SOME BLOW UP RESULTS FOR A NONLINEAR PARABOLIC EQUATION WITH
A GRADIENT TERM

BY

M. CHIPOT

AND

F.B. WEISSLER

IMA Preprint Series #298
February 1987

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Harry Kesten</td>
<td>Scaling Relations for 2-D Percolation</td>
</tr>
<tr>
<td>42</td>
<td>A. Leizarowitz</td>
<td>Infinite Horizon Optimization for Markov Processes with Finite States Spaces</td>
</tr>
<tr>
<td>43</td>
<td>Louis H.-Y. Chen</td>
<td>The Rate of Convergence in a Central Limit Theorem for Non-Homogeneous Random Variables with Arbitrary Index Sets</td>
</tr>
<tr>
<td>44</td>
<td>G. Kallassen</td>
<td>Stochastic Differential Equations in Duals of Nuclear Spaces with Some Applications</td>
</tr>
<tr>
<td>45</td>
<td>Tsu-Shuh Chiang, Yunhong Chow and Yuh-Jia Lee</td>
<td>Evaluation of Certain Functional Integrals</td>
</tr>
<tr>
<td>46</td>
<td>L. Karp and M. Pinsky</td>
<td>The First Eigenvalue of a Small Geodesic Ball in a Riemannian Manifold</td>
</tr>
<tr>
<td>47</td>
<td>Chi-Sing Man</td>
<td>Towards an Acoustoelastic Theory for Measurement of Residual Stress</td>
</tr>
<tr>
<td>48</td>
<td>Andreas Stoll</td>
<td>Invariance Principles for Brownian Intersection Local Time and Polymer Measures</td>
</tr>
<tr>
<td>49</td>
<td>R.W.R. Darling</td>
<td>Rate of Growth of the Coalescent Set in a Coalescing Stochastic Process</td>
</tr>
<tr>
<td>50</td>
<td>R. Cohen, R. Hardt, O. Kallenberg, S. Y. Lin, M. Luskin</td>
<td>Minimum Energy for Liquid Crystals: Computational Results</td>
</tr>
<tr>
<td>51</td>
<td>Suzanne M. Lenhart</td>
<td>Viscosity Solutions for Weakly Coupled Systems of First Order PDEs</td>
</tr>
<tr>
<td>52</td>
<td>M. Cranston, E. Fabes, Z. Zhao</td>
<td>Condition Gauge and Potential Theory for the Schrodinger Operator</td>
</tr>
<tr>
<td>53</td>
<td>H. Brezis, J. Moser, E. H. Lieb</td>
<td>Harmonic Maps with Defects</td>
</tr>
<tr>
<td>54</td>
<td>Carverhill</td>
<td>Flows of Stochastic Dynamical Systems: Nontriviality of the Lyapunov Spectrum</td>
</tr>
<tr>
<td>55</td>
<td>Carverhill</td>
<td>Conditioning a Lifted Stochastic System in a Product Case</td>
</tr>
<tr>
<td>56</td>
<td>J. Williams</td>
<td>Local Time and Extensions of Reflection Brownian Motion</td>
</tr>
<tr>
<td>57</td>
<td>E. M. Fox</td>
<td>Large Deviations for the Empirical Field of a Gibbs Measure</td>
</tr>
<tr>
<td>58</td>
<td>Leizarowitz</td>
<td>Characterization of Optimal Trajectories on an Infinite Horizon</td>
</tr>
<tr>
<td>59</td>
<td>C. Giga, T. Miyakawa, H. Onda</td>
<td>Two Dimensional Navier Stokes Flow with Measures As Initial Vorticity</td>
</tr>
<tr>
<td>60</td>
<td>M. Chipot, O. Oliker</td>
<td>Sur Une Propriete Des Fonctions Propres De L’Operateur De Laplace Beltrami</td>
</tr>
<tr>
<td>61</td>
<td>V. Pereyra, Abreu</td>
<td>Decompositions of Smoothing Operators on Duals of Countably Nuclear Spaces</td>
</tr>
<tr>
<td>62</td>
<td>J-M. Bismut</td>
<td>Does Rank-One Convexity Imply Quasiconvexity?</td>
</tr>
<tr>
<td>63</td>
<td>B. Cockburn</td>
<td>The Quasi-Monotone Schemes for Scalar Conservation Laws, Part I</td>
</tr>
<tr>
<td>64</td>
<td>K.A. Perchuk-Spector</td>
<td>On Radially Symmetric Simple Waves in Elasticity</td>
</tr>
<tr>
<td>65</td>
<td>P-N. Shilukumar, Chi-Sing Man, Simon W. Rabin</td>
<td>Modelling of the Heart and Pericardium at End-Diastole</td>
</tr>
<tr>
<td>66</td>
<td>Jose-Luis Maniscalco</td>
<td>Probabilistic View of Estimates for Finite Difference Methods</td>
</tr>
<tr>
<td>67</td>
<td>Robert Hardt, Harold Rosenberg</td>
<td>Open Book Structures and Unicity of Minimal Submanifolds</td>
</tr>
<tr>
<td>68</td>
<td>Bernoardo Cockburn</td>
<td>The Quasi-Monotone Schemes for Scalar Conservation Laws</td>
</tr>
<tr>
<td>69</td>
<td>M.R. Jaulin, W. Zimmermann</td>
<td>Dynamics of a Model for an Ac Josephson Effect in Superfluid 3He</td>
</tr>
<tr>
<td>70</td>
<td>A.K. Kapila</td>
<td>An Introduction Lecture on Reacting Flows</td>
</tr>
<tr>
<td>71</td>
<td>J.C. Taylor</td>
<td>Do Minimal Solutions of Heat Equations Characterize Diffusions?</td>
</tr>
<tr>
<td>72</td>
<td>J.C. Taylor</td>
<td>The Minimal Eigenfunctions Characterize the Ornstein-Uhlenbeck Process</td>
</tr>
<tr>
<td>73</td>
<td>Chi-Sing Man, Quan-Xing Sun</td>
<td>On the Significance of Normal Stress Effects In the Flow of Glaciers</td>
</tr>
<tr>
<td>74</td>
<td>Oscar Hijam</td>
<td>On Partially Observed Control of Markov Processes</td>
</tr>
<tr>
<td>75</td>
<td>Lawrence Gray</td>
<td>The Behavior of Processes with Statistical Mechanical Properties</td>
</tr>
<tr>
<td>76</td>
<td>R. Hardt, D. Kinderlehrer, M. Luskin</td>
<td>Remarks About the Mathematical Theory of Liquid Crystals</td>
</tr>
</tbody>
</table>
SOME BLOW UP RESULTS FOR A NONLINEAR PARABOLIC EQUATION
WITH A GRADIENT TERM

M. CHIPOT

Université de Metz
Département de mathématiques
et informatique
Ile du Saulcy
57045 Metz-Cedex (FRANCE)

F.B. WEISSLER*

Department of Mathematics
Texas A & M University
College Station, Texas 77843

* Partially supported by NSF Grant DMS 8201639.
1. INTRODUCTION

In this paper we study solution of the semilinear parabolic problem

\[
\begin{align*}
 u_t &= \Delta u - |u|^q + |u|^{p-1}u, \quad t > 0, \quad x \in \Omega, \\
 u(t,y) &= 0, \quad t > 0, \quad y \in \Gamma, \\
 u(0,x) &= \phi(x), \quad x \in \Omega.
\end{align*}
\]

(1.1)

Here \(\Omega \subset \mathbb{R}^N \) is a bounded domain with smooth boundary \(\Gamma, \) \(u = u(t,x), \) \(\Delta \) and \(\nabla \) apply only to the spatial variables, and \(p > 1 \) and \(q > 1 \) are fixed (finite) parameters. Our main goal is to show that under appropriate conditions on \(q, p, \) and \(n, \) there exists a suitable initial value \(\phi \) so that the corresponding solution of (1.1) blows up in a finite time.

In the case where there is no gradient term, i.e.

\[
\begin{align*}
 u_t &= \Delta u + |u|^{p-1}u, \quad t > 0, \quad x \in \Omega, \\
 u(t,y) &= 0, \quad t > 0, \quad y \in \Gamma, \\
 u(0,x) &= \phi(x), \quad x \in \Omega,
\end{align*}
\]

(1.2)

the following result has been known for some time, (see for example Ball [2]).

Theorem 1.1. Let \(p > 1 \) and let \(\phi : \overline{\Omega} \to \mathbb{R} \) be sufficiently smooth (e.g. \(C^2 \)) with \(\phi |_\Gamma \equiv 0. \) If \(\phi \) is large enough in the sense that its "energy"

\[
E(\phi) = \frac{1}{2} \| \nabla \phi \|^2 + \frac{1}{p+1} \| \phi \|_{p+1}^{p+1}
\]

(1.3)

is negative, then the corresponding solution of (1.2) blows up in finite time.

We remark that local existence of solutions for (1.2) follows by standard iteration methods (see for example Segal [28]) on the Banach space \(C_0(\Omega). \)

Thus, if the existence time \(T \) of the maximal solution to (1.2) is finite, i.e. if the solution blows up in finite time \(T, \) then \(\lim_{t \to T} \| u(t, \cdot) \|_\infty = \infty. \)

In the past few years, a great deal of work has been done to study the precise behavior of solutions to (1.2) as \(t \) approaches the finite blow up time.
(See [3,12,14,15,16,24,25,29,32,33].) A corresponding theory is also being developed in the case where $|u|^{p-1}u$ in (1.2) is replaced by λe^u. (See [4,5,6,7,8,12,22,23,30].)

One is naturally led to consider more general parabolic problems of the form

$$u_t = \Delta u + f(u, \nabla u).$$ \hspace{1cm} (1.4)

To our knowledge, there has not been much study of solutions to equations of the form (1.4) which blow up in finite time. (For an example, see [11].) Moreover, we are not aware of any finite time blow up results which would apply to equation (1.1). Furthermore, the gradient term in (1.1) has a damping effect, working against blow up; and so it is not clear if problem (1.1) has solutions which blow up in finite time. Our goal is therefore somewhat modest: to find an analogue of Theorem 1.1 for problem (1.1).

\textbf{Theorem 1.2.} Let $1 < q < 2p/(p + 1)$ and let $\phi \in W^3_s(\Omega)$ for s sufficiently large, ϕ not identically zero. Suppose in addition that

1) $\phi = 0$ on Γ,
2) $\Delta \phi - |\nabla \phi|^q + |\phi|^{p-1} \phi = 0$ on Γ,
3) $\phi > 0$ in Ω,
4) $\Delta \phi - |\nabla \phi|^q + \phi^p > 0$ in Ω,
5) $E(\phi) < 0$,
6) if $q < 2p/(p + 1)$, then $\|\phi\|_{p+1}$ is sufficiently large,
7) if $q = 2p/(p + 1)$, then p is sufficiently large.

Then the corresponding solution of (1.1) blows up in finite time, in the L^∞ norm.

The obvious difficulty with this result is that it is not at all clear if such a ϕ exists. A natural candidate for ϕ is a regular solution of the following elliptic problem,
\[\Delta \phi - |\nabla \phi|^q + \lambda \phi^p = 0 \quad \text{in } \Omega \]
\[\phi > 0 \quad \text{in } \Omega \]
\[\phi = 0 \quad \text{on } \Gamma \]

where $\lambda > 0$ is sufficiently small.

Theorem 1.3 Let $\Omega = B_R = \{ x \in \mathbb{R}^n : |x| < R \}$. Suppose $1 < q < 2p/(p + 1)$ and (if $n > 3$) $p < (n + 2)/(n - 2)$. Then for all $\lambda > 0$ there exists a regular solution ϕ of (1.5). If λ is sufficiently small, then ϕ satisfies conditions i)-vi) in Theorem 1.2.

Suppose $n = 1$ and $q = 2p/(p + 1)$. Then for all $\lambda > \lambda_p$, where

\[\lambda_p = \frac{(2p)^p}{(p+1)^{2p+1}} \]

there exists a regular solution ϕ of (1.5). If in addition, $\lambda < 2/(p + 1)$, then ϕ satisfies conditions i)-v) in Theorem 1.2. ("Regular" above means regular enough to apply Theorem 1.2.)

The paper is organized as follows. In Section 2 we prove local existence and uniqueness, and regularity for problem (1.1) with initial values in an appropriate Sobolev space. Moreover, we indicate precisely the conditions on s required for Theorem 1.2 and prove that conditions i)-iv) on ϕ imply $u(t,\cdot) > 0$ and $u_t(t,\cdot) > 0$ throughout the trajectory. In Section 3 we prove Theorem 1.2, using energy arguments based on the methods found in Ball [2]. We have attempted to write Section 3 so that it is, at least formally, independent of the technicalities of Section 2. In Section 4 we begin the study of (1.5) and prove Theorem 1.3. Finally, in Section 5 we present some additional results concerning (1.5). In particular, we show that the value of λ_p claimed in Theorem 1.3 is in fact sharp.
We remark that the value $q = 2p/(p+1)$ is "critical" in many respects. The condition $q < 2p/(p + 1)$ arises naturally in the energy arguments. When $q = 2p/(p + 1)$; both equations (1.1) and (1.5) have the same scaling properties as the same equations without the gradient term; and the character of solutions to (1.5) changes considerably as q is smaller than, equal to, or bigger than $2p/(p + 1)$.

Acknowledgements

Both authors were research fellows at the Institute for Mathematics and its Applications, the University of Minnesota, during the entire academic year 1984-85. Most of the research for this article was done during this time, and we are grateful to the IMA for its support. Also, while at the IMA, we were fortunate to be able to discuss this work with S. Hastings, R. Pego, and P. Souganidis. We thank them for their ideas and suggestions.
2. LOCAL EXISTENCE AND REGULARITY FOR THE EVOLUTION EQUATION

In this section \(\Omega \subset \mathbb{R}^n \) is a bounded domain with smooth boundary \(r = \partial \Omega \). Also, \(p \) and \(q \) are fixed real numbers, strictly larger than 1. Our goal is to construct a local theory for the parabolic problem (1.1). The first step is to write the corresponding variation of parameters integral equation

\[
 u(t) = e^{t\Delta} \phi + \int_0^t e^{(t-s)\Delta} j(u(s)) ds
\]

where \(u(t) = u(t, \cdot) \) and \(J = J_1 + J_2 \) with

\[
 J_1(u) = -|u|^q,
 J_2(u) = |u|^{p-1}u.
\]

Also, \(e^{t\Delta} \) denotes the heat semigroup on \(\Omega \) with Dirichlet boundary conditions. Recall that for \(1 < s < \infty \), \(e^{t\Delta} \) is an analytic, contraction, \(C_0 \) semigroup on \(L^s = L^s(\Omega) \). Furthermore, the domain of its generator in \(L^s \) is

\[
 \mathcal{D}_s(\Delta) = W^{2,s}(\Omega) \cap W^{1,s}_0(\Omega).
\]

Moreover, it is known, [10], that \(e^{t\Delta} \) restricts to a \(C_0 \) semigroup on \(W^{1,2}_0(\Omega) \), \(1 < s < \infty \).

We will construct a local theory for the integral equation (2.1) in the Banach space \(W^{1,s}_0 = W^{1,s}_0(\Omega) \), \(s \) sufficiently large, using the framework developed in [31]. Note that for suitable \(r_1, r_2 > 1 \),

\[
 J_1: W^{1,s}_0 \to L^{r_1}
 J_2: W^{1,s}_0 \to L^{r_2}
\]

are continuously Frechet differentiable maps, Lipschitz on bounded sets in \(W^{1,s}_0 \). Indeed, \(r_1 \) can clearly be chosen \(s/q \), provided \(s > q \); and allowable
values for r_2, can easily be computed by first determining when $W_0^{1,s}$ is embedded in $L^{r_2 p}$. Moreover, if $1 < r < s < \infty$, then for $t > 0$

$$e^{tA}: L^r \to W_0^{1,s}$$

is bounded with norm bounded by $Ct^{-\alpha}$, where

$$\alpha = \frac{n}{2} \left(\frac{1}{r} - \frac{1}{s} \right) + \frac{1}{2}$$

and C can be chosen uniformly up to any finite time. (See Lemma 4.1 in [31] and Theorem 4.17 in [1].) Therefore, for each $t > 0$, the map $K_t = e^{tA}j$ is a continuously Frechet differentiable mapping of $W_0^{1,s}$ into itself, Lipschitz on bounded sets. In order to apply the results in [31], it suffices to choose s so that $\alpha < 1$ with both $r = r_1 > 1$ and $r = r_2 > 1$. Routine calculations (albeit somewhat tedious) show that this can be done if

1. $s > q$, $s > n(q - 1)$,
2. $s > np/(n + p)$, $s > n(p - 1)/(p + 1)$. (2.2)

(The conditions on the left side of (2.2) come from the requirement that r_1, $r_2 > 1$; and the conditions on the right side, from the requirement that $\alpha < 1$ for both r_1 and r_2.) From now on we assume that s satisfies (2.2). (We will later need an additional assumption on s.) Thus, by Theorem 1 in [31], for every $\phi \in W_0^{1,s}$, there is a unique maximal solution $u \in C([0,T_\phi]; W_0^{1,s})$ to the integral equation (2.1). T_ϕ is the existence time of the solution starting at ϕ; and if $T_\phi < \infty$, then $\|u(t)\|_{W_0^{1,s}} \to \infty$ as $t \to T_\phi$.

We remark that if $q < 2$, then a local theory for the integral equation (2.1) can be constructed in $L^r(\Omega)$, using the framework developed in [34]. In fact, Theorem 2 of [34] needs to be modified slightly to handle a nonlinearity of the form $J = J_1 + J_2$. (Two spaces E_{j_1} and E_{j_2} are needed instead of just E_j.) We omit the details and simply indicate that if
\[r > n(p-1)/2 \quad (2.2a) \]
\[r > n(q-1)/(2-q), \quad q < 2, \]

then we have local existence and uniqueness for (2.1) in \(L^r \). In particular, if the existence time \(T_\phi \) is finite, then \(\|u(t, \cdot)\|_r \to \infty \) as \(t \to T_\phi \). It follows, of course, that \(\|u(t, \cdot)\|_\infty \to \infty \) as \(t \to T_\phi \). Since \(q < 2p/(p+1) \) implies \(q < 2 \), this is the case under the hypotheses of Theorem 1.2.

We would like to show that if \(\phi \) is sufficiently regular, then the resulting solution of (2.1) is also a solution of the original problem (1.1) and has some additional regularity properties. Recall that the integral equation (2.1) gives rise to a "semi-flow" \(W_t \) on \(W^{1,s}_0 \), i.e. \(W_t \) takes \(\phi \in W^{1,s}_0 \) to its value at time \(t \) under the action of (2.1). In other words, \(W_t \phi = u(t) \), where \(u(t) \) is the maximal solution in \(W^{1,s}_0 \) of (2.1) with initial value \(\phi \). In particular, \(W_t \phi \) is defined precisely for \(t \in [0, T_\phi) \). The generator of the semi-flow \(W_t \) is

\[B\phi = \lim_{t \to 0^+} \frac{W_t \phi - \phi}{t}, \quad (2.3) \]

where the limit is taken in \(W^{1,s}_0 \). The domain of \(B \), \(D(B) \), is simply the set of \(\phi \in W^{1,s}_0 \) for which the limit (2.3) exists. Formally, \(B = \Delta + J \), i.e.

\[B\phi = \Delta \phi - |\nabla \phi|^q + |\phi|^{p-1} \phi. \quad (2.4) \]

However, the characterization of \(B \) and \(D(B) \) in [31] (Theorem 3.1) is somewhat abstract, and some care is needed to describe \(B \) and \(D(B) \) in the present context. For technical convenience, we make the following additional restrictions on \(s \):

\[s > 2q, \quad s > nq. \quad (2.5) \]
Proposition 2.1. Suppose \(s \in \mathbb{R} \) satisfies (2.2) and (2.5). Let \(W_t \) be the semi-flow on \(W_0^{1,s} \) resulting from the integral equation (2.1), with generator \(B \) and domain \(D(B) \). Then \(D(B) \) is the set of all \(\phi \in W^{3,s} \cap W_0^{1,s} \) such that

\[
\Delta \phi - |\nabla \phi|^q + |\phi|^{p-1} \phi \in W_0^{1,s}. \tag{2.6}
\]

For \(\phi \in D(B) \), \(B\phi \) is given by (2.4).

Proof. Suppose first \(\phi \in D(B) \). By Theorem 3.1 part (iv) in [31], it follows that

\[
\Delta e^{t\Delta} \phi + e^{t\Delta}(-|\nabla \phi|^q + |\phi|^{p-1} \phi) \tag{2.7}
\]

converges strongly in \(W_0^{1,s} \) to \(B\phi \) as \(t \to 0^+ \). Now certainly \(|\nabla \phi|^q \in L^{s/q} \) and, thanks to (2.5), \(|\phi|^{p-1} \phi \in W_0^{1,s} \subset L^{s/q} \). Thus, the second term in (2.7) converges in \(L^{s/q} \) as \(t \to 0^+ \) to \((-|\nabla \phi|^q + |\phi|^{p-1} \phi) \). Furthermore, again by (2.5), \(\phi \in W_0^{1,s} \subset H_0^1(\Omega) \); and so \(\Delta e^{t\Delta} \phi + \Delta \phi \) in \(H^{-1}(\Omega) \) as \(t \to 0^+ \). Thus, the distributional limit of (2.7) as \(t \to 0^+ \) is the desired expression

\[
\Delta \phi - |\nabla \phi|^q + |\phi|^{p-1} \phi.
\]

This must the same as the \(W_0^{1,s} \) limit, which proves (2.6) and (2.4).

To prove that \(\phi \in W^{3,s} \), note first that \(B\phi \in W_0^{1,s} \subset L^{s/q} \) and \(-|\nabla \phi|^q + |\phi|^{p-1} \phi \in L^{s/q} \). Hence \(\Delta \phi \in L^{s/q} \). Since \(\phi \in W_0^{1,s} \), elliptic regularity gives that \(\phi \in W^{2,s/q} \). Therefore \(\nabla \phi \in W_0^{1,s/q} \subset L^\infty \). Thus \(|\nabla \phi|^q \) and \(|\phi|^{p-1} \phi \) are both in \(L^\infty \). Since \(B\phi \in W_0^{1,s} \subset L^\infty \), it follows that \(\Delta \phi \in L^\infty \). Thus \(\phi \in W^{2,q}(\Omega) \) for every finite \(r \). Therefore \(|\nabla \phi|^q \) and \(|\phi|^{p-1} \phi \) are both in \(W^{1,s} \); and since \(B\phi \in W^{1,s} \), we get that \(\Delta \phi \in W^{1,s} \). By higher order elliptic regularity (see for example Theorem IX.32 in [9]), it follows that \(\phi \in W^{3,s} \).

On the other hand, suppose \(\phi \in W^{3,s} \cap W_0^{1,s} \) satisfies (2.6). To show that \(\phi \in D(B) \), we must show, by Theorem 3.1 part (iv) in [31], that for all \(t > 0 \),
e^{t\Delta} \phi is in the domain of \(\Delta \) as a semigroup generator in \(W^{1,s}_0 \) and that (2.7) has a limit in \(W^{1,s}_0 \) as \(t \to 0^+ \). Now \(e^{t\Delta} \) is an analytic semigroup on \(L^s \). Thus, \(e^{t\Delta} \) restricts to an analytic semigroup on \(D_s(\Delta) \), considered as a Banach space with its graph norm. Since \(\phi \in D_s(\Delta) = W^{2,s}_0 \cap W^{1,s}_0 \), it follows that for all \(t > 0 \) \(e^{t\Delta} \phi \) is in the domain of \(\Delta \) as a semigroup generator in \(D_s(\Delta) \).

Since \(D_s(\Delta) \) is continuously embedded in \(W^{1,s}_0 \), \(e^{t\Delta} \phi \) is in the domain of \(\Delta \) as a semigroup generator in \(W^{1,s}_0 \). Finally, again since \(\phi \in D_s(\Delta) \), \(\Delta e^{t\Delta} \phi = e^{t\Delta} \Delta \phi \), where both expressions make sense in \(L^s \). Consequently, (2.7) equals

\[
e^{t\Delta} (\Delta \phi - |\nabla \phi|^q + |\phi|^{p-1} \phi),
\]

which clearly has a limit in \(W^{1,s}_0 \) as \(t \to 0^+ \) because of (2.6).

Remark. The above proof shows that Proposition 2.1 remains correct if \(W^{3,s}_0 \) is replaced by \(W^{2,s}_0 \). It was higher order elliptic regularity which allowed us to conclude \(\phi \in W^{3,s}_0 \).

Proposition 2.2. Under the same conditions as in Proposition 2.1, let \(\phi \in D(\Delta) \) and \(u(t) = W_t \phi \); i.e., \(u(t) \) is the maximal solution of equation (2.1). Then:

i) \(u \in C^1([0,T_\phi); W^{1,s}_0) \) and

\[
u'(t) = \Delta u(t) - |u(t)|^q + |u(t)|^{p-1} u(t),
\]

where each term on the right side of (2.8) is in \(C([0,T_\phi); L^{s/q}) \);

ii) \(u \in C([0,T_\phi); W^{2,s/q}) \);

iii) \(\|u(t)\|_\infty \) and \(\|u(t)\|_\infty \) are bounded on any interval \([0,T] \) with \(T < T_\phi \).

Proof. By Theorem 2.2 in [31], \(u \in C^1([0,T_\phi); W^{1,s}_0) \), \(u(t) \in D(\Delta) \) for all \(t \in [0,T_\phi] \) and \(u'(t) = \Delta u(t) \). The previous proposition now implies (2.8).
Furthermore $|\varphi(t)|^q$ and $|u(t)|^{p-1}u(t)$ are clearly continuous into $L^{s/q}$ (again using (2.5)) and since $Bu(t)$ is continuous into $W_0^{1,s}$, it follows that $\varphi(t)$ is continuous into $L^{s/q}$. This proves i).

Since $u(t) \in D(B)$, the previous proposition implies $u(t) \in W_0^{2,s/q} \cap W_0^{1,s/q}$. Also $u(t)$ and $\varphi(t)$ are both continuous in $L^{s/q}$. Since the graph norm for Δ on $W_0^{2,s/q} \cap W_0^{1,s/q}$ is equivalent to the $W_0^{2,s/q}$ norm, it follows that $u(t)$ is continuous into $W_0^{2,s/q}$, which proves ii).

Finally, iii) follows easily since $W_0^{1,s/q}$ is continuously embedded in L^∞, thanks to assumption (2.5).

Proposition 2.3. Under the same conditions as in Proposition 2.1, let $\phi \in W_0^{1,s}$ with $\phi > 0$ a.e. in Ω. Then $u(t) = W_t \phi > 0$ for all $t \in [0,T]$.

Proof. Any $\phi > 0$ in $W_0^{1,s}$ can be approximated in $W_0^{1,s}$ by non-negative C^∞ functions with compact support in Ω, in particular by non-negative functions in $D(B)$. By the continuity properties of the semi-flow W_t (see Theorem 1 in [31]), we may therefore assume $\phi > 0$ is in $D(B)$. (In fact, we only need the result for $\phi \in D(B)$.)

Multiplying (2.8) by

$$u(t)^- = \frac{|u(t)|^2 - u(t)}{2},$$

and integrating over Ω yields

$$fu'u^- = f(\varphi)u^- - \int |\varphi|^q u^- + \int |u|^{p-1} uu^-,$$

where we have suppressed the dependence on t. By the previous proposition, we clearly have $u \in C^1((0,T_\phi);L^2)$ and $u \in C((0,T_\phi);H_0^1)$. Thus

$$fu'u^- = -\frac{1}{2} \frac{d}{dt} \int (u^-)^2$$

and

$$f(\varphi)u^- = \int |\varphi|^2.$$
The first formula above follows from the definition of $u^- (\text{multiply out } (u^-)^2)$ and the second formula from well-known facts about $u^- ([17], \text{Section 7.4})$. We now restrict ourselves to $t \in [0,T]$ for a fixed $T < T_\phi$. By part iii) of the previous proposition, there is a constant $C = C(T)$ such that

$$\int |u|^P |u^-| \leq C \int |u^-|^2$$

and

$$\int |\nabla u|^q |u^-| \leq C \int |\nabla u^-||u^-|$$

$$\leq \varepsilon C \int |\nabla u^-|^2 + C_\varepsilon C \int |u^-|^2,$$

where $\varepsilon > 0$ is arbitrary, but C_ε depends on the choice of ε. Putting all this together, and choosing $\varepsilon > 0$ so that $\varepsilon C < 1$, we get that for $t \in (0,T)$,

$$\frac{1}{2} \frac{d}{dt} \int |u^-|^2 \leq -\int |\nabla u^-|^2 + \varepsilon C \int |\nabla u^-|^2 + C_\varepsilon C \int |u^-|^2$$

$$\leq C_\varepsilon C \int |u^-|^2.$$

Since $u^- \in C([0,T]; L^2)$ and $u(0) = \phi^- = 0$, Gronwall's lemma now implies $\int |u^-|^2 = 0$ for all $t \in [0,T]$. Since $T < T_\phi$ is arbitrary, we see that $u(t^-) = 0$ for all $t \in [0,T_\phi]$.

For the energy arguments in the next section we need not only $u(t) > 0$, but also $u'(t) > 0$, throughout the trajectory. In order to prove this with the weak maximum principle methods of previous proof, we need some higher order regularity in t. We begin with the following lemma. Its proof is modeled on the proof of Theorem 3 in [20]. (See also Proposition 1.2 in [31].)

Lemma 2.4. Under the same conditions as in Proposition 2.1, let $\phi \in D(B)$ and $u(t) = W_t \phi \in C([0,T_\phi); W_0^{1,s})$. Denote $v(t) = u'(t)$, so $v \in C([0,T_\phi); W_0^{1,s})$. Then for any compact subinterval $[\varepsilon, T] \subset (0,T_\phi)$, $v: [\varepsilon, T] \to W_0^{1,s}$ is Holder continuous.
Proof. By Theorem 2.2 in [31], \(v(t) \) satisfies the following integral equation:

\[
v(t) = e^{t\Delta}(B\phi) - q \int_0^t e^{(t-s)\Delta}|\mathcal{W}(s)|^{q-2}\mathcal{W}(s) \circ \mathcal{W}(s) ds
\]

\[
+ p \int_0^t e^{(t-s)\Delta}|u(s)|^{p-1}v(s) ds.
\]

(2.9)

Since \(B\phi \in W^{1,s}_0 \subset L^s \) and \(e^{t\Delta} \) is an analytic semigroup on \(L^s \), it follows that \(e^{t\Delta}(B\phi) \) is in \(C^1((0,\infty); D_s(\Delta)) \) and thus is certainly Holder continuous in \(W^{1,s}_0 \) on \([\varepsilon,T]\). Thus, it suffices to show that the two integral terms are Holder continuous on \([\varepsilon,T]\). We consider only the first one, the second one being easier to handle.

By Proposition 2.2 part ii) and the fact that \(W^{1,s/q}_0 \subset L^\infty \) by (2.5), we have that \(v_u \) and hence \(|v_u|^{q-2}v_u \) must be in \(C([0,T];L^\infty) \). (Obviously, we mean that \(|v_u|^{q-2}v_u = 0 \) in case \(|v_u| = 0 \). This presents no problem since \(q > 1 \).) Moreover, \(\mathcal{W} \) is clearly in \(C([0,T];L^s) \). Therefore,

\[
w(t) \equiv |v_u(t)|^{q-2}v_u(t) \circ \mathcal{W}(t)
\]

(2.10)

is in \(C([0,T];L^s) \). Let

\[
z(t) = \int_0^t e^{(t-s)\Delta}w(s) ds.
\]

Since \(W^{1,s}_0 = D_s(\sqrt{-\Delta}) \), the domain of \(\sqrt{-\Delta} \) in \(L^s \) (see [26,27]), to show \(z(t) \) is Holder continuous in \(W^{1,s}_0 \), it suffices to show \(\sqrt{-\Delta}z(t) \) Holder continuous in \(L^s \). For \(0 < t < t + \tau < T \), we have

\[
\sqrt{-\Delta}(z(t + \tau) - z(t)) = \sqrt{-\Delta}(e^{t\Delta} - I) \int_0^t e^{(t-s)\Delta}w(s) ds
\]

\[
+ \sqrt{-\Delta} \int_0^\tau e^{s\Delta}w(t + \tau - s) ds
\]
\begin{align*}
= (e^{t\Delta} - I)(-\Delta)^{-\alpha} \int (-\Delta)^{\alpha+1/2} e^{(t-s)\Delta} w(s)ds
+ \int_0^T (-\Delta)^{1/2} e^{s\Delta} w(t + \tau - s)ds,
\end{align*}
where $0 < \alpha \leq 1/2$. Using the facts (Theorems 11.3 and 12.1 in [21]) that for $t \in (0,T]$ and $0 < \nu < 1$
\begin{align*}
\|(-\Delta)^{\nu} e^{t\Delta}\|_S &< C t^{-\nu} \\
\|e^{t\Delta} - I\|(-\Delta)^{-\nu}\|_S &< C t^{\nu},
\end{align*}
we deduce that
\begin{align*}
\|\sqrt{-\Delta} (z(t+\tau) - z(t))\|_S &< C t^{\alpha} \int_0^t (t-s)^{-\alpha - 1/2} ds \sup_{[0,T]} \|w(t)\|_S \\
&+ C \int_0^T s^{-1/2} ds \sup_{[0,T]} \|w(t)\|_S.
\end{align*}
This proves the Holder continuity of $\sqrt{-\Delta} z(t)$ in L^S and thereby completes the proof of the lemma.

Remark. For the above result we do not need the rather strong result that $W^{1,\nu}_0 = D_S(\sqrt{-\Delta})$. The easier result that $D_S((-\Delta)^{\nu})$ is continuously embedded in $W^{1,\nu}_0$ (Theorem 9.2 in [21]) can be used with only a slight modification of the proof.

Proposition 2.5. Under the same conditions and with the same notation of Lemma 2.4, we have that $\nu \in C^1((0,T_\Phi);L^S/q)$ and
\begin{align}
\nu'(t) = \nu(t) - q |\nu(t)|^{q-2} \nu(t) \circ \nu(t) + p |u(t)|^{p-1} v(t). \quad (2.11)
\end{align}
Proof. Since $\phi \in D(B)$, $u \in C^1([0, T_\phi); W^1_0)$, and so $\mathfrak{v} \in C^1([0, T_\phi); L^S)$. Furthermore, by the previous lemma, w is Holder continuous in L^S on $[\varepsilon, T]$. It follows that $w(t)$ given by (2.10) is Holder continuous in $L^{S/q}$ on $[\varepsilon, T]$. Similarly, $|u|^{p-1}v$ is Holder continuous in $L^{S/q}$ on $[\varepsilon, T]$.

We now consider the integral equation (2.9) as an equation in $L^{S/q}$. The semigroup is analytic in $L^{S/q}$ and the two integrands (not including $e^{(t-s)A}$) are both Holder continuous functions into $L^{S/q}$ on any compact subinterval $[\varepsilon, T] \subset (0, T_\phi)$. The result now follows from well known properties of analytic semigroups. (See, for example, Theorem 1.27 in Chapter IX of [19].)

We are now able to prove the desired positivity of $u'(t)$.

Proposition 2.6. Suppose $s \in \mathbb{R}$ satisfies (2.2) and (2.5) and that ϕ is in $D(B)$. Let $u(t) = W_{t, \phi}$ and $v(t) = u'(t)$, and suppose further that $v(0) = u'(0) = B_\phi > 0$. Then $u'(t) > 0$ for all $t \in [0, T_\phi]$.

Proof. We know $v \in C([0, T_\phi); W^1_0)$ and $v \in C([0, T_\phi); H^1_0)$ and $v \in C^1((0, T_\phi); L^S)$. Thus, multiplying (2.11) by $v(t)^*$ and integrating over Ω yields

$$
\frac{1}{2} \frac{d}{dt} \int |v^*|^2 = -\int |\nabla v^*|^2 + q \int |\nabla u|^2 v^* \mathfrak{v} \circ \mathfrak{w}(v^*) - p \int |u|^{p-1}v \mathfrak{v}^{-}
$$

$$
< -\int |\nabla v^*|^2 + C \int |\nabla v|^2 |v^*|^2 + C \int |v^{-1}|^2,
$$

where we use Proposition 2.2, iii) to estimate \mathfrak{w} and u, and C can be chosen uniformly for $t \in (0, T], T < T_\phi$. The proof is completed exactly as in the proof of Proposition 2.3.
3. ENERGY ARGUMENTS

In this section we prove Theorem 1.2. Throughout this section, \(n, r, p, \) and \(q \) are as in the introduction and we assume \(s \in \mathbb{R} \) satisfies (2.2) and (2.5). Also, we take \(\phi \in W^{3,s}_0 \), not identically zero satisfying hypotheses i)-iv) of Theorem 1.2. In the language of Section 2, that means \(\phi \in D(B) \subset W^{1,s}_0 \) with \(\phi > 0 \) and \(B\phi > 0 \). \(T_\phi \) is the existence time of the maximal solution \(u(t) \) of the integral equation (2.1). By Propositions 2.2, 2.3 and 2.6, \(u \in C^1([0,T_\phi); W^{1,s}_0) \), satisfying equation (2.8), with \(u(t) > 0 \) and \(u'(t) > 0 \) for all \(t \in [0,T_\phi) \).

Lemma 3.1. The energy of the solution \(u(t) \),

\[
E(u(t)) = \frac{1}{2} \| u(t) \|_2^2 - \frac{1}{p+1} \| u(t) \|_{p+1}^{p+1}
\]

is a non-increasing function of \(t \in [0,T_\phi) \).

Proof. Since \(u \in C^1([0,T_\phi); W^{1,s}_0) \) and, by (2.5), \(W^{1,s}_0 \subset H^1_0 \) and \(W^{1,s}_0 \subset L^\infty \), it follows that \(E(u(t)) \) is a \(C^1 \) function of \(t \in [0,T_\phi) \). We easily calculate from (2.8) that

\[
\frac{d}{dt} E(u(t)) = \langle -\Delta u(t), u'(t) \rangle - \langle u(t)^p, u'(t) \rangle
\]

\[
= -\langle u'(t) + |u(t)|^q, u'(t) \rangle
\]

\[
< 0.
\]

Lemma 3.2. Suppose \(E(\phi) = E(u(0)) < 0 \) and that \(q < 2p/(p+1) \). Then for all \(t \in [0,T_\phi) \)

\[
|\langle u(t), |u(t)|^q \rangle| < \left(\frac{2}{p+1} \right)^{q/2} C(p,q) \| u(t) \|_{p+1}^{p+1-\alpha}
\]

where
\[\alpha = p - \frac{q(p+1)}{2} \geq 0 \]

and \(C(p,q) = 1 \) in case \(q = 2p/(p + 1) \).

Proof. From Holder's inequality, it follows that

\[|\langle u, |\nabla|^q \rangle| \leq \|u\|_{p+1} \| |\nabla|^q \|_{(p+1)/p} \]

\[= \|u\|_{p+1} \| |\nabla|^q \|_{q(p+1)/p}. \]

Since \(q < 2p/(p + 1) \), we have \(q(p + 1)/p < 2 \); and so

\[|\langle u, |\nabla|^q \rangle| \leq C(p,q) \|u\|_{p+1} \| |\nabla|^q \|_2, \]

where \(C(p,q) = 1 \) if \(q = 2p/(p + 1) \).

By the previous lemma \(E(u(t)) < 0 \) for all \(t \in [0,T] \), or

\[\| |\nabla|^q \|_2 < \left(\frac{2}{p+1} \right)^q/2 \|u\|_{p+1}^{q(p+1)/2}. \]

The result follows by combining the last two inequalities.

Proof of Theorem 1.2.

Suppose to the contrary that \(T_\phi = \infty \). Let \(F(t) = \|u(t)\|^2_2 \). Then \(F \in C^1([0,\infty)) \), \(F(0) = \|\phi\|^2_2 > 0 \), and

\[F'(t) = 2\langle u(t), u'(t) \rangle \]

\[= -2\|u(t)\|^2_2 - 2\langle u(t), |\nabla(u(t)|^q \rangle \] + \[2\|u(t)\|^{p+1}_{p+1} \]

\[= -4E(t) + 2\left(\frac{p-1}{p+1} \right) \|u(t)\|^{p+1}_{p+1} - 2\langle u, |\nabla|^q \rangle \]

\[> 2\left(\frac{p-1}{p+1} \right) \|u(t)\|^{p+1}_{p+1} - 2\left(\frac{2}{p+1} \right)^q/2C(p,q)\|u(t)\|^{p+1-\alpha}_{p+1}, \]
where we have used Lemma 3.1 \((E(u(t)) < E(\phi) < 0)\) and Lemma 3.2. Continuing
the calculation, we have

\[
F'(t) > 2\|u(t)\|_{p+1}^{p+1} \left[\left(\frac{p-1}{p+1} \right) - \left(\frac{2}{p+1} \right)^q C(p, q) \right]^{\alpha/p+1} \]

\[
> CF(t)^{p+1}/2 \left[\left(\frac{p-1}{p+1} \right) - \left(\frac{2}{p+1} \right)^q C(p, q) \right]^{\alpha/p+1} \]

Suppose first \(q < 2p/(p + 1)\) and that \(\|\phi\|_{p+1}^{p+1}\) is sufficiently large so
that

\[
\left(\frac{p-1}{p+1} \right) - \left(\frac{2}{p+1} \right)^q C(p, q) \|\phi\|_{p+1}^{p+1} \geq k > 0.
\]

Then since \(u'(t) > 0\), it follows that

\[
F'(t) > kCF(t)^{p+1}/2
\]

for all \(t \in [0, \infty)\). Since \((p + 1)/2 > 1\), this is impossible for a function
\(F \in C^1([0, \infty))\) with \(F(0) > 0\). This contradiction shows \(T_\phi < \infty\).

Now suppose \(q = 2p/(p + 1)\). Then \(C(p, q) = 1\) and \(\alpha = 0\); so

\[
F'(t) > CF(t)^{p+1}/2 \left[\left(\frac{p-1}{p+1} \right) - \left(\frac{2}{p+1} \right)^{p/(p+1)} \right].
\]

This again yields a contradiction if \(p\) is large enough that the coefficient
above is positive.

Remark. The expression

\[
\left(\frac{p-1}{p+1} \right) - \left(\frac{2}{p+1} \right)^{p/(p+1)}
\]

is increasing in \(p\) for \(1 < p < \infty\) with limit \(1\) as \(p \to \infty\). Thus, if we let
\(p_*\) be its unique zero in this range, then the above argument works for all
\(p > p_*\). An easy computation shows \(3.3 < p_* < 3.4\).
4. THE ELLIPTIC PROBLEM

For the moment, Ω, Γ, p, and q are as in the introduction. Also, λ is always positive. Our goal is first to show the connection between the elliptic problem (1.5) and the hypotheses of Theorem 1.2. Then for $\Omega = B_R$ we will study the existence of solutions to (1.5). Together, this will prove Theorem 1.3.

Proposition 4.1. Let $2 < s < \infty$ and suppose $\phi \in W^{2,s}(\Omega)$ is a solution of (1.5) with $\lambda < 2/(p + 1)$. Then ϕ satisfies hypotheses i)-v) of Theorem 1.2. If in addition, s satisfies (2.5) then $\phi \in W^{3,s}$.

Proof. Hypotheses i) and iii) are stated in (1.5), and so there is nothing to prove. Now

$$\Delta \phi - |\nabla \phi|^q \phi^p = (1 - \lambda) \phi^p,$$

from which immediately follow ii) and iv). Finally, since $\phi = 0$ on Γ implies $\phi \in W^{1,s}_0$,

$$E(\phi) = \frac{1}{2} \int_{\Omega} \phi^2 - \frac{1}{p+1} \int_{\Omega} \phi^{p+1}$$

$$= \frac{1}{2} \int_{\Omega} \phi \Delta \phi - \frac{1}{p+1} \int_{\Omega} \phi^{p+1}$$

$$= -\frac{1}{2} \int_{\Omega} \phi |\nabla \phi|^q - \left(\frac{1}{p+1} - \frac{\lambda}{2} \right) \int_{\Omega} \phi^{p+1}. $$

Thus $E(\phi) < 0$ because $\lambda < 2/(p + 1)$. The regularity of ϕ follows exactly as in the proof of Proposition 2.1. Simply note at the start that, thanks to (2.5), $\phi^p \in W^{1,s}_0$ and so

$$B\phi = (1 - \lambda) \phi^p \in W^{1,s}_0.$$
Proposition 4.2. Assume that $p < (n + 2)/(n - 2)$. (If $n = 1$ or 2, this condition is vacuous.) Suppose that $\phi_k \in H^1_0$, $k = 1, 2, 3, \ldots$, satisfy

$$\begin{aligned}
\Delta \phi_k + \lambda_k \phi_k^p &> 0 \\
\phi_k &> 0 \\
\phi_k &\neq 0
\end{aligned}$$

(4.1)

where $\lambda_k > 0$ and $\lambda_k \to 0$ as $k \to \infty$. Then $\|\phi_k\|_{p+1} \to \infty$ as $k \to \infty$.

Proof. Suppose not. Then, by passing to a subsequence, we may assume $\|\phi_k\|_{p+1} < M$ independent of k. Let $\|\phi_k\|_{p+1} = N_k$ and

$$\psi_k = \phi_k / N_k.$$

Obviously $\|\psi_k\|_{p+1} = 1$. ($N_k \neq 0$ since $\phi_k \neq 0$.) Moreover, multiplying the inequality in (4.1) by ϕ_k and integrating over Ω, we have that

$$\|\nabla \phi_k\|_2^2 < \lambda_k \|\phi_k\|_{p+1}^{p+1},$$

or

$$\|\Delta \phi_k\|_2^2 < \lambda_k \|N_k^{-1} \psi_k\|_{p+1}^{p+1}.$$

Since $\|\psi_k\|_{p+1} = 1$, $N_k < M$, and $\lambda_k \to 0$, it follows that $\|\nabla \phi_k\|_2 \to 0$ as $k \to \infty$, i.e. $\psi_k \to 0$ in $H^1_0(\Omega)$ as $k \to \infty$. However, the condition on p implies that $H^1_0(\Omega)$ is embedded in L^{p+1}, and so $\psi_k \to 0$ in L^{p+1}. This contradicts the fact that $\|\psi_k\|_{p+1} = 1$, thereby proving the proposition.
The following corollary to the above two proposition states explicitlly how solutions of (1.5) yield solutions of (1.1) which blow up in finite time.

Corollary 4.3. Assume $s \in \mathbb{R}$ satisfies (2.2) and (2.5). Suppose first that $1 < q < 2p/(p+1)$ and that $1 < p < (n+2)/(n-2), (1 < p < \infty$ if $n = 1$ or 2.) If $\phi \in W^{2,s}$ is a solution of (1.5) with λ sufficiently small, then ϕ satisfies all the hypotheses of Theorem 1.2; and so the solution of (1.1) with initial value ϕ blows up in finite time.

Suppose next that $q = 2p/(p + 1)$ with $p > p_*$. (See the remark at the end of Section 2.) If $\phi \in W^{2,s}$ is a solution of (1.5) with $\lambda < 2/(p + 1)$, then ϕ satisfies all the hypotheses of Theorem 1.2; and so the solution of (1.1) with initial value ϕ blows up in finite time.

Now we let $\Omega = B_R = \{x \in \mathbb{R}^n: |x| < R\}$, and we look for solutions of (1.5) on B_R. In fact we are going to look for radially symmetric solutions of (1.5). This is not a genuine restriction, because the techniques of [13] can be used to show that any solution of (1.5) in B_R must be radially symmetric. We are therefore led to consider the following initial value problem:

\[
\begin{align*}
\frac{d^2 u}{dr^2}(r) + \frac{n-1}{r} u'(r) - |u'(r)|^q + \lambda |u(r)|^p &= 0, \quad r > 0 \\
\frac{d u}{dr}(0) &= a > 0 \\
\frac{d u}{dr}(0) &= 0.
\end{align*}
\]

(4.2)

If $u \in C^2([0,R])$ is a solution of (4.2) with $u(r) > 0$ for $0 < r < R$ and $u(R) = 0$, then $\phi(x) = u(|x|)$ is the desired solution of (1.5). (Note, for the rest of the paper, we will no longer be directly concerned with problem (1.1). Thus, the letter "$u" will henceforth be used to denote solutions of (4.2).)

Proposition 4.4. Fix $\lambda > 0$. For every $a > 0$ there exists a (unique) maximal solution $u \in C^2([0,R_a))$ of (4.2). Furthermore:
i) \(u'(r) < 0 \) for all \(r, \ 0 < r < R_a \);

ii) the function

\[
H(r) = \frac{1}{2} u'(r)^2 + \frac{\lambda}{p+1} |u(r)|^p u(r)
\]

is decreasing on \([0, R_a]\);

iii) if \(u(r) > 0 \) for all \(0 < r < R_a \), then \(R_a = \infty \) and

\[
\lim_{r \to \infty} u(r) = 0,
\]

\[
\lim_{r \to \infty} u'(r) = 0,
\]

\[
\lim_{r \to \infty} u''(r) = 0.
\]

Proof. We first prove the existence of a unique solution to (4.2) on some interval \([0, \varepsilon]\). Consider the system

\[
\begin{aligned}
\begin{cases}
u(r) = a + \int_0^r v(s) ds \\
v(r) = r^{-(n-1)} \int_0^r s^{n-1} (|v(s)|^q - \lambda |u(s)|^p) ds.
\end{cases}
\end{aligned}
\]

(4.3)

It is easy to see that a solution of (4.2) is also a solution of (4.3) with \(v = u' \). Indeed, simply multiply the equation in (4.2) by \(r^{n-1} \) and integrate. On the other hand, by standard iteration techniques, there is certainly a unique solution \(u, v \in C([0, \varepsilon]) \) to (4.3) for some \(\varepsilon > 0 \). Clearly \(u \in C^1([0, \varepsilon]) \) with \(u'(r) = v(r) \). In particular, \(u'(0) = 0 \). Moreover, \(v \) is immediately seen to be in \(C^1((0, \varepsilon]) \) and so \(u \in C^2((0, \varepsilon]) \) and satisfies (4.2). It remains to
show that \(u \) is \(C^2 \) at \(r = 0 \), i.e. that \(v \) is \(C^1 \) at \(r = 0 \). From (4.3), l'Hôpital's rule easily gives

\[
v'(0) = \lim_{r \to 0} v(r) = -\frac{\lambda a^p}{n}.
\]

On the other hand, from (4.2)

\[
\lim_{r \to 0} v'(r) = \lim_{r \to 0} u''(r) = \frac{(n-1)\lambda a^p}{n} - \lambda a^p
\]

\[
= -\frac{\lambda a^p}{n}.
\]

Thus, \(u \in C^2([0, \varepsilon]) \).

Since for \(r > 0 \), there are no singularities in (4.2), the solution on \([0, \varepsilon]\) can be locally continued to a maximal solution \(u \in C^2([0, R_a]) \). Since the continuation procedure treats (4.2) as a system \((u(r), v(r))\) with \(u'(r) = v(r) \), it follows that if \(R_a < \infty \) then either \(|u(r)| \to \infty \) or \(|u'(r)| \to \infty \) as \(r \to R_a \).

To prove i), note first that \(u'(0) = 0 \) and \(u''(0) < 0 \). Hence \(u'(r) < 0 \) on some interval \((0, \delta)\). Let \(r_0 \) be the first positive zero of \(u' \). Then \(u(r_0) \neq 0 \) since if \(u(r_0) = u'(r_0) = 0 \), it follows by uniqueness that \(u(r) \equiv 0 \). Consequently, from the equation in (4.2)

\[
u''(r_0) = -\lambda |u(r_0)|^p < 0,
\]

which implies that \(u'(r) > 0 \) for \(r \) in some interval \((r_0 - \varepsilon, r_0)\). This contradicts the choice of \(r_0 \), and thereby proves i).

Next, we compute easily that for \(r > 0 \)

\[
H'(r) = u'(r)u''(r) + \lambda |u(r)|^p u'(r)
\]

\[
= u'(r)[- (\frac{n-1}{r^2}) u'(r) + |u'(r)|^q]
\]

\[
< 0.
\]
This proves ii).

Finally, if \(u(r) > 0 \) for all \(r \in [0,R_d] \), then \(0 < H(r) < H(0) \) for all \(r \in [0,R_d] \). Thus, \(u(r) \) and \(u'(r) \) are a priori bounded and so \(R_d = \infty \). Now \(u'(r) < 0 \) and \(u(r) > 0 \). Hence

\[
\lim_{r \to \infty} u(r) = u_\infty \quad \text{(finite)}
\]

exists. Likewise \(H(r) \) has a finite limit as \(r \to \infty \). It follows therefore that

\[
\lim_{r \to \infty} u'(r) = v_\infty
\]

exists. In fact we must have \(v_\infty = 0 \) in order for \(\lim_{r \to \infty} u(r) \) to exist.

Finally, from (4.2) we now deduce that

\[
\lim_{r \to \infty} u''(r) = -\lambda|u_\infty|^p.
\]

Thus, the only way we can have \(\lim_{r \to \infty} u'(r) = 0 \) is if \(u_\infty = 0 \). This completes the proof of iii).

For a fixed \(\lambda > 0 \), we denote the first zero of the solution to (4.2) by \(z(a) \). We make the convention that \(z(a) = \infty \) in case \(u(r) > 0 \) for all \(r > 0 \). Thus, the solution \(u(r) \) of (4.2) yields the desired solution of (1.5) precisely if \(z(a) = R \). This certainly motivates studying the function \(z(a) \).

Proposition 4.5. \((a > 0: z(a) < \infty) \) is open and \(z(\ast) \) is continuous on this set. Moreover

\[
\lim_{a \to 0} z(a) = \infty.
\]

(4.4)

Also, if \(z(a_0) = \infty \) for some \(a_0 \in \mathbb{R} \), then \(\lim_{a \to a_0} z(a) = \infty \).
Proof. If \(z(a) < \infty \), then \(u(r) < 0 \) for \(r \) slightly larger than \(z(a) \). By continuous dependence on the data, if we change \(a \) by only a little bit, \(u(r) \) must still be negative somewhere, and therefore have a zero. Continuity of \(z(\cdot) \) follows from continuous dependence of \(u(r) \) on \(a \) and the fact that \(u \) can have at most one zero since \(u'(r) < 0 \) for \(r > 0 \).

To prove (4.4), we note that since \(H(r) \) is decreasing, it follows that

\[
\frac{1}{2} u'(r)^2 < H(r) < H(0) = \frac{\lambda a^{p+1}}{p+1}
\]

or

\[
|u'(r)| < \sqrt{2\lambda/(p+1)} \ a^{(p+1)/2}.
\] (4.5)

Consequently

\[
a = u(0) - u(z(a))
\]

\[
= - \int_0^{z(a)} u'(s)ds
\]

\[
< z(a) \ a^{(p+1)/2} \sqrt{2\lambda/(p+1)},
\]

or

\[
z(a) > \frac{a^{-(p-1)/2}}{\sqrt{2\lambda/(p+1)}}.
\] (4.6)

This proves (4.4).

For the last statement, we show that given \(M > 0 \), then \(z(a) > M \) if \(a \) is sufficiently close to \(a_0 \). Now for \(a = a_0 \), \(u(r) > 0 \) for all \(r > 0 \); hence \(u(r) > \delta > 0 \) on \([0,M]\). By continuous dependence on the data, if \(a \) is sufficiently close to \(a_0 \) then \(u(r) > \delta/2 \) on \([0,M]\). Hence \(z(a) > M \) for such \(a \).
Next we would like to study the behavior of $z(a)$ as $a \to \infty$. We first consider the case $q < 2p/(p+1)$.

Proposition 4.6. Assume that $q < 2p/(p+1)$ and (in case $n > 3$) $p < (n+2)/(n-2)$. Then, for all $\lambda > 0$, we have

$$\limsup_{a \to \infty} a^{(p-1)/2} z(a) < \infty,$$ \hspace{1cm} (4.7)

$$\lim_{a \to \infty} z(a) = 0.$$ \hspace{1cm} (4.8)

Proof. Fix $\lambda > 0$. Denote by $u(\cdot;a)$ the solution of (4.2) with initial value a; and for all $a > 0$, set

$$V_a(r) = a^{-1}u(ra^{-(p-1)/2};a).$$

Then v_a is easily seen to satisfy

$$
\begin{align}
& v''_a + \frac{n-1}{r} v'_a - a^{q(p+1)/2 - p} |v'_a| + \lambda |v_a|^p = 0 \\
& v_a(0) = 1 \\
& v'_a(0) = 0
\end{align}
$$

(4.9)

Also, $v'_a(r) < 0$ for $r > 0$ and $v_a(r) > 0$ for $0 < r < a^{(p-1)/2} z(a)$. Hence

$$0 < v_a(r) < 1, 0 < r < a^{(p-1)/2} z(a).$$ \hspace{1cm} (4.10)

Moreover, (4.5) translates into

$$|v'_a(r)| < \sqrt{2\lambda/(p+1)}, \ r > 0.$$ \hspace{1cm} (4.11)

Suppose now there exists a sequence $a_m \to \infty$ such that $a_m^{(p-1)/2} z(a_m) \to \infty$ as $m \to \infty$. By the Arzela-Ascoli theorem and a standard diagonal argument,
there is a subsequence, which we still denote a_m, and a continuous function $v: [0, \infty) \to [0,1]$ such that $v_{a_m} \to v$ uniformly on all compact subsets $[0,M] \subset [0,\infty)$. In particular, $v(0) = 1$, v is nonincreasing on $[0,\infty)$, and v is Lipschitz continuous with a Lipschitz constant no greater than $\sqrt{2\lambda/(p+1)}$. (Each v_a has these properties.) Finally, since $q < 2p/(p+1)$ and $|v'_a|$ is bounded independent of r and a, it follows from (4.9) that

$$v'' + \frac{n-1}{r} v' + \lambda v^p = 0$$

(4.12)

in the sense of distributions on $(0,\infty)$.

It is well known that since $p > (n+2)/(n-2)$, such a v cannot exist. This is proved on pp. 293-294 in [33] in the case $\lambda = 1$. (See also Proposition 3.9 in [18].) The same arguments work for any $\lambda > 0$, or else λ can be scaled away by multiplying v by a suitable factor. This proves (4.7), and hence (4.8).

We now turn to the case $q = 2p/(p + 1)$. This will be quite different since the scaled solution v_a satisfies the same equation as u.

Lemma 4.7. If $q = 2p/(p + 1)$, then for all $a > 0$,

$$z(a) = a^{-(p-1)/2} z(1).$$

(4.13)

Proof. By (4.9), we see that $v_a = u(\cdot; 1)$ for all $a > 0$. Hence the first zero of v_a is $z(1)$. However, by the definition of v_a, its first zero is $a^{(p-1)/2} z(a)$. This proves (4.13).

In other words, whether or not $z(a)$ is finite depends entirely on whether or not $z(1)$ is finite. This in turn depends on λ.

Lemma 4.8 Let $r_0 > 0$, $\lambda > 0$, $q = 2p/(p + 1)$ and suppose $u: (r_0, \infty) \to \mathbb{R}$ is C^2 and satisfies
i) $u(r) > 0$, $r > r_0$, and $\lim_{r \to \infty} u(r) = 0$;

ii) $u'(r) < 0$, $r > r_0$, and $\lim_{r \to \infty} u'(r) = 0$;

iii) $u''(r) - |u'(r)|^q + \lambda u(r)^p = 0$, $r > r_0$.

If in addition $u(r)$ satisfies

$$u''(r) < k |u'(r)|^q, \quad r > r_0 \quad (4.14)$$

where $k > 0$ is a fixed constant, then u must also satisfy

$$u''(r) < [1 - \lambda \left(\frac{p+1}{2k} \right)^p] |u'(r)|^q, \quad r > r_0. \quad (4.15)$$

Proof. Since $u'(r) < 0$, inequality (4.14) can be rewritten

$$(-u'(r))^{-(q-1)} u''(r) < -ku'(r).$$

Integrating this from r to ∞, we get

$$\frac{(-u'(r))^{2-q}}{2-q} < ku(r),$$

or

$$u(r) > \frac{p+1}{2k} (-u'(r))^{2/(p+1)}.$$

(Recall $q = 2p/(p + 1) < 2$.)

Hence

$$u''(r) = (-u'(r))^q - \lambda u(r)^p$$

$$< [1 - \lambda \left(\frac{p+1}{2k} \right)^p] (-u'(r))^q.$$
Proposition 4.9. Suppose \(n = 1 \) and \(q = 2p/(p + 1) \). If \(\lambda > (2/(p + 1))^p \), then \(z(a) < \infty \) for all solutions \(u(r) \) of (4.2).

Proof. If \(z(a) = \infty \), then \(u(r) > 0 \) for all \(r > 0 \). By Proposition 4.4, and the fact that \(n = 1 \), \(u(r) \) satisfies conditions i)-iii) of Lemma 4.8 with \(r_0 = 0 \). Furthermore, by (4.2) with \(n = 1 \), we have that (4.14) holds with \(k = 1 \). Thus (4.15) holds with \(k = 1 \). Since \(\lambda > [2/(p+1)]^p \), it follows that \(u''(r) < 0 \) for \(r > 0 \). This is impossible because \(u'(r) < 0 \) and \(u(r) > 0 \) for \(r > 0 \).

The result in Proposition 4.9 is already enough to give us a solution of (1.5) with \(\lambda < 2/(p + 1) \). Indeed, \([2/(p + 1)]^p < 2/(p + 1)\). However, this result can be improved.

Lemma 4.10. Suppose \(\lambda > \lambda_p \), given by (1.6). Define the following sequence inductively:

\[
\begin{align*}
k_0 &= 1, \\
k_m &= 1 - \lambda\left(\frac{p+1}{2k_{m-1}}\right)^p, \quad \text{as long as} \quad k_{m-1} > 0.
\end{align*}
\]

Then either \(k_m \) is eventually non-positive or \(\lim_{m \to \infty} k_m = 0 \).

Proof. It is easy to verify by induction that the sequence \(k_m \) is decreasing as long as it is defined. Consequently, if the conclusion is false, then

\[
\lim_{m \to \infty} k_m = k > 0,
\]

and \(k \) must satisfy

\[
k = 1 - \lambda\left(\frac{p+1}{2k}\right)^p.
\]
In other words, k is a positive solution to

$$f(x) = x^{p+1} - x^p = -\lambda \left(\frac{p+1}{2} \right)^p$$

However, the minimum value of $f(x)$ for $x > 0$ is easily computed to be

$$- \frac{1}{p+1} \cdot \left(\frac{p}{p+1} \right)^p.$$

Hence we must have

$$\lambda < \left(\frac{2}{p+1} \right)^p \cdot \frac{1}{p+1} \cdot \left(\frac{p}{p+1} \right)^p = \lambda_p.$$

Therefore, if $\lambda > \lambda_p$, the conclusion holds.

Proposition 4.11. Suppose $n = 1$ and $q = 2p/(p+1)$. If $\lambda > \lambda_p$, then $z(a) < \infty$ for all solutions of (4.2).

Proof. If $z(a) = \infty$, then $u(r) > 0$ for all $r > 0$. By Proposition 4.4 and the fact that $n = 1$, $u(r)$ satisfies conditions i)-iii) of Lemma 4.8 with $r_0 = 0$. Furthermore, by (4.2) with $n = 1$, we have that (4.14) holds with $k = 1$. Hence by Lemma 4.8, (4.14) and therefore (4.15) hold with all values $k = k_m$ defined in Lemma 4.10. Thus, by Lemma 4.10, $u''(r) < 0$ for all $r > 0$. This is impossible since $u'(r) < 0$ and $u(r) > 0$ for $r > 0$.

Proof of Theorem 1.3. Suppose first that $1 < q < 2p/(p+1)$ and (if $n > 3$) $p < (n+2)/(n-2)$. By Propositions 4.5 and 4.6, for all $\lambda > 0$ and $R > 0$, there exists $a > 0$ such that $z(a) = R$. In other words, if $u(r)$ is the solution to (4.2) with this initial value a, then $u(r) > 0$ for $0 < r < R$ and $u(R) = 0$. Then $\phi(x) = u(|x|)$, $|x| < R$, is the desired solution of (1.5).

The other properties of ϕ follow form Corollary 4.3.

Now suppose that $n = 1$, $q = 2p/(p+1)$, and $\lambda > \lambda_p$. Then by Proposition 4.11 and Lemma 4.7, there exists (a unique) $a > 0$ such that $z(a) = R$. The rest of the proof is as in the previous case.
5. FURTHER RESULTS ON THE ELLIPTIC PROBLEM

In this section we continue in the same context and with the same notation established in the previous section. In particular, for a fixed $\lambda > 0$, $z(a)$ is the first zero of the solution to the initial value problem (4.2), with the convention that $z(a) = \infty$ in case the solution always remains positive. Our goal is to study more completely the problem (4.2), i.e. the elliptic problem (1.5) in B_R. We first gather as much information as we can in the general case, and then specialize to dimension $n = 1$. The following result is a variation on the estimate (4.6).

Lemma 5.1. Let $\lambda > 0$ and $u(r)$ be the solution of (4.2), with $z(a)$ the first zero of $u(r)$. Then

$$z(a) > \lambda^{-1/q} a^{1-(p/q)}. \tag{5.1}$$

Proof. We may certainly assume $z(a) < \infty$. We claim first that the maximum value of $-u'(r)$ on $[0, z(a)]$ is achieved in the interior. Indeed,

$$-u''(0) = \frac{\lambda a^p}{n} > 0,$$

$$-u''(z(a)) = \left(\frac{n-1}{z(a)} \right) u'(z(a)) - |u'(z(a))|^q < 0.$$

So if r_0 is such that $-u'(r_0)$ is a maximum on $[0, z(a)]$, then $u''(r_0) = 0$, i.e.

$$-(-u'(r_0))^q + \lambda u(r_0)^p = -\frac{n-1}{r_0} u'(r_0) > 0$$

or

$$(-u'(r_0))^q < \lambda u(r_0)^p < \lambda a^p.$$
This implies that for $0 < r < z(a)$,

$$-u'(r) < \chi^{1/q} \rho / q.$$

Hence,

$$a = u(0) - u(z(a))$$
$$= -\int_0^{z(a)} u'(s) ds$$
$$< z(a) \chi^{1/q} \rho / q,$$

which proves (5.1).

Lemma 5.2. Let $q > 2p/(p + 1)$ and (in case $n \geq 3$) $p < (n+2)/(n-2)$. Then, for all $\lambda > 0$, we have

$$\limsup_{a \to 0} a^{(p-1)/2} z(a) < \infty.$$

In particular, for all sufficiently small a, $z(a) < \infty$ and

$$z(a) < Ca^{-(p-1)/2}. \quad (5.2)$$

Proof. This is an obvious modification to the proof of Proposition 4.6.

Let us consider for a moment whether or not a regular (i.e. C^2) solution of the elliptic problem (1.5) exists on $\Omega = B_R$. As noted in Section 4, the methods of [13] can be used to prove that such a solution, $\phi(x)$, must be radially symmetric. In other words, $\phi(x) = u(|x|)$, where $u(r)$ is a solution of (4.2) with $z(a) = R$. Therefore, for a fixed $\lambda > 0$, the number of solutions to (1.5) on B_R is precisely the cardinality of the set $z^{-1}(R)$. For each $\lambda > 0$, we define
\[R(\lambda) = \inf_{a>0} z(a). \quad (5.3) \]

Note that if \(R(\lambda) < \infty \), then by Proposition 4.5, \(z(a) = R \) has at least one solution whenever \(R(\lambda) < R < \infty \).

Proposition 5.3. i) If \(q > p \) then \(R(\lambda) > 0 \).

ii) If \(q > 2p/(p+1) \) and (in case \(n > 3 \)) \(p < (n + 2)/(n - 2) \), then \(R(\lambda) < \infty \).

iii) If \(q > p \) and (in case \(n > 3 \)) \(p < (n + 2)/(n - 2) \), then \(z(a) = R(\lambda) < \infty \) for some \(a > 0 \), and \(z(a) = R \) has at least two solutions \(a > 0 \) for each \(R > R(\lambda) \).

Proof. Statement i) follows from the lower estimates for \(z(a) \) given by (4.6) and (5.1). Statement ii) follows from Lemma 5.2. For statement iii) note that (4.6) and (5.1) imply \(\lim_{a \to 0} z(a) = \infty \) and \(\lim_{a \to \infty} z(a) = \infty \). Moreover, by Lemma 5.2, \(z(a) \) is finite for some values of \(a \) and hence, by Proposition 4.5, assumes its (positive) minimum \(R(\lambda) \) at some \(a_m, 0 < a_m < \infty \). Clearly, then for each \(R > R(\lambda) \), there exist \(a_1 \) and \(a_2 \) with \(0 < a_1 < a_m < a_2 < \infty \) such that \(z(a_1) = z(a_2) = R \).

Corollary 5.4: i) If \(q > p \) and \(0 < R < R(\lambda) \), then there is no regular solution of (1.5) on \(B_R \).

ii) If \(q > 2p/(p+1) \) and (in case \(n > 3 \)) \(p < (n + 2)/(n - 2) \), then for \(R > R(\lambda) \), there is at least one regular solution of (1.5) on \(B_R \).

iii) If \(q > p \) and (in case \(n > 3 \)) \(p < (n + 2)/(n - 2) \), then for \(R = R(\lambda) \), there is at least one regular solution of (1.5) on \(B_R \); and for \(R > R(\lambda) \), there are at least two regular solutions of (1.5) on \(B_R \).
We next focus our attention on the case \(q = 2p/(p+1) \). This is particularly interesting since it is the critical value for both the energy arguments in Section 3 and the scaling argument in (the proof of) Proposition 4.6.

Proposition 5.5. Let \(q = 2p/(p + 1) \) and \(\lambda > 0 \). Suppose first \(n=1,2 \) or \(n > 3 \) and \(p < n/(n-2) \). Then there exists a positive constant \(k \) such that

\[
U(r) = kr^{-2/(p-1)}
\]
(5.4)

satisfies

\[
u''(r) + \frac{n-1}{r} \, u'(r) - |u'(r)|^q + \lambda u(r)^p = 0
\]
(5.5)

if and only if \(\lambda < \lambda_{p,n} \), where

\[
\lambda_{p,n} = \frac{1}{(p+1)} \left[\frac{2p}{(p+1)(2p-np+n)} \right]^p.
\]

On the other hand, if \(n > 3 \) and \(p > n/(n-2) \), then such a solution exists for all \(\lambda > 0 \).

Proof. By direct calculation, we see that \(U(r) \), given by (5.4), satisfies (5.5) precisely when

\[
\lambda k^p - \left(\frac{2}{p-1} \right) k^{q-1} = - \frac{2}{p-1} \left(\frac{2p}{p-1} - n \right).
\]
(5.6)

If \(n > 3 \) and \(p > n/(n-2) \), then the right side of (5.6) is non-negative. In this case, since \(q = 2p/(p + 1) < p \), a positive solution \(k \) to (5.6) can always be found.

Suppose instead either \(n = 1, 2 \) or in case \(n > 3 \), \(p < n/(n-2) \), so the right side of (5.6) is negative. Then a positive solution \(k \) of (5.6) can be found precisely when

\[
\inf_{x > 0} f(x) < - \frac{2}{p-1} \left(\frac{2p}{p-1} - n \right),
\]
(5.7)
where \(f(x) = x^{p-1} - [2/(p-1)]x^{q-1} \). Using elementary calculus, and not forgetting that \(q = 2p/(p+1) \), one can verify that (5.7) holds if and only if \(\lambda < \lambda_{p,n} \).

Remark. Note that \(\lambda_{p,1} = \lambda_p \), defined by (1.6). Also, \(\lambda_{p,n} \) is increasing as a function of \(n \).

Proposition 5.6. Assume \(q = 2p/(p+1) \) and \(\lambda < \lambda_p = \lambda_{p,1} \). Then \(z(a) = \infty \) for all \(a > 0 \). In other words, there is no regular solution of (1.5) on \(B_R \) for any \(R > 0 \).

Proof. In dimension \(n = 1 \) there is a particularly easy and elegant proof, which we present first. Suppose a \(C^2 \) solution \(\phi \) of (1.5) exists in dimension \(n = 1 \). Let \(U(r) \) be the solution of (5.5) given by (5.4) with \(n = 1 \). (Recall \(\lambda < \lambda_{p,1} \)). Set

\[
\bar{\rho} = \sup\{\rho \in \mathbb{R}: \text{the graph of } \phi(r-\rho) \text{ does not touch the graph of } U(r)\}.
\]

Clearly \(\bar{\rho} \in \mathbb{R} \). Also, the graphs of \(\phi(r-\bar{\rho}) \) and \(U(r) \) touch at some point \(r_0 \), i.e. \(\phi(r_0 - \bar{\rho}) = U(r_0) > 0 \); and by the definition of \(\bar{\rho} \), we must also have \(\phi'(r_0 - \bar{\rho}) = U'(r_0) \). However, both \(\phi(r-\bar{\rho}) \) and \(U(r) \) satisfy (5.5) with the same Cauchy data at \(r_0 \). Hence \(\phi(r-\bar{\rho}) = U(r) \) wherever both functions are defined. In particular, \(\phi \) can not be \(C^2([-R,R]) \) with \(\phi(\pm R) = 0 \).

For the case \(n > 2 \), we assume that \(z(a) < 0 \) for some \(a > 0 \). For any fixed \(\gamma > 0 \), let

\[
G(r) = \frac{u'(r)^2}{2} - \gamma|u(r)|Pu(r).
\]

Then \(G(0) < 0 \) and \(G(z(a)) > 0 \). (\(u'(z(a)) = 0 \) by local existence and uniqueness.) Thus, the first zero of \(G(r) \) is between \(0 \) and \(z(a) \); call it \(r_0 \).
Clearly \(G(r_0) = 0 \) and \(G'(r_0) > 0 \). However, since \(G(r_0) = 0 \), we have
\[
|u'(r_0)| = \sqrt{2\gamma} u(r_0)^{(p+1)/2}.
\]
Therefore, at \(r = r_0 \)
\[
\begin{align*}
G' &= u'u'' - \gamma(p + 1)u^p u' \\
&= u'(-\frac{n-1}{r_0} u' + |u'|^q - \lambda u^p - \gamma(p+1)u^p) \\
&< u'(|u'|^q - (\lambda + \gamma(p+1))u^p) \\
&= u'((2\gamma)^{q/2}u^{(p+1)q/2} - (\lambda + \gamma(p+1))u^p) \\
&= u'u^pf(\gamma),
\end{align*}
\]
where
\[
f(\gamma) = (2\gamma)^{p/(p+1)} - \gamma(p+1) - \lambda.
\]
(We have used the fact that \((p+1)q/2 = p\).) Now \(G'(r_0) > 0 \), \(u'(r_0) < 0 \), and \(u(r_0) > 0 \). Consequently, we must have \(f(\gamma) < 0 \). Since \(\gamma > 0 \) was arbitrary, this must be true for all \(\gamma > 0 \). A straightforward calculation of the extreme points for \(f(\gamma) \) shows that we must have \(\lambda > \lambda_{p,1} \). This proves the proposition.

Remarks. The estimate for \(G'(r_0) \) depends on the fact that \(n \geq 2 \) in order to get strict inequality. Thus, it seems that for \(n = 1 \), the second argument misses the case \(\lambda = \lambda_{p,1} \). However, since for a fixed value of \(a \), the set of \(\lambda > 0 \) for which \(z(a) < \infty \) is clearly open, we recover the case \(\lambda = \lambda_{p,1} \) when \(n = 1 \).

Also, in the case \(n = 1 \), Proposition 5.6 and Theorem 1.3 give a complete description of when there are solutions of (1.5) on \(B_R \) with \(q = 2p/(p+1) \). There exists a solution if and only if \(\lambda > \lambda_p \). It is natural to conjecture an
analogous result for higher dimensions. One wonders what the sharp cut-off value would be, in particular if it is $\lambda_{p,n}$.

A variation on the proof of Proposition 5.6 yields the following result.

Proposition 5.7. Assume $q < 2p/(p + 1)$ and fix $\lambda > 0$. Then there exists $a^*_0 > 0$ such that $z(a) = \infty$ for $a < a^*_0$.

Proof. Suppose $z(a) < \infty$. Let $u(r)$ be the corresponding solution of (4.2) and set

$$G(r) = \frac{u'(r)^2}{2} - \lambda |u(r)|^p u(r).$$

Then $G(0) < 0$ and $G(z(a)) > 0$. Let r_0 be the first zero of G; so $G(r_0) = 0$ and $G'(r_0) > 0$. Reasoning as in the proof of Proposition 5.6 (with $\gamma = \lambda$), we see that at $r = r_0$

$$G' = u'(2\lambda q/2 u^{(p+1)/q} - \lambda(p + 2)u^p)$$

$$< u'u^{(p+1)/q}((2\lambda q/2 - \lambda(p + 2)a^p - [(p+1)/2]).$$

Since $p > (p + 1)q/2$, it follows that for a sufficiently small, $G'(r_0) < 0$. This contradicts the earlier observation that $G'(r_0) > 0$.

Hence $z(a) = \infty$ for $a > 0$ sufficiently small.

We now restrict ourselves to the special case $n = 1$. The problem (4.2) becomes the autonomous problem

$$\begin{cases}
 u''(r) - |u'(r)|^q + \lambda |u(r)|^p = 0 \\
 u(0) = a > 0. \\
 u'(0) = 0.
\end{cases}$$

(5.8)

Problem (1.5) becomes
\[\phi'' - |\phi'|^q + \lambda \phi = 0 \quad \text{in } (-R,R) \]
\[\phi > 0 \quad \text{in } (-R,R) \]
\[\phi(\pm R) = 0, \]

where \(\phi \in C^2([-R,R]). \)

Consider the case \(q < 2p/(p + 1). \) By Propositions 4.5 and 4.6, i.e. the first part of Theorem 1.3, for all \(\lambda > 0 \) and \(R > 0, \) there is a solution to problem (5.9). We will show it to be unique. (Note that in the case \(q = 2p/(p+1) \) the solution of (5.9) is unique when it exists because of formula (4.13). If \(q > p, \) we know it not to be unique for \(R \) large enough.)

Lemma 5.8. Let \(v(r) \) be the maximal solution (as in Proposition 4.4) to the problem

\[\begin{aligned}
\phi''(r) - b|\phi'(r)|^q + \lambda|\phi(r)|^p &= 0 \\
\phi(0) &= v_0 > 0 \\
v'(0) &= 0
\end{aligned} \]

where \(b > 0 \) and \(\lambda > 0 \) are parameters. Then \(v(r) \) is an increasing function of \(b. \)

Proof. The existence and uniqueness of \(v(r) \) follow exactly as in the proof of Proposition (4.1). In particular \(v'(r) < 0 \) for \(r < 0. \) It is clear from the integral equation corresponding to (5.10) that \(v \) is a \(C^1 \) function jointly in \(r \) and \(b. \) We denote \(v_r = \partial v/\partial r \) and \(v_b = \partial v/\partial b. \) Then considering \(v_r \) and \(v_b \) as functions of \(r, \) and using \(' \) to denote \(d/dr, \) we have
\[v_r'' + bq v_r' |q-1| v_r' + \lambda p v_r^{p-1} v_r = 0 \]
\[v_b'' + bq v_b' |q-1| v_b' + \lambda p v_b^{p-1} v_r = (-v')^q. \]

Hence, setting \(w = v_b' v_r - v_r' v_b \), it follows that
\[w' + qb(-v')^{q-1} w = (-v')^q v' < 0; \]
or, if \(f \) denotes a primitive of \(qb(-v')^{q-1} \),
\[(e^f w)' < 0. \] (5.11)

Since \(v_b(0) = v_r(0) = 0 \), we have \(w(0) = 0 \). Hence by (5.11), \(w(r) < 0 \) for \(r > 0 \). This implies \((v_b/v_r)' < 0 \) for \(r > 0 \). Moreover,
\[\lim_{r \to 0} \frac{v_b(r)}{v_r(r)} = \lim_{r \to 0} \frac{v_b'(r)}{v_r'(r)} = 0, \]
and so \(v_b/v_r < 0 \) for all \(r > 0 \), i.e. \(v_b(r) > 0 \) for \(r > 0 \).

Proposition 5.9. Let \(q < 2p/(p + 1) \) and \(n = 1 \). Then, for all \(\lambda > 0 \), \(a^{(p-1)/2} z(a) \) is a decreasing function of \(a \). In particular, \(z(a) \) is decreasing.

If \(q > 2p/(p+1) \) and \(n = 1 \), then for all \(\lambda > 0 \), \(a^{(p-1)/2} z(a) \) is an increasing function of \(a \).

Proof. By the previous lemma, if \(n = 1 \) and \(q < 2p/(p+1) \), then \(v_a(r) \) defined by (4.9) is a decreasing function of \(a \). Consequently, the first zero of \(v_a \), i.e. \(a^{(p-1)/2} z(a) \), is a decreasing function of \(a \). More precisely, \(a^{(p-1)/2} z(a) \) is nonincreasing for all \(a > 0 \) and strictly decreasing where it is finite.
An analogous argument works for $q > 2p/(p+1)$.

Corollary 5.10. Let $q < 2p/(p+1)$ and $n = 1$. Then for every $\lambda > 0$ and $R > 0$, the C^2 solution of (5.9) is unique.

Finally, we have a result which further contrasts the cases $q < 2p/(p+1)$ and $q > 2p/(p+1)$.

Proposition 5.11. Suppose $q > 2p/(p+1)$ and $n = 1$. Let $\lambda > 0$ be arbitrary. Then $z(a) < \infty$ for all $a > 0$ and $\lim_{a \to 0} z(a) = \infty$.

Proof. By Lemma 5.2 and Proposition 4.5 we already know that $z(a) < \infty$ for small $a > 0$ and $\lim_{a \to 0} z(a) = \infty$. Suppose $z(a) = \infty$ for some $a > 0$, and let $u(r)$ be the corresponding solution of (5.8). Let $v(r)$ be a solution to (5.8) with a smaller initial value a such that $z(a) < \infty$. Let

$$\overline{\rho} = \sup\{\rho \in \mathbb{R}: \text{the graph of } v(r - \rho) \text{ does not touch the graph of } u(r)\}.$$

As in the proof of Proposition 5.6, it is clear that $\overline{\rho} \in \mathbb{R}$ and that $u(r)$ and $v(r - \overline{\rho})$ would have to coincide, which is impossible.

Remarks. We can make a few more observations in the case $n = 1$. First, if $q < 2p/(p+1)$, then by Proposition 4.6, 5.7, and 5.9 there exists $a_* > 0$ such that $z(a) = \infty$ for $a < a_*$ and $z(a) < \infty$ for $a > a_*$. Next, in the case $q > 2p/(p+1)$, if ϕ_1 and ϕ_2 are two different solutions of (5.9), then $\phi_1(x) \neq \phi_2(x)$ for all x in $(-R, R)$. This follows from a translation argument similar to the proofs of Propositions 5.6 and 5.11. We mention without proof that if $q > 2p/(p+1)$, there can exist singular solutions of (5.9), i.e. solutions in $C^2([-R, R] \setminus \{0\})$ with $\lim_{x \to 0} \phi(x) = \infty$.
Clearly, solutions of (1.5) exhibit radically different behavior depending on the relationship between \(p \) and \(q \). However, the picture is certainly not complete.
REFERENCES

27. R. Seeley, Interpolation in L^p with boundary conditions, Studia Math. 44 (1972), 47-60.

