.L. Vaques</td>
<td>Eventual C^0-Regularity and Convergence for Flows in One-Dimensional Porous Media</td>
</tr>
<tr>
<td>295</td>
<td>Todd Arbogast</td>
<td>Analysis of the Simulation of Single Phase Flow through a Naturally Fractured Reservoir</td>
<td>296</td>
<td>He Yunnian, Li Kaitai</td>
<td>The Coupling Method of Finite Elements and Boundary Elements for Radiation Problems</td>
</tr>
<tr>
<td>298</td>
<td>Li Kaitai</td>
<td>Perturbation Solutions of Simple and Double Parabolic Equations with a Gradient Term</td>
<td>300</td>
<td>Chen Zhangxin, Li Kaitai</td>
<td>The Convergence on the Multigrid Algorithm for Navier-Stokes Equations</td>
</tr>
<tr>
<td>303</td>
<td>Duran, Ricardo G.</td>
<td>Error Analysis in L^p, $1 \leq p \leq \infty$, for Mixed Definite Element Methods for Linear and Quasi-Linear Elliptic Problems</td>
<td>304</td>
<td>Nocchetto, Ricardo H., Verdi, Claudio</td>
<td>An Efficient Linear Scheme to Approximate Parabolic Free Boundary Problems: Error Estimates and Implementation</td>
</tr>
</tbody>
</table>
BLOW-UP ESTIMATES FOR NONLINEAR HYPERBOLIC HEAT EQUATION*

HAMID BELLOUT† AND AVNER FRIEDMAN‡

Abstract. We consider the Cauchy problem for

\[\epsilon u_{tt} + u_t - u_{xx} = F(u) ; \]

\(u \) represents the temperature when the standard Fourier law \(q = u_x \) (q flux) is relaxed and \(F(u) \) is a nonlinear source of energy. We establish that the solution exists for \(0 < t < \phi_\epsilon(x) \), and it blows up as \(t \to \phi_\epsilon(x) \). Further, \(\phi_\epsilon(x) \to T_0 \) as \(\epsilon \to 0 \) where \(T_0 \) is the blow-up time for \(u_t - u_{xx} = F(u) \).

Key words. blow up of solutions, blow up time, hyperbolic equations

AMS(MOS) subject classifications. 35L05, 35L67, 35L70

§1. Introduction.

There has been recently increasing interest in the blow-up of solutions of nonlinear heat equations, such as

\[u_t - u_{xx} = F(u) , \]

(1.1)

and nonlinear wave equations, such as

\[u_{tt} - u_{xx} = F(u) ; \]

(1.2)

typically \(F(u) \sim Au^p \) \((p > 1) \) or \(F(u) \sim e^u \) as \(u \to \infty \); see [10] [11] [13] [16] [17] and the references given there regarding (1.1), and [4] [5] [14] regarding (1.2).

Equation (1.1) models the heat equation when the flux \(q \) is given by the Fourier law \(q = -u_x \) and the conservation of energy equation is

\[u_t + q_x = G \quad (G \quad \text{a source of energy}) . \]

(1.3)

Fourier's law implies infinite velocity of heat propagation, and there have been a number of modified laws which rule out this feature. One common version is [1] [2] [3] [6] [7] [18] [19]

\[q(x,t + \epsilon) = -u_x(x,t) \quad (\epsilon > 0) \]

*This work is partially supported by National Science Foundation Grant DMS-8612880
†Northern Illinois University, Department of Mathematics, De Kalb, Illinois 60115
‡Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesota 55455
or its approximation

\[q(x, t) + \epsilon q_t(x, t) = -u_x(x, t). \]

(1.4)

The conservation of energy equation (1.3) then needs also to be modified (see [8]), but for \(\epsilon \) small it is approximately the same as before. From (1.3), (1.4) we deduce

\[\epsilon u_{tt} + u_t - u_{xx} = F \]

(1.5)

where \(F = G + \epsilon G_t \) \((G_t = \partial G(u(x, t)) / (\partial t))\); for \(\epsilon \) small, \(F \approx G \).

In this paper we study the Cauchy problem for (1.5) with \(F = F(u) \). If

\[u(x, 0) = f(x), \]
\[u_t(x, 0) = g(x) \]

(1.6)

then, since it is natural to assume that initially the temperature satisfies the heat equation, we are led to the assumption that

\[g = f_{xx} + F(f). \]

(1.7)

In §2 we represent (1.5), (1.6) in two equivalent but useful forms. In §3 we establish the existence of unique solution \(u_\epsilon \) of (1.5), (1.6) for \(0 < t < \phi_\epsilon(x) \), which blows up to \(+\infty \) as \(t \to \phi_\epsilon(x) \). the method of Caffarelli and Friedman [4] [5] shows that if \(f(u) \sim u^p \) as \(u \to \infty \) then \(\phi_\epsilon(x) \) is continuously differentiable. Additional estimates on \(u_\epsilon \) (independent of \(\epsilon \)) are established in §4.

Next, in §5 we prove that

\[\liminf_{\epsilon \to 0} \phi_\epsilon(x) \geq T_0 \]

(1.8)

where \(T_0 \) is the blow-up time for (1.1) with \(u(x, 0) = f(x) \). Finally, in §6 we prove that

\[\limsup_{\epsilon \to 0} \phi_\epsilon(x) \leq T_0 \]

(1.9)

Some generalizations and extensions are given in §7.

Results of the type (1.8), (1.9) have been established for other types of equations in [12] [14] [15].

ASSUMPTIONS. Throughout this paper we assume that \(F \in C^2 \),

\[F(x) \geq 0, \quad F''(s) \geq 0 \quad \text{if} \quad s \geq 0, \]
\[F'(s) > 0 \quad \text{if} \quad s > 0, \]

(1.10)

\[\int_1^\infty \frac{ds}{F(s)} < \infty; \]
\begin{align*}
(1.11) & \quad f \geq 0, \ f + \varepsilon g \geq 0 \quad \text{(for all small } \varepsilon > 0\text{),} \\
(1.12) & \quad f, g \quad \text{belong to } C^3(\mathbb{R}), \\
(1.13) & \quad \begin{cases}
 f(x) + |g(x)| \leq \frac{C}{(1 + |x|)^\alpha}, \\
 \sum_{i=1}^{3} \| f^{(i)}(x) \| + \| g^{(i)}(x) \| \leq C \quad \text{for more constants } C > 0, \alpha > 0.
\end{cases}
\end{align*}

and (1.7) holds. In §6 we shall also need the assumption

\begin{equation}
(1.14) \quad g \geq 0
\end{equation}

The results of this paper extend also to the case where (1.7) is not valid and to space dimension \(\leq 3 \) (under some additional assumptions on \(F \)); see §7.

\section*{§2. Equivalent formulation for the Cauchy problem.}

We shall denote by \(u_\varepsilon \) the solution (if existing) of

\begin{equation}
(P^1_\varepsilon) \quad \begin{cases}
 \mathcal{L}_\varepsilon u \equiv \varepsilon u_{tt} + u_t - u_{xx} = F(u), \\
 u(x, 0) = f(x), \\
 u_t(x, 0) = g(x).
\end{cases}
\end{equation}

Setting

\begin{equation}
(2.1) \quad v(x, t) = u(x, t)e^{t/(2\varepsilon)}
\end{equation}

we get the equivalent system

\begin{equation}
(P^2_\varepsilon) \quad \begin{cases}
 \varepsilon v_{tt} - v_{xx} = F(ve^{-t/(2\varepsilon)})e^{t/(2\varepsilon)} + \frac{1}{4\varepsilon} v, \\
 v(x, 0) = f(x), \\
 v_t(x, 0) = \frac{1}{2\sqrt{\varepsilon}} f(x) + g(x).
\end{cases}
\end{equation}

Setting

\begin{equation}
(2.2) \quad w(x, \tau) = v(x, t) \quad \text{where } \tau = \frac{t}{\sqrt{\varepsilon}},
\end{equation}

3
we get

\[
\begin{align*}
(P^3_\varepsilon) & \\
& \left\{ \\
& w_{rr} - w_{xx} = F(we^{-\tau/(2\sqrt{\varepsilon})}e^{\tau/(2\sqrt{\varepsilon})}) + \frac{1}{4\varepsilon} w, \\
& w(x, 0) = f(x), \\
& w_r(x, 0) = \frac{1}{2\sqrt{\varepsilon}} f(x) + \sqrt{\varepsilon} g(x).
\end{align*}
\]

The concept of a solution of \((P^3_\varepsilon)\) is always understood in the classical sense.

Using the representation formula

\[
z(x, t) = \frac{1}{2} [z(x + t, 0) + z(x - t, 0)] + \frac{1}{2} \int_{z-t}^{z+t} z_t(\xi, 0) \, d\xi
\]

(2.3)

\[
+ \frac{1}{2\pi} \int_0^t ds \int_{-1}^1 (z_{tt} - z_{xx})(x + (t - s)\eta, s) \, d\eta
\]

for \(z = w\) we then obtain for \(u\) the representation:

\[
u(x_0, t_0) = \frac{e^{-t_0/(2\varepsilon)}}{2\sqrt{\varepsilon}} \iiint_{K^\varepsilon_-(x_0, t_0)} e^{t/(2\varepsilon)} \mathcal{L}_\varepsilon(u) \, dx \, dt
\]

(2.4)

\[
+ \frac{e^{-t_0/(2\varepsilon)}}{8\varepsilon^{3/2}} \iiint_{K^\varepsilon_-(x_0, t_0)} e^{t/(2\varepsilon)} u \, dx \, dt
\]

\[
+ \frac{1}{2} e^{-t_0/(2\varepsilon)} \left[f(x_0 + \frac{t_0}{\sqrt{\varepsilon}}) + f(x_0 - \frac{t_0}{\sqrt{\varepsilon}}) \right] \]

\[
+ \frac{1}{2} e^{-t_0/(2\varepsilon)} \int_{x_0 - \frac{t_0}{\sqrt{\varepsilon}}}^{x_0 + \frac{t_0}{\sqrt{\varepsilon}}} \left[\frac{1}{2\sqrt{\varepsilon}} f(x) + \sqrt{\varepsilon} g(x) \right] \, dx,
\]

where \(x_0 \in \mathbb{R}, \, t_0 > 0\) and

\[
K^\varepsilon_-(x_0, t_0) = \{ (x, t) \in \mathbb{R} \times (0, \infty), \ | x - x_0 | < \frac{t_0 - t}{\sqrt{\varepsilon}} \}.
\]

THEOREM 2.1. Let (1.7) and (1.10) − (1.13) hold. Then there exist functions \(\phi_\varepsilon(x), u_\varepsilon(x, t)\) satisfying

\[
(2.5) \quad 0 < c \leq \phi_\varepsilon(x) \leq \infty \quad \text{for some} \quad c > 0 \quad (c \ \text{independent of} \ \varepsilon);
\]
\[(2.6) \begin{cases} \text{if } \phi_\varepsilon(x) \neq \infty \text{ then } \phi_\varepsilon(x) < \infty \text{ for all } x \in \mathbb{R} \\ \text{and } \frac{\phi_\varepsilon(x) - \phi_\varepsilon(x')}{|x - x'|} \leq \sqrt{\varepsilon} \quad \forall x, x' \end{cases} \]

\(u_\varepsilon \) is a solution of \((P^1_\varepsilon)\) in the region

\[\Omega_\varepsilon = \{(x, t) \in \mathbb{R} \times [0, \infty); \ t < \phi_\varepsilon(x)\} \]

and

\[(2.7) \quad u_\varepsilon \geq 0 , \]

\[(2.8) \quad u_\varepsilon(x, t) \to \infty \quad \text{if } t \to \phi_\varepsilon(x) ; \]

The pair \((\phi_\varepsilon, u_\varepsilon)\) is uniquely determined.

§3. Proof of Theorem 2.1.

Let

\[F_n(u) = \begin{cases} F(\min(u, n)) & \text{if } u > 0 \quad (n = 1, 2, \ldots) \\ F(0) & \text{if } u \leq 0 \end{cases} \]

and denote by \(u_n \) the solution of \((P^1_\varepsilon)\) corresponding to \(F_n \). The corresponding \(w = w_n \) satisfy:

\[w^n_{xx} - w^n_{xx} = F_n(w^n e^{-r/(2\sqrt{\varepsilon})}) e^{r/(2\sqrt{\varepsilon})} + \frac{1}{4\varepsilon} w^n , \]

\[w^n(x, 0) = f(x) , \]

\[w^n_{r}(x, 0) = \frac{1}{2\sqrt{\varepsilon}} f(x) + \sqrt{\varepsilon} g(x) . \]

Using (1.11) in the representation (2.3) for \(w^n \), we can deduce by a continuity argument that \(w^n(x, t) \geq 0 \) for \(x \in \mathbb{R} \) and all \(t > 0 \).

Next we apply the arguments in [4: pp. 87–88] to \(w^n \) in order to deduce that \(w \equiv \lim w^n \) exists if \(0 \leq \tau < \tilde{\phi}_\varepsilon(x) \) and \(w \equiv \infty \) if \(\tau > \tilde{\phi}_\varepsilon(x) \), and, if \(\tilde{\phi}_\varepsilon \neq +\infty, \tilde{\phi}_\varepsilon \) is Lipschitz continuous with coefficient 1. The last fact is based on the inequalities

\[w_{r} \geq \pm w_{x} - c_0 \quad (c_0 \text{ constant}) \]

whose proof is as in [4; p. 86]. Next, instead of (1.22) in [4; p. 88] we have

\[\frac{w^n_{n,r}}{F(w^n + C_0)} \leq C \quad \text{for some } \ C_0 > 0, C > 0 \]

and this implies (using the last condition in (1.10) that

\[w(x, \tau) \to \infty \quad \text{it } \tau \to \tilde{\phi}_\varepsilon(x) . \]

In view of (2.1), (2.2) we conclude that the corresponding \(u_n \) converge to \(u_\varepsilon \) which is finite if \(t < \phi_\varepsilon(x) \) and \(+\infty \) if \(t > \phi_\varepsilon(x) \), where \(\phi_\varepsilon(x) = \sqrt{\varepsilon} \tilde{\phi}_\varepsilon(x) \), and \(u_\varepsilon(x, t) \to \infty \) if \(t \to \phi_\varepsilon(x) \).

We have thus established (2.6)–(2.8). To prove the first inequality in (2.5) it suffices to establish:
LEMMA 3.1. There exist positive constants M, T independent of n, ϵ such that

\begin{equation}
\sup_{\mathbb{R}^n \times (0,T)} u^n(x,t) \leq M.
\end{equation}

Proof. We compare u^n with the solution $\gamma(t) = \gamma_n(t)$ of

\begin{equation}
\begin{cases}
\epsilon \gamma'' + \gamma' = F_n(\gamma), \\
\gamma(0) = a, \\
\gamma'(0) = F_n(a)
\end{cases}
\end{equation}

where a is a sufficiently large positive constant. The functions $z^n = u^n - \gamma_n$ satisfy:

\[L_\epsilon(z^n) = F_n(u^n) - F_n(\gamma_n) = c(x,t)z^n, \quad c \geq 0, \]
\[z^n(x,0) < 0, \quad z^n_t(x,0) \leq 0. \]

Representing z^n by the integral formula (2.3) we can establish by continuity in t that $z^n(x,t) < 0$ for all x, t. Thus in order to complete the proof of Lemma 3.1 it remains to prove:

\begin{equation}
\gamma_n(T) \leq 2a \quad \text{for some } T \text{ independent of } n, \epsilon
\end{equation}

To prove (3.4) we rewrite the differential equation for $\gamma = \gamma_n$ in the form

\[\epsilon(e^{t/\epsilon} \gamma')' = F_n(\gamma)e^{t/\epsilon} \geq 0. \]

Since $\gamma'(0) > 0$, we deduce that $\gamma'(t) > 0$ as long as $\gamma(t)$ is positive. Differentiating the equation in (3.3) once in t, we also have

\[\epsilon(e^{t/\epsilon} \gamma''')' = F_n'(\gamma)\gamma'e^{t/\epsilon} \geq 0 \]

and, since $\gamma''(0) = 0$, we deduce that $\gamma''(t) > 0$ as long as $\gamma(t) > 0$. It follows that $\gamma''(t) > 0$ for all t. Therefore

\[\gamma' = F_n(\gamma) - \epsilon \gamma'' \leq F(\gamma). \]

Defining T_n by $\gamma(T_n) = 2a$ we conclude that

\[\bar{T} = \int_a^{2a} \frac{ds}{F_n(s)} = \int_0^{T_n} \frac{\gamma'(t)}{F(\gamma(t))} \leq T_n. \]

Since $\bar{T} \geq T > 0$, the assertion (3.4) follows.

We have completed the proof of existence of a solution $(u_\epsilon, \phi_\epsilon)$. Uniqueness is proved as in [4] or [5]. (Notice that for uniqueness we need not use the fact that c in (2.5) is independent of ϵ.)

As in [4] we can establish that u_ϵ is in $C^{2,1}$ in Ω_ϵ.

The following fact will be used in §6.
THEOREM 3.2. If in addition to the assumptions (1.7), (1.10) –(1.13) we also assume that (1.14) holds then

\begin{equation}
\frac{\partial u_\epsilon}{\partial t} \geq 0 \quad \text{in} \quad \Omega_\epsilon.
\end{equation}

Proof. Set

\begin{equation}
z(x, \tau) = u^n_t(x, t) e^{t/(2\epsilon)}, \quad \tau = \frac{t}{\sqrt{\epsilon}}.
\end{equation}

Then

\begin{equation}
z_{\tau \tau} - z_{xx} = F'_n(u^n)z + \frac{1}{4\epsilon} z,
\end{equation}

\begin{align*}
z(x, 0) &= g(x), \\
z_\tau(x, 0) &= \frac{1}{2\sqrt{\epsilon}} g(x).
\end{align*}

Consider first the case where \(g(x) \geq \delta > 0 \). Then representing \(z \) by an integral formula (2.3) and proceeding by continuity on \(\tau \) we can establish that \(z(x, \tau) > 0 \) for all \(x, \tau \).

Applying this to (3.7) with \(g \geq 0 \) replaced by \(g + \delta \), and letting \(\delta \to 0 \), it follows that \(z \geq 0 \) where \(z \) is given by (3.6), and (3.5) is then proved by taking \(n \to \infty \).

§4. Additional estimates on \(u_\epsilon \).

LEMMA 4.1. Assume that for some positive constants \(M, T \) the solution of \((P'_t) \) (established in Theorem 1.1) satisfies:

\begin{equation}
u_\epsilon(x, t) \leq M \quad \text{in} \quad \mathbb{R} \times [0, T], \quad \text{for all small} \ \epsilon.
\end{equation}

Then there exists a positive constant \(C_1 \) independent of \(\epsilon \) such that

\begin{equation}
u_\epsilon(x, t) + |u_\epsilon, t(x, t)| \leq \frac{C_1}{(1 + |x|)^\alpha} \quad \text{in} \quad \mathbb{R} \times [0, T],
\end{equation}

\begin{equation}
|u_\epsilon, x| + |u_\epsilon, t| + |u_\epsilon, xx| + |u_\epsilon, tx| + |u_\epsilon, xxx| + |u_\epsilon, txx| \leq C_1 \quad \text{in} \quad \mathbb{R} \times [0, T].
\end{equation}

Proof. Consider the function

\[W_\alpha(x, t) = \frac{e^{At}}{(1 + x^2)^{\alpha/2}}, \quad A > 0. \]
For any A (no matter how large), if ϵ is small enough then

\[\mathcal{L}_\epsilon W_\alpha \geq \frac{A}{2} W_\alpha. \]

On the other hand

\[\mathcal{L}_\epsilon u_\epsilon = \tilde{F}(u_\epsilon) u_\epsilon \quad \left(\tilde{F}(v) = \frac{F(v)}{v} \right) \]

and therefore the function $z = W - u_\epsilon$ satisfies

\[\mathcal{L}_\epsilon z \geq \frac{A}{2} W_\alpha - \tilde{F}(u_\epsilon) u_\epsilon \geq \tilde{F}(u_\epsilon) z \quad \text{if} \quad t < T \]

provided we choose A such that $A > 2\tilde{F}(M)$. Noting that

\[z(x,0) > 0, \quad z_t(x,0) > 0 \]

If A is large, we can represent z by the integral representation (2.3) and then deduce by continuity on t, that $z \geq 0$ if $t < T$. Thus

\[u_\epsilon \leq W_\alpha = \frac{e^{\alpha T}}{(1 + x^2)^{\alpha/2}}. \]

Similarly, from the equation

\[\mathcal{L}_\epsilon(u_\epsilon, t) = F'(u_\epsilon) u_\epsilon, t \]

and the fact that $|F'(u_\epsilon)| \leq F'(M)$ we can proceed as before to estimate u_ϵ, t from above by the same function W (with a different constant A). The function $-u_\epsilon, t$ are estimated similarly. Thus (4.2) is proved.

The function u_ϵ, x is estimated similarly using the comparison function W_α with $\alpha = 0$.

Next we differentiate $\mathcal{L}_\epsilon u_\epsilon = F$ once in t and once in x and obtain

\[\mathcal{L}_\epsilon u_\epsilon, t x = F'(u_\epsilon) u_\epsilon, t x + F''(u_\epsilon) u_\epsilon, t u_\epsilon, x. \]

Noting that

\[|F''(u_\epsilon) u_\epsilon, t u_\epsilon, x| \leq C, \]

we can proceed as before to compare $u_\epsilon, t x$ with $W_0 \equiv e^{At}$ provided A is sufficiently large. We thus obtain the estimate

\[|u_\epsilon, t x| \leq C_1, \quad C_1 \quad \text{constant}. \]

Similarly we establish the estimate

\[|u_\epsilon, xx| \leq C_1. \]

Differentiating $\mathcal{L}(u_\epsilon) = F$ three times and using the estimates derived so far, we can again compare u_ϵ, xxx and u_ϵ, txx with W_0 and thus complete the proof of (4.3).
Remark 4.1. Lemma 4.1 implies that any sequence $\epsilon \to 0$ has a subsequence such that

$$u_\epsilon \to u, \quad u_{\epsilon, x} \to u_x, \quad u_{\epsilon, xx} \to u_{xx}$$

uniformly in compact subsets of $\mathbb{R} \times [0, T]$.

(4.4)

However, we cannot establish the boundedness of $u_{\epsilon, tt}$ by the method of Lemma 4.1 (since $u_{\epsilon, tt}(x, 0)$ is unbounded as $\epsilon \to 0$), and thus we cannot assert that

(4.5) \quad u_{\epsilon, t} \to u_t \quad \text{uniformly in compact subsets of } \mathbb{R} \times [0, T].

Lemma 4.2. Under the assumption of Lemma 4.1

(4.6) \quad u_\epsilon(x, t) \to u(x, t), \quad u_{\epsilon, t}(x, t) \to u_t(x, t)

as $\epsilon \to 0$, uniformly in compact subsets of $\mathbb{R} \times (0, T]$, where u is a solution of (1.2).

Proof. Multiplying $\mathcal{L}_\epsilon(u_\epsilon) = F(u_\epsilon)$ by $e^{t/\epsilon}$ and integrating in t we find that

$$u_{\epsilon, t}(x, t_0) = \frac{1}{\epsilon} e^{-t/\epsilon} g(x)$$

$$+ \frac{1}{\epsilon} e^{-t/\epsilon} \int_0^t [u_{\epsilon, xx}(x, s) + F(u_\epsilon(x, s))] e^{s/\epsilon} \, ds.$$

Set

$$H_\epsilon = u_{\epsilon, xx} + F(u_\epsilon)$$

and write

(4.7) \quad u_{\epsilon, t} = \frac{1}{\epsilon} e^{-t/\epsilon} g(x) + \frac{1}{\epsilon} \int_0^t [H_\epsilon(x, s) - H(x, t)] e^{s/\epsilon} \, ds

$$+ H_\epsilon(x, t)[1 - e^{t/\epsilon}] \equiv J_1^\epsilon + J_2^\epsilon + J_3^\epsilon.$$

Then

$$|J_1^\epsilon| \leq \frac{C}{\epsilon} e^{-t/\epsilon} \to 0$$

uniformly in $t \in [\delta, T]$.

Next, by Lemma 4.1, $|H_\epsilon, t| \leq C_0$ where C_0 is independent of ϵ. Hence

$$|J_2^\epsilon| \leq \frac{C_0}{\epsilon} \int_0^t (t - s) e^{(s-t)/\epsilon} \, ds

= C_0 \epsilon [-\frac{t}{\epsilon} e^{-t/\epsilon} - e^{-t/\epsilon} + 1] \leq C_0 \epsilon.$$
Finally, by Remark 4.1, any sequence $\epsilon \to 0$ has a subsequence such that (4.4) holds; therefore

$$J^\epsilon_3 \to u_{xx} + F(u).$$

Thus, by (4.7),

$$u_{\epsilon,t} \to u_{xx} + F(u)$$

uniformly in compact subsets of $\mathbb{R} \times (0, T]$; the right hand side must coincide with u_t (since $u_\epsilon \to u$ uniformly) and thus u is a solution of (1.2).

Since u is also continuous up to $t = 0$ and $u(x, 0) = f(x)$, and since

$$|u| \leq M \quad \text{by (4.1)},$$

u is uniquely determined [9; Chap 2]. It follows that (4.6) (and (4.4)) hold for the full range of the parameter ϵ.

Consider now the parabolic equation

$$u_t - u_{xx} = F(u),$$

$$u(x, 0) = f(x),$$

and set

$$N(t) \equiv \sup_{0 < \epsilon < 1} \sup_{x \in \mathbb{R}} u(x, t).$$

Then there exists a T_0 such that

$$N(t) < \infty \quad \text{for all} \quad t < T_0.$$

We assume that $T_0 < \infty$; T_0 is then called the blow-up time for (4.8).

Lemma 4.3. If the assumptions of Lemma 4.1 hold with $T < T_0$, then

$$u_\epsilon|_{t < 0} \leq A_T \quad \text{in} \quad \mathbb{R} \times [0, T]$$

for all ϵ sufficiently small, where

$$A_T = \sup_{\mathbb{R} \times [0, T]} (u_+ | u_t |) + 1$$

(which is a positive constant independent of M).

Proof. By Lemma 4.2, if ρ is sufficiently large then

$$u_\epsilon(x, t) + |u_\epsilon,t(x, t)| \leq A_T \quad \text{if} \quad |x| > \rho, \ 0 \leq t \leq T.$$

On the other hand, if $|x| \leq \rho, \ 0 \leq t \leq T$ then, by Lemma 4.2, (4.9) holds provided ϵ is sufficiently small.
§5. \(\lim \inf \phi_\varepsilon \geq T_0. \)

Theorem 5.1. Under the assumptions of Theorem 2.1, for any \(T_1 < T_0, \phi_\varepsilon(x) > T_1 \) for all \(x \in \mathbb{R} \) provided \(\varepsilon \) is small enough, and

\[
(5.1) \quad u_\varepsilon \to u \quad \text{uniformly in} \quad \mathbb{R} \times [0, T_1]
\]

as \(\varepsilon \to 0. \)

Proof. From the proof of Theorem 2.1 we have (see (3.2)) that the conditions of Lemma 4.1 hold for some small \(T. \) Lemma 4.3 thus implies that \(M \) in (4.1) can be replaced by the constant

\[
A = \sup_{\mathbb{R} \times [0, T_1]} (u^+ + |u_t|) + 1,
\]

provided \(\varepsilon \) is small enough.

Let \(v(t) \) be the solution of

\[
\begin{align*}
\varepsilon v_{tt} + v_t &= F(v), \\
v(0) &= A, \\
v_t(0) &= F(A).
\end{align*}
\]

By (3.3), (3.4),

\[
(5.3) \quad v(t) < 2A \quad \text{if} \quad 0 < t \leq \sigma,
\]

where \(\sigma \) is a positive constant independent of \(\varepsilon. \)

We wish to compare \(u_\varepsilon \) with \(v(t + T - \delta) \) (for any \(\delta > 0 \)) provided \(\varepsilon \) is sufficiently small (so that (4.9) is valid) in order to deduce that \(u_\varepsilon(x, t) \) exist in \(\mathbb{R} \times [0, \tilde{T}] \) for \(\tilde{T} = T - \delta, \) and

\[
u_\varepsilon(x, t) \leq M \quad \text{in} \quad \mathbb{R} \times [0, \tilde{T}].\]

To do this we work with the solutions \(u^n \) of the truncated problems and proceed precisely as in the proof of Lemma 3.1, with \(t = 0 \) replaced by \(t = T - \delta. \)

Since \(\delta \) is arbitrary we deduce that the conditions of Lemma 4.1 hold with \(T \) replaced by \(T + \sigma. \) We can proceed in this way step-by-step until we reach the value \(t = T_1. \)

Corollary 5.2. Under the assumptions of Theorem 2.1

\[
(5.4) \quad \lim \inf_{\varepsilon \to 0} \left[\inf_x \phi_\varepsilon(x) \right] \geq T_0.
\]

11
§6. \(\lim \sup \phi_{\epsilon} \leq T_0 \).

Theorem 6.1. Let the assumptions of Theorem 2.1 hold and assume also that (1.14) holds. Then, for any \(x \in \mathbb{R} \),

\[
(6.1) \quad \lim_{\epsilon \to 0} \sup \phi_{\epsilon}(x) \leq T_0 .
\]

Proof. Suppose the assertion is not true. Then there exist \(x_0 \in \mathbb{R} \) and \(\delta > 0 \) such that for a sequence \(\epsilon \to 0 \),

\[
\phi_{\epsilon}(x_0) > T_0 + 2\delta .
\]

By (2.6) we then get, for any \(\rho > 0 \),

\[
(6.2) \quad \phi_{\epsilon}(x) > T_0 + \delta \quad \forall \ x \in (-\rho, \rho) ,
\]

provided \(\epsilon \) is small enough.

From the definition of \(T_0 \) it follows that there is a sequence \((x_n, \eta_n) \) with \(\eta_n \downarrow 0 \) such that

\[
u(x_n, T_0 - \eta_n) \to \infty \quad \text{if} \quad n \to \infty
\]

Choose any large positive constant \(M \) and let \(n_0 \) be such that

\[
u(x_{n_0}, T_0 - \eta_{n_0}) > M .
\]

By Theorem 3.2, \(u_{\epsilon}(x, t) \) is monotone increasing in \(t \) and therefore

\[
(6.3) \quad u_{\epsilon}(x_{n_0}, t) > M \quad \text{if} \quad T_0 - \eta_{n_0} \leq t \leq \phi_{\epsilon}(x_{n_0}) .
\]

We choose \(\rho \) in (6.2) such that \(\rho > |x_{n_0}| + 1 \). Then

\[
(6.4) \quad \phi_{\epsilon}(x) > T_0 + \delta \quad \text{if} \quad |x - x_{n_0}| \leq 1 .
\]

Introduce the function

\[
\psi(x) = \frac{\pi}{2} \sin \pi(x - x_{n_0}) .
\]

It satisfies

\[
\psi'' = -\pi^2 \psi, \quad \psi > 0 \quad \text{in} \quad x_n < x < x_{n_0} + 1 ,
\]

\[
\psi(x_{n_0}) = \psi(x_{n_0} + 1) = 0 ,
\]

\[
(6.5) \quad \int_{x_{n_0}}^{x_{n_0} + 1} \psi(x) \, dx = 1 .
\]
Multiplying $\mathcal{L}_\varepsilon(u_\varepsilon) = F(u_\varepsilon)$ by ψ and integrating over $\{x_{n_0} < x < x_{n_0} + 1\}$, we find that the function

$$a(t) = \int_{x_{n_0}}^{x_{n_0}+1} u_\varepsilon(x, T_0 - \eta_{n_0} + t)\psi(x) \, dx$$

satisfies:

$$\varepsilon a'' + a' = -\pi^2 a + F(a) + [u_\varepsilon(x, T_0 - \eta_{n_0} + t)\psi_x(x)]_{x_{n_0}}^{x_{n_0}+1}.$$

Since

$$\psi_x(x_{n_0}) = -c < 0, \quad \psi_x(x_{n_0} + 1) > 0,$$

it follows that

$$(6.6) \quad \varepsilon a'' + a' \geq -\pi^2 a + F(a) + cM$$

where (6.3) was used; also

$$(6.7) \quad a(0) > 0, \quad a'(0) \geq 0, \quad a'(t) \geq 0.$$

Lemma 6.2. The solution $a(t)$ of (6.6), (6.7) blows up in time $t \leq \delta$ provided M is sufficiently large and ε is sufficiently small.

Assuming the lemma we conclude that

$$\phi_\varepsilon(x) < T_0 - \eta_{n_0} + \delta \quad \text{for some} \quad x \in (x_{n_0}, x_{n_0+1}),$$

which is a contradiction to (6.4).

Proof of Lemma 6.2. Let $b(t)$ denote the solution of

$$(6.8) \quad \varepsilon b'' + b' = c_0(F(b) + M),$$

$$(6.9) \quad 0 \leq b(0) < a(0), \quad b''(0) = a'(0)$$

where

$$(6.10) \quad c_0 = \min\left(\frac{1}{2}, \frac{c}{2}\right), \quad c \text{ as in (6.6)}.$$

Writing (6.8) in the form

$$\varepsilon(e^{t/\varepsilon}b')' = c_0 e^{t/\varepsilon}(F(b) + M) \geq 0$$

we see that $b' \geq 0$.

13
We claim that if \(M \) is large enough then, for any \(\epsilon > 0 \),
\[
(6.11) \quad b(t) \text{ blows up in time } \leq \delta.
\]
Indeed, suppose \(b(t) \) exists for all \(t \leq \delta \). We claim that there exists a \(t_0 \) such that
\[
(6.12) \quad t_0 \in (0, \frac{\delta}{2}), \quad b''(t_0) \geq 0.
\]
Indeed, otherwise we have
\[
b''(t) < 0 \quad \text{for all } t \in (0, \delta/2)
\]
and therefore, by (6.8),
\[
b' \geq c_0(F(b) + M).
\]
Hence
\[
\int_0^{\delta/2} \frac{b'}{c_0(F(b) + M)} \geq \frac{\delta}{2}.
\]
But the left-hand side is bounded above by
\[
\int_{a(0)}^{\infty} \frac{ds}{c_0(F(s) + M)}
\]
which is < \(\delta/2 \) if \(M \) is sufficiently large; a contradiction.

Having proved (6.12), we differentiate (6.8) in \(t \) and obtain, after multiplying by \(e^{t/\epsilon} \),
\[
\epsilon(e^{t/\epsilon}b'')' = c_0e^{t/\epsilon}F'(b)b' \geq 0
\]
Using (6.12) we deduce that
\[
b''(t) \geq 0 \quad \text{if } t > t_0
\]
Hence
\[
b'' + b' = c_0(F(b) + M) + (1 - \epsilon)b'' \geq c_0(F(b) + M) \quad \text{if } t \geq t_0
\]
Denoted by \(\gamma(t) \) the solution of
\[
(6.13) \quad \gamma'' + \gamma' = c_0(F(\gamma) + M),
\]
\[
\gamma(t_0) = b(t_0), \quad \gamma'(t_0) = b'(t_0)
\]
we deduce that
\[
\epsilon(e^{t/\epsilon}(b - \gamma)')' \geq 0,
\]
\[
(b - \gamma)(t_0) = (b - \gamma)'(t_0) = 0.
\]
It follows that \(b(t) \geq \gamma(t) \). On the other hand it is easily seen that if \(M \) is sufficiently large then \(\gamma(t) \) blows up in time \(t \leq t_0 + \gamma/2 \). Therefore

\[
(6.14) \quad b(t) \text{ blows up in time } t < \delta.
\]

In order to complete the proof of the lemma we compare \(a(t) \) with \(b(t) \). From (6.10) and (6.6), (6.8) we find that

\[
\epsilon(e^{t/\epsilon}(a - b)')' \geq c_0 F'(a - b)e^{t/\epsilon}.
\]

Since also \((a - b)(0) > 0, (a - b)'(0) \geq 0\), we easily deduce that \(a(t) \geq b(t) \) for all \(t \) for which \(b(t) \) exists. It follows that \(a(t) \) blows up in time < \(\delta \).

\section*{§7 Generalizations.}

7.1. The results of this paper extend to the case where (1.7) is replaced by

\[
g = f_{xx} + F(f) + \epsilon h
\]

provided \(h \) satisfies

\[
(7.1) \quad |h(x)| \leq \frac{C}{(1 + |x|)^\alpha} \quad \text{for some } \alpha > 0,
\]

\[
(7.2) \quad \sum_{i=1}^{3} |h^{(i)}(x)| \leq C,
\]

and

\[
(7.3) \quad g \geq 0.
\]

These conditions ensure that (1.13) holds and that

\[
\sum_{i=1}^{3} |D_x^i u^{e}_{tt}(x, 0)| \leq M < \infty,
\]

which is the only condition that \(u^{e}_{tt}(x, 0) \) needed to satisfy in the previous analysis.

7.2. The results of this paper extend to the case where \(x \) is \(N \)-dimensional with \(N = 2 \) or \(N = 3 \), provided \(F, f \) and \(g \) satisfy the following additional conditions:

\[
(7.4) \quad sF'(s) - F(s) \leq 0 \quad \forall s \geq 0,
\]
\[(7.5) \quad \frac{t}{2\varepsilon} + 1) f(x) + \varepsilon g(x) \geq \frac{t}{\sqrt{\varepsilon}} \left| \nabla f(x) \right| \quad \forall \, t \geq 0, \, x \in \mathbb{R}^N, \]
\[\frac{1}{2\sqrt{\varepsilon}} f(x) + \sqrt{\varepsilon} g(x) - \lambda \left| \nabla f(x) \right| + \frac{t}{\varepsilon} \left[g(x) + \frac{1}{4\varepsilon} f(x) \right] \]
\[(7.6) \quad - \lambda \left(\frac{1}{\sqrt{\varepsilon}} \left| \nabla f(x) \right| + \sqrt{\varepsilon} \left| \nabla g(x) \right| \right) \]
\[\geq \frac{t}{\sqrt{\varepsilon}} \left| \nabla g(x) \right| + \lambda \frac{t}{\sqrt{\varepsilon}} \left| \nabla^2 f(x) \right| \quad \forall \, t \geq 0, \, x \in \mathbb{R}^N \]
where \(\lambda > 1 \) (\(\lambda \) constant)

(here \(g = \Delta f + F(f) \)). These conditions are satisfied if
\[F(s) = e^{\theta s}, \quad 0 < \theta \leq 1, \]
\[f(x) = A + f_1(x), \quad |D^\alpha f_1(x)| \leq \frac{C}{(1 + |x|)^\beta} \]
for \(0 \leq |\alpha| \leq 5 \) and some \(\beta > 0, \) and \(A \) is
a sufficiently large positive constant.

Under these conditions the existence and uniqueness of a solution \(u_\varepsilon \) can be established using the formulation \((P^3_\varepsilon) \) and the approximating sequence considered in [5]. Condition (7.5) ensures that \(u_\varepsilon \geq 0. \) The existence of \(\phi_\varepsilon(x) \) and (2.5), (2.6) result from the inequality
\[w_\varepsilon, t \geq \lambda \left| \nabla w_\varepsilon \right| \]
which is proved using the extension of the representation formula (2.3) to \(N \) dimensions [5] and the conditions (7.4), (7.5). The results of §4,5 extend with minor changes to dimension \(N. \) Finally, in §6 we need a stronger assumption than (1.14), namely,
\[(7.8) \quad g(x) \geq \delta_0 > 0; \]
using this we can prove as in [5] that \(\exists \delta_1 > 0 \) such that
\[u_\varepsilon, t \geq \delta_1 \left| \nabla u_\varepsilon \right| \]
This guarantees that, for any \(t > T_0 + \frac{\sigma}{2} \) (\(\sigma \) arbitrarily small),
\[u_\varepsilon(x, t) > M \quad \text{for } x \text{ in a fixed ball } B \text{ of radius } \delta_1 \sigma/4. \]

Introducing the function
\[a(t) = \int_B u_\varepsilon(x, T_0 + \frac{\sigma}{4} + t) \psi(x) \, dx \]
where \(\psi \) is the principal eigenfunction of \(-\Delta \) in \(B, \) \(\psi > 0 \) in \(B, \int_B \psi = 1, \) we again derive (6.6), (6.7), and conclude that \(a(t) \) blows up in time \(\leq T_0 + \sigma. \)
REFERENCES

