SIMULATION OF FLOW IN NATURALLY FRACTURED PETROLEUM RESERVOIRS

By

JIM DOUGLAS, JR.

PAULO JORGE PAES LEME

TODD ARBOGAST

AND

TÂNIA SCHMITT

IMA Preprint Series # 292

January 1987
SIMULATION OF FLOW IN NATURALLY FRACTURED PETROLEUM RESERVOIRS

Jim Douglas, Jr., University of Chicago and IMA, University of Minnesota
Paulo Jorge Paes Leme, Pontifícia Universidade Católica do Rio de Janeiro
Todd Arbogast, University of Chicago and IMA, University of Minnesota
Tância Schmitt, University of Chicago and IMA, University of Minnesota

Abstract
This paper describes two models for simulating flow in naturally fractured petroleum reservoirs, one for single phase flow of a fluid of constant compressibility, and the other for two-phase, incompressible, immiscible flow. Both models are based on the dual porosity concept. In each model the flow in an individual matrix block is simulated using the standard equations describing flow in unfractured media, and the matrix/fracture interaction is based on the imposition of proper boundary conditions on the surface of the block. The models are presented in an easily parallelizable form.

Introduction
Double porosity models of flow through a naturally fractured petroleum reservoir were first described by Barenblatt, Zheltov, and Kochina1 and Warren and Root2; their models were for single phase flow under the assumption of quasi-steady state flow in the matrix blocks. Kazemi3 and de Swaan O.4 considered the fully unsteady model. In this paper a somewhat more general single phase model will be considered, along with a model for two-phase, immiscible flow; Thomas et al5 have studied a different double porosity model of this problem.

The fractured reservoir \(\Omega \) will be idealized as a porous medium having a regular geometric pattern of fractures separating the medium into matrix blocks \(\Omega_i \). The diameter of each \(\Omega_i \) is supposed small in comparison to that of \(\Omega \). The fracture system and each matrix block will be considered to be distinct, coupled porous media. The flow in each matrix block will be treated in a standard manner, based on a proper form of Darcy's law and conservation of mass. Similarly, the flow in the fractures will be modelled through the same physics, except that a (distributed) source term is induced by the flow between the blocks and the fractures. No direct flow between blocks (i.e. without passing through the fractures) will be permitted; thus, each matrix block interacts, through proper boundary conditions, with the surrounding fractures, but with no other block. For convenience in the models formulated below, it will also be assumed that the blocks are not directly affected by external sources or sinks.

The Single Phase Model
In addition to the assumptions described above, assume that the single phase fluid is of constant compressibility; i.e.,

\[
R^{-1}dR = c dP, \quad \rho^{-1}dp = c dp, \quad (1)
\]

\(c \) a positive constant, in the entire system. (Capital letters generally denote fracture quantities, small letters the corresponding matrix quantities.) Gravitational terms will be linearized.

References at end of paper.
\[R(x,t)^2 = [R_0(x) + |R(x,t) - R_0(x)|]^2 \approx R_0(x)[2R(x,t) - R_0(x)], \tag{2} \]

where \(R_0(x) \) is a fixed, conveniently chosen reference density, such as the initial density distribution. (This function can be updated from time to time in a simulation; this possibility will be ignored in the following discussion.)

The boundary condition relating the flow in a block to that in the surrounding fractures is based on the assumption, inherent in the concept of a double porosity model, that the blocks are quite small with respect to any practical spatial discretization parameter for the simulation of the flow in the fractures. Assume that

\[p(x,t) = R(x_1,t), \quad x \in \partial \Omega_i, \quad 0 < t \leq T, \tag{3} \]

where \(x_1 \) is the centroid of \(\Omega_i \). Similarly, assume that

\[p(x,0) = R(x_1,0) = R_0(x_1), \quad x \in \partial \Omega_i, \tag{4} \]

where \(R_0 \) is the initial (fracture) density.

The boundary condition is based on having three families of parallel surfaces to represent the fractures. If, for instance, the reservoir \(\Omega \) were a horizontal slab fractured by two families of parallel, vertical planes, a different boundary condition would be required to include properly the effect of gravity; only the case covered by (3) will be considered here.

The partial differential equation for the single phase flow in a block \(\Omega_i \) is given by

\[\frac{\partial p}{\partial t} - \nabla \cdot \left(\frac{k}{\mu c} \nabla p \right) = 0, \quad x \in \Omega_i, \quad 0 < t \leq T; \tag{5} \]

note that, in line with the boundary condition (3), gravitational effects have been omitted on the block. Again, this omission would need to be addressed for other fracture geometries. The matrix block \(\Omega_i \) transmits through its surface a flow of fluid given by

\[- \int_{\partial \Omega_i} \frac{k}{\mu c} \nabla p \cdot n \, d\sigma = - \int_{\Omega_i} \frac{\partial p}{\partial t} \, dx. \tag{6} \]

Average this function over \(\Omega_i \) to give the source function

\[Q(x,t) = \frac{1}{|\Omega_i|} \int_{\Omega_i} \frac{\partial p}{\partial t} \, dx, \quad x \in \Omega_i, \quad 0 < t \leq T. \tag{7} \]

The flow in the fractures can be described by the differential equation

\[\frac{\partial \Phi}{\partial t} - \nabla \cdot \left(\frac{K}{\mu c} \nabla \Phi \right) = f_0 \cdot Q, \quad x \in \partial \Omega, \quad 0 < t \leq T. \tag{8} \]

where \(z=2(x) \) is the vertical coordinate and \(f_0 \) is the imposed external mass flow rate. For simplicity, the boundary condition on \(\partial \Omega \) will be taken to be "no flow:"

\[\left[\frac{K}{\mu c} \nabla R - 2R_0 g - \nabla z \right] \cdot n = 0, \quad x \in \partial \Omega, \quad 0 < t \leq T. \tag{9} \]

Arbogast\(^6\) has studied the mathematical aspects of the model defined by (3) through (9) in a slightly modified form that has no effect whatsoever on the numerical model approximating it. Under the assumption that the data functions \(f_0 \) and \(R_0 \) and the reference density function \(R_0 \) are smooth, he has shown that the coupled differential system is well-posed, i.e., there exists a unique solution to the system and this solution depends continuously on the data. The continuous dependence is expressed explicitly for bounds in Sobolev spaces of \(R \) and \(p \) in terms of norms on \(f_0 \), \(R_0 \), and \(R_0 \). The effect of the matrix source function \(Q \) is determined to be one of stabilization; it induces a bound on the spatial block averages of \(\partial R/\partial t \) in the Sobolev space \(H^{1/2}(\Omega_i, T) \), which adds mildly to the usual bound for \(\partial R/\partial t \) in \(L^2(0,T;L^2(\Omega)) \) in terms of the same norms on \(f_0 \), \(R_0 \), and \(R_0 \) for a standard, nonfractured reservoir. In the case that each \(\Omega_i \) is a rectangular parallelepiped, Arbogast showed that the Warren-Root model is essentially equivalent to taking a term like the first term in the series representation of the source function \(Q \).

A Finite Element Approximation of the Single Phase Model

Define the bilinear forms \(B(u_i,u_2) \) on \(H^1(\Omega_i) \) and \(b_i(u_i,u_2) \) on \(H^1(\Omega_i) \) by

\[B(u_i,u_2) = \left[\frac{K}{\mu c} \nabla u_i, \nabla u_2 \right] = \int_{\Omega_i} \frac{K}{\mu c} \nabla u_i \cdot \nabla u_2 \, dx \tag{10} \]

and
be the approximation to \(p \) on \(\Omega_i \) at time \(t_{f+i} \).

Determine \(p_{1, n-1} \in H^1(\Omega_i) \) such that, for \(\lambda = 1, \ldots, N, \)

\[
\int_{\Omega_i} \left(\frac{\partial}{\partial t} p_{1, n-1} - \frac{\partial}{\partial t} p_{1, n-1} \right) \cdot \frac{\partial}{\partial z} \left(p_{1, n-1} - z \right) \ dx = 0, \quad z \in H^1(\Omega_i), \quad \lambda = 1, \ldots, N. \tag{17}
\]

and then compute

\[
Q_1^n = - \int_{\Omega_i} \left(\frac{\partial}{\partial t} p_{1, n-1} - \frac{\partial}{\partial t} p_{1, n-1} \right) \ dx. \tag{19}
\]

Next, let \(p_{2, \lambda} \in \{ \lambda/\Delta t, \lambda/\Delta t + z : z \in H^1(\Omega_i) \} \) for \(\lambda = 1, \ldots, N \) satisfy

\[
\int_{\Omega_i} \left(\frac{\partial}{\partial t} p_{2, \lambda} - \frac{\partial}{\partial t} p_{2, \lambda} \right) \cdot \frac{\partial}{\partial z} \left(p_{2, \lambda} - z \right) \ dx = 0, \quad z \in H^1(\Omega_i), \quad \lambda = 1, \ldots, N. \tag{20}
\]

and compute

\[
G_1^n = \left| \Omega_i \right|^{-1} \int_{\Omega_i} \left(\frac{\partial}{\partial t} p_{2, n} - \frac{\partial}{\partial t} p_{2, 0} \right) \ dx. \tag{22}
\]

Then, the matrix source function \(Q \) on \(\Omega_i \) at time \(t_f^n \) is approximated by

\[
Q(x, t_f^n) \approx Q_1^n - \frac{R_H^n(x_i) - R_H^{n-1}(x_i)}{\Delta t_f}. \tag{23}
\]

Now, approximate \(R \) at time \(t_f^n \) by \(R_H^n, \lambda \in H_i \) such that

\[
\int_{\Omega_i} \left(\frac{R_H^n - R_H^{n-1}}{\Delta t_f} \right) \ dx + \sum_{\lambda} G_1^n(1, \lambda) \frac{R_H^n(x_i) - R_H^{n-1}(x_i)}{\Delta t_f} + \left(R_H^n - \left(R_H^n, \lambda \right) \right) = \left(f_0(t_f^n, \lambda) \right) \tag{24}
\]

The stabilizing effect of the flow from the matrix
blocks into the fractures is readily apparent in (24), since $G_l > 0$.

The finite element algorithm can be summarized as follows. The constants G_l, which must be computed for blocks associated with quadrature points in the fracture calculation, can be evaluated in a pre-processor. Then, the initial condition P^0 must be approximated by $R_l^0 f(x_i)$, and the initial values p^0_l are determined from it. Given $R_l^0 r^0_l$ and p^0_l, the general time step consists of three parts. First, the collection of functions $p^1_{l,n} x_l$ must be found by solving (17), (18) for each relevant i, and the corresponding values $Q_l x_l$ computed. Second, (24) must be solved for $R_l x_l^1$. Finally, p^1_l must be evaluated:

$$p^1_l = p^1_{l,n} x_l + (R_l(x_i) - R_l r^0_l x_i) p^2_l x_l.$$

so that R_l and p_l, all i, have been updated and the time step completed.

The blocks can be treated simultaneously; i.e., in parallel. Then, only the single number $Q_l x_l^1$ must be transmitted from the solution block to the fracture calculation. Next, the calculation for the density $R_l x_l^1$ in the fractures takes place, after which the single number $R_l(x_i)$ must be returned to each block to permit the update (25) and the determination of $\mathbf{b}_{l,n} x_l$. The algorithm can be implemented very efficiently on a computer system having one quite fast node, such as a vector computer, tied to a collection of less expensive nodes, such as reasonable workstations. Note that the number of parameters associated with the fracture calculation (i.e. $\mathbf{b}_{l,n}$) should be expected to be much larger than the number associated with an individual block (i.e. \mathbf{b}_{l}). The blocks can be assigned to the workstations, a few to each station. (More sophisticated, a fraction to the fast node and the rest portioned out to the slower nodes.) The fracture calculation would be made by the fast node. Since so little information is passed between the fracture calculation and the block calculations, only a modest bus capacity is required.

The convergence of the approximate solution R_l and p_l, all i, to the solution R and p follows easily from the argument of Arbogast for a Crank-Nicoolson version of the algorithm; Arbogast restricted his attention to $N=1$, but no significant change in his argument is needed to treat the case considered here.

A finite difference procedure can be constructed with the same concepts as used in the finite element case. The same parallel features will occur in the algorithm.

The Two-Phase, Immiscible Model

This model is intended to simulate an incompressible waterflood in the fractured reservoir Ω, again employing a dual porosity model. The model will be formulated for a horizontal, linear flood here in order to meet the length constraint for the paper. Gravity and more space variables can be treated by essentially the same techniques. In the fractures, let $S=S_w, P=P_w, P_c=P_o-T_w, \Lambda = \kappa \epsilon / \mu_B (=d, d)$. And $\Lambda = \Lambda_w + \Lambda_o$. With Q_w denoting the (usually negative) water source term resulting from imbibition into the matrix blocks and Q_o the corresponding oil source term, the differential equations describing the flow in the fractures (external source terms are omitted here; again, they could be added with little complication) are the usual

$$\frac{\partial s}{\partial t} - \frac{\partial}{\partial x} \left[\Lambda w \frac{\partial p}{\partial x} \right] = Q_w, \quad (26)$$

$$\frac{\partial s}{\partial t} - \frac{\partial}{\partial x} \left[\Lambda_o \frac{\partial p}{\partial x} \right] = Q_o, \quad (27)$$

for $0 < x < L = |\Omega|$ and $t > 0$. If (26) and (27) are added, the pressure equation

$$\frac{\partial}{\partial x} \left[\frac{\partial p}{\partial x} \right] = 0, \quad (28)$$

results, as incompressibility requires that $Q_w + Q_o = 0$.

Initial values $S(x,0)$ must be specified, along with boundary conditions for $t > 0$. Assume injection of water at $x=0$ at a specified volumetric rate. Then, for $t > 0$,

$$-\Lambda w \frac{\partial p}{\partial x}(x,0, t) = f(t) \geq 0, \quad -\Lambda o \frac{\partial p}{\partial x}(x,0, t) = 0. \quad (29)$$

At $x=L$, the flow out of the domain splits proportionally to the mobilities of the phases:

$$-\Lambda w \frac{\partial p}{\partial x}(L, t) = \Lambda w f(t), \quad -\Lambda o \frac{\partial p}{\partial x}(L, t) = \Lambda o f(t). \quad (30)$$
These conditions amount to the assumption that viscous forces dominate capillary forces at the outflow face. The initial pressure is determined by (28) and the boundary conditions (29) and (30).

The flow in an individual matrix block is governed by the standard equations

\[
\frac{\partial p}{\partial t} + \frac{\partial}{\partial x} \left(\frac{\lambda_p}{\lambda_w} \frac{\partial p}{\partial x} \right) = 0, \quad (31)
\]

\[
\frac{\partial}{\partial x} \left(\lambda_w \frac{\partial s}{\partial x} + \lambda_o p_c \frac{\partial s}{\partial x} \right) = 0, \quad (32)
\]

for \(x \in \Omega_i \) and \(t > 0 \). It will be assumed that each block is sufficiently small with respect to \(Q \) that imbibition dominates viscous forces on the block. Thus, the pressure change in the fractures across a block will be ignored. The first consequence of this assumption is that the initial condition in the block will be taken to be

\[
p(x,0) = P(x,0), \quad p_c(x,0) = P_c(x,0), \quad x \in \Omega_i; \quad (33)
\]

thus,

\[
p_c(s(x,0)) = P_c(S(x,0)), \quad x \in \Omega_i; \quad (34)
\]

(The function \(p_c \) can vary from block to block, but this possibility will not be considered here.) A related consequence is that the boundary conditions on the block are given by

\[
p(x,t) = P(x,t), \quad p_c(x,t) = P_c(x,t), \quad x \in \partial \Omega_i; \quad (35)
\]

so that

\[
p_c(s(x,t)) = P_c(S(x,t)), \quad x \in \partial \Omega_i; \quad (36)
\]

The matrix/fracture interaction in differential form is quite similar to that for the single phase problem. The term \(Q_w \) can be evaluated easily on \(\Omega_i \) as

\[
Q_w = -\frac{1}{|\Omega_i|} \int_{\Omega_i} \frac{\partial s}{\partial t} \, dx, \quad x \in \Omega_i; \quad (37)
\]

A Finite Difference Approximation for the Two-Phase, Immiscible Model

The finite difference procedure in an individual block should be appropriately designed to treat an imbibition-dominated flow. In the appendix, it is shown that, if

\[
\lambda_o(s_o) - \alpha(s_o - s_r), \quad \lambda_w(s_w) - \beta, \quad p_c(s_c) - \gamma.
\]

for \(s_o \) slightly larger than \(s_r \) and if the water saturation in the face at \(y=0 \) is set to \(1-s_r \) and the capillary pressure external to the face set to zero, then the solution for \(s_o(y,t) \) has the asymptotic form

\[
s_o(y,t) \sim \left(\frac{\alpha}{\alpha Y} s_w(0,t) \right)^{1/(k+1)} \frac{1}{y^{1/(k+1)}}. \quad (39)
\]

In order that the differences of the values of \(s \) between neighboring mesh points be reasonably nearly equal, a mesh point distribution proportional to \(y^{k+1} \) near \(y=0 \) is indicated.

Let the local coordinates for \(\Omega_i \) be denoted by \(y \), \(0 \leq y \leq y_{i,j} \), and let \((y_{i,j}: j=0,\ldots,j) \) be a partition of \(\Omega_i \), with \(h_{i,j} = y_{i,j} - y_{i,j-1} \). Discretize (31) and (32) in the following manner. For \(1 \leq j \leq j-1 \) and \(j=1,\ldots,N \), let

\[
\frac{\phi_{i,j+1/2}}{\Delta t_m} - \frac{2}{h_{i,j}} \left(\lambda_w n_{i,j+1} - \frac{p_{n_{i,j+1}}}{h_{i,j+1}} - \frac{p_{n_{i,j}}} {h_{i,j}} \right) = 0, \quad (40)
\]

\[
\lambda w n_{i,j+1} - \frac{p_{n_{i,j+1}}}{h_{i,j+1}} - \frac{p_{n_{i,j} - p_{n_{i,j-1}}}}{h_{i,j}} = 0, \quad (41)
\]

\[
\lambda w n_{i,j+1} - \frac{p_{n_{i,j+1}}}{h_{i,j+1}} - \frac{p_{n_{i,j} - p_{n_{i,j-1}}}}{h_{i,j}} = 0. \quad (41)
\]

The boundary conditions (35) and (36) can be applied as follows:

\[
p_{n_{i,j}} = p_{n_{i,j+1}} = \frac{p_{n_{i,j}} + p_{n_{i,j+1}}} {2}, \quad (42)
\]

\[
s_{n_{i,j}} = s_{n_{i,j+1}} = s_{n_{i,j+1}}^{(1)} / p_{n_{i,j+1}} = s_{n_{i,j+1}}^{(1)} / p_{n_{i,j+1}}, \quad (43)
\]

\[
s_{n_{i,j}} = s_{n_{i,j+1}} = s_{n_{i,j+1}}^{(1)} / p_{n_{i,j+1}} = s_{n_{i,j+1}}^{(1)} / p_{n_{i,j+1}}, \quad (44)
\]
for \(l = 1, \ldots, N \). The initial condition for the saturation in the block \(Q_l \) is given by

\[
s_n^{0,ij} = s_n^{0,ij} = s_n^{0,ij} = 1 < j < J_l. \tag{45}
\]

Note that in general, (43) implies that \(s_n^{0,1,0} = s_n^{0,1,0} \) and \(s_n^{0,1,0} = s_n^{0,1,0} \); (43) restores the capillary equilibrium that is slightly lost by the linearization in (44).

The coefficients \(\lambda \) and \(\lambda_0 \) should be evaluated differently. Since \(\lambda = \lambda_w + \lambda_0 \) is a smooth function of \(s \) and is bounded away from zero, it suffices to take

\[
\lambda^{n+1}_{l,j+1/2} = \lambda((1/2)(s_n^{n+1,ij} + s_n^{n+1,ij+1})). \tag{46}
\]

However, since \(\lambda_0 \) vanishes at \(s = s_n^{0,0} \), it is better to use a harmonic average of its values. So, let

\[
(\lambda_0 \lambda_{PC}^{n+1}_{l,j+1/2}) = \frac{\Delta y_l}{\int_{y_l,j}^{y_l,j-1} (\lambda_0 \lambda_{PC}^{n-1}(y)) dy}. \tag{47}
\]

Evaluate the integral approximately by interpreting \(s_n^{n+1}(y) \) as the linear interpolant of \(s_n^{n+1,1-j} \) and \(s_n^{n+1,1-j+1} \) and then using a two-point Gauss quadrature rule. The evaluation of \(\lambda_w^{n+1}_{l,j+1/2} \) can be made analogously to that of \(\lambda^{n+1}_{l,j+1/2} \). Note that the coefficients on \(Q_l \) are not being held fixed over the fracture time step \((t^m_{l-1}, t^m_l) \).

The calculation for \(s_n^{n+1}_{l,j} \) can be decoupled from that for \(s_n^{n+1} \) in a fashion corresponding to the splitting (17), (18) and (20), (21) for the solution in the block \(Q_l \) in the single phase problem. Let \(s_n^{l,1} = s_n^{l,1} s_2 n^{l,1} \), where \(s_1 \) reflects the effect of the conditions existing in the block at time \(t^m_{l-1} \) and \(s_2 \) reflects the effect of changing the saturation in the surrounding fractures; note that changing the pressure in the fractures has no effect on the saturation in the block, as no flow results from a uniform change in the pressure. Then, for \(j = 1, \ldots, J_l - 1 \) and \(l = 1, \ldots, N \),

\[
\phi_{l,j}^{n+1}_{l,j} - \frac{s_1 n^{l,1}_{l,j} - s_1 n^{l,1}_{l,j+1}}{\Delta t_m} \]

\[
\frac{2}{\Delta t_m} \left[\lambda w^{n+1}_{l,j+1/2} \frac{p_1 n^{l,1}_{l,j+1} - p_1 n^{l,1}_{l,j}}{n_{l,j+1}} - \lambda w^{n+1}_{l,j-1/2} \frac{p_1 n^{l,1}_{l,j} - p_1 n^{l,1}_{l,j-1}}{n_{l,j}} \right] = 0, \tag{48}
\]

\[
\lambda w^{n+1}_{l,j+1/2} \frac{p_1 n^{l,1}_{l,j+1} - p_1 n^{l,1}_{l,j}}{n_{l,j+1}} - \lambda w^{n+1}_{l,j-1/2} \frac{p_1 n^{l,1}_{l,j} - p_1 n^{l,1}_{l,j-1}}{n_{l,j}} = 0, \tag{49}
\]

with

\[
p_1 n^{l,1,0} = p_1 n^{l,1,0} = p_1 n^{l,1,0} \text{ (or zero)}, \tag{50}
\]

\[
s_1 n^{l,1,0} = s_1 n^{l,1,0} = s_1 n^{l,1,0}, \tag{51}
\]

\[
s_1 n^{l,1,j} = s_1 n^{l,1,j} \quad 1 < j < J_l, \tag{52}
\]

and

\[
p_2 n^{l,1} = \frac{P_c(s_n^{n+1})}{P_c(s_n^{n+1})} (s_n^{n} - s_n^{n+1}) q_n n^{l,1}, \tag{53}
\]

\[
s_2 n^{l,1} = \frac{P_c(s_n^{n+1})}{P_c(s_n^{n+1})} (s_n^{n} - s_n^{n+1}) r_n n^{l,1}, \tag{54}
\]

where

\[
\frac{r_n n^{l,1} - r_n n^{l-1}}{\Delta t_m} \]

\[
\frac{2}{\Delta t_m} \left[\lambda w^{n+1}_{l,j+1/2} \frac{q_n n^{l,1}_{l,j+1} - q_n n^{l,1}_{l,j}}{n_{l,j+1}} - \lambda w^{n+1}_{l,j-1/2} \frac{q_n n^{l,1}_{l,j} - q_n n^{l,1}_{l,j-1}}{n_{l,j}} \right] = 0, \tag{55}
\]

\[
\lambda w^{n+1}_{l,j+1/2} \frac{q_n n^{l,1}_{l,j+1} - q_n n^{l,1}_{l,j}}{n_{l,j+1}} - \lambda w^{n+1}_{l,j-1/2} \frac{q_n n^{l,1}_{l,j} - q_n n^{l,1}_{l,j-1}}{n_{l,j}} = 0, \tag{49}
\]

\[
(\lambda_0 \lambda_{PC}^{n+1}_{l,j+1/2}) = \frac{s_1 n^{l,1}_{l,j} - s_1 n^{l,1}_{l,j+1}}{n_{l,j+1}}. \tag{47}
\]
with
\(q_{n+1,0} = q_{n,1} = 0 \),
\(r_{n+1,0} = r_{n,1} = \Lambda N^{-1} \),
\(r_{0,1} = 0, \quad 1 < j < J_1 \).
\((57) \quad (58) \quad (59) \)

Note that \(q \) and \(r \) must be recalculated each fracture time step, since the coefficients change.

Next, evaluate the matrix/fracture interaction:
\[Q_{n+1} = -\frac{1}{2\Delta t} \sum_{j=1}^{J_1} \phi_{i,j}(s_{n+1,i,j-1} - s_{n+1,i,j}) - s_{i,1} \quad 1 < j < J_1 \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \]
\[G^n = \frac{1}{2\Delta t} \sum_{j=1}^{J_1} \phi_{i,j}(r_{n+1,i,j-1} - r_{n+1,i,j}) \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \]
\((60) \quad (61) \quad (62) \)

The finite difference equations in the fractures can be constructed as follows. Partition (here uniformly, for simplicity of notation) \(Q^n : H_j = H = L/M, x_i = H, i = 0, \ldots, M \). For \(i = 1, \ldots, M-1 \), let
\[\left[\phi_{i,j} + G^n \right] \frac{P_C(S_{n+1} - S_{n-1})}{P_C(S_{n+0})} \Delta t_f \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \]
\[\left(\phi_{i,j} + G^n \right) \frac{P_C(S_{n+1} - S_{n-1})}{P_C(S_{n+0})} \Delta t_f \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \]
\[= Q^n \quad 1 < j < J_1 \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \]
\((63) \quad (64) \quad (65) \)

The boundary conditions (29) and (30) can be incorporated in a discretization of (26) and (27) for \(i=0 \):
\[\left[\phi_{0,j} + G^n \right] \frac{P_C(S_{n+1} - S_{n-1})}{P_C(S_{n+0})} \Delta t_f \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \]
\[= 2H^{-1}f(t^n) + Q^n \quad 1 < j < J_1 \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \quad \Lambda n^{-1,2}(P_{n+1} - P_{n-1}) \]
\((66) \quad (67) \quad (68) \quad (69) \quad (70) \)

The sequence of calculations above completes a time step in the fractures. The remarks on parallelization for the single phase, fractured problem apply in like fashion to this problem.

Nomenclature

Symbols separated by a semicolon refer to fracture and matrix quantities, respectively. Generally, capitals denote fracture quantities, while small letters denote the corresponding matrix quantities.
\(B(u_1,u_2) = ((K/\mu c)\nabla u_1,\nabla u_2)) \)

\(b_i(u_1,u_2) = ((K/\mu c)\nabla u_1,\nabla u_2)) \)

\(C \) positive constant

\(c \) compressibility

\(\partial \sigma \) surface differential

\(f \) volumetric waterflood rate

\(f_e \) external source/sink

\(G_i \) scaled effect on matrix source function due to changes on \(\Omega_i \)

\(g \) gravitational constant

\(H_i; h_i, h_{i,j} \) spatial discretization parameter

\(J_i \) number of intervals partitioning \(L_i \)

\(K; \theta \) permeability

\(k_{iB}, k_{iF} \) relative permeabilities

\(L_i; L \) length of linear reservoir; linear block

\(M = L/h_i \) number of intervals partitioning \(L \)

\(N = \Delta t/\Delta t_m \) number of block time steps per fracture time step

\(P; p \) pressure \([= P_w; p_w \text{ in immiscible flow}] \)

\(P_e; \theta \) pressure

\(P_c; \mu \) capillary pressure, oil minus water

\(p_{1_m} \) matrix pressure due to conditions on the block at time \(t_{f,m} \)

\(p_{2,m} \) matrix pressure due to effect of saturation change on \(\Omega_i \)

\(Q; \theta \) matrix source function

\(Q_i L_m \) matrix source due to conditions on the block at time \(t_{f,m} \)

\(q \) scaled pressure due to effect of saturation change on \(\Omega_i \)

\(\theta; \theta \) order of approximation of \(\mathbb{A}_i; \mathbb{B}_i, h_i \)

\(\Lambda; \lambda \) \(= \lambda_i + \lambda_{i,0} \lambda_i + \lambda_{i,0} \)

\(\Lambda_{i,0}; \lambda_{i,0} \) asymptotic constant

\(\mu, \mu_{i,0} \) viscosity

\(\nu; \nu \) outer unit normal to \(\Omega_i \) to \(\partial \Omega_i \)

\(\rho \) density in the blocks

\(\rho_i \) finite element approximant of \(\rho \) on \(\Omega_i \)

\(\rho_{1,m} \) matrix density due to conditions on the block at time \(t_{f,m} \)

\(s; s \) scaled saturation due to effect of saturation change on \(\Omega_i \)

\(s_{o,0} \) residual oil saturation

\(s_{o,0} \) saturation due to conditions on the block at time \(t_{f,m} \)

\(s_2 \) saturation due to effect of saturation change on \(\Omega_i \)

\(T \) maximal time of interest

\(t \) time

\(t_{f,m} \) \(= n\Delta t, n \mu \) time level

\(u \) dummy function

\(w \) test function

\(x \) space coordinate

\(x_i \) centroid of \(i \text{th} \) block, also \(i \text{th} \) fracture mesh location

\(y \) local space coordinate on a matrix block

\(y_{i,j} \) \(i \text{th} \) block's \(j \text{th} \) mesh location

\(z \) horizontal coordinate

\(z \) test function

\(\mathbb{A}_i \) fracture's Galerkin approximation space

\(\mathbb{B}_i; h_i \) \(i \text{th} \) block's Galerkin approximation space

\(\mathbb{A}_{i,0}; h_{i,0} \) \(i \text{th} \) block with imposed boundary condition

\(\alpha \) asymptotic constant

\(\beta \) asymptotic constant

\(\gamma \) asymptotic constant

\(\Delta t_{f,m} \) time discretization parameter

\(\delta \) asymptotic constant

\(\partial \Omega; \partial \Omega_i \) boundary of \(\Omega \) to \(\partial \Omega_i \)

\(\Theta; \Theta \) relative permeabilities

\(\Lambda_i; \lambda_i \) \(= \lambda_{i,0} \lambda_i + \lambda_{i,0} \lambda_i \)

\(\Lambda_i; \lambda_{i,0} \) asymptotic constant

\(\mu, \mu_i \) viscosity

\(\nu; \nu \) outer unit normal to \(\partial \Omega_i \) to \(\partial \Omega_i \)

\(\rho \) density in the blocks

\(\rho_i \) finite element approximant of \(\rho \) on \(\Omega_i \)

\(\rho_{1,m} \) matrix density due to conditions on the block at time \(t_{f,m} \)

\(\rho_{2,m} \) scaled matrix density due to effect of density change on \(\Omega_i \)

\(\phi; \phi \) porosity

\(\psi; \psi \) \(= \phi(x_i); \phi(u_{i,j}) \)

\(\Omega; \Omega_i \) reservoir; \(i \text{th} \) matrix block

\(\int_{\Omega} u_{i,j} \ dx \)

\(\int_{\Omega} u_{i,j} \ dx \)

\(|\Omega_i| \) volume (or length) of \(\Omega_i \) of \(\Omega_i \)
subscripts
f fracture
l i th matrix block, also i th fracture mesh location or interval
i+1/2 an evaluation at midpoint of fracture mesh
i,j j th matrix mesh location or interval on i th block
j+1/2 an evaluation at midpoint of block mesh
m matrix
n last fracture time \(t_f^{-1} \) [see superscript l]
o oil
w water
\(\theta \) o or w

superscripts
l block time level from last fracture time level [see subscript n]
\(n \) fracture time level

References

Appendix
Asymptotic Behavior for the Imbibition Problem
We consider the behavior of the saturation near an imbibition face at \(y = 0 \) when water saturation at that face is set at \(s_w^{-1} - s_r \). Normalize so that \(s_r = 0 \). Assume that for \(s_0 \) small

\[
\lambda_0 (s_0) - \alpha s_0^{\delta}, \delta > 0, \quad (71)
\]

\[
\lambda_w (s_0) - \beta, \quad (72)
\]

\[
p_C (s_0) - y. \quad (73)
\]

Then, the total flow \(q_w q_0 = 0 \) can be expressed as

\[
(\beta + \alpha s_0^{\delta}) \frac{\partial q_w}{\partial y} + \alpha s_0^{\delta} \frac{\partial s_0}{\partial y} = 0. \quad (74)
\]

So,

\[
- \beta \frac{\partial q_w}{\partial y} = q_w^{\alpha s_0^{\delta}} \frac{\partial s_0}{\partial y} \sim \alpha s_0^{\delta} \frac{\partial s_0}{\partial y} \quad (75)
\]

and

\[
s_0 (y, t) \sim \left[\alpha \frac{s_0}{\partial q_w (0, t) y} \right]^{1/(\delta + 1)}. \quad (76)
\]
165 D. Arnold and R.S. Falk, Continuous Dependence on the Elastic Coefficients
for a Class of Anisotropic Materials
166 I.J. Bakelman, The Boundary Value Problems for Non-linear Elliptic Equation
with the Maximum Principle for Euler-Lagrange Equations
167 Ingo Muller, Gases and Rubbers
168 Ingo Muller, Pseudoelasticity in Shape Memory Alloys - an Extreme Case of
Thermoelasticity
169 Luis Lehner, Persistence and Smoothness of Hyperbolic Invariant
Manifolds for Functional Differential Equations
170 A. Damiano and W. Vogelius, Homogenization limits of the Equations of
Elasticity in Thin Domains
171 H.C. Simpson and S.J. Specter, On Hadamard Stability in Finite Elasticity
172 JiL-Bergman and C. From, Isolated Singularities of the Solutions of the
Schoeller's Equations with a Radial Potential
173 G. Dal Maso and U. Mosco, Wiener's Criterion and T-Convergence
174 John H. Maddocks, Stability and Folds
175 R. Haro and D. Kinderlehrer, Existence and Partial Regularity of Static
Liquid-Crystal Configurations
176 M. Merkur, Construction of Smooth Ergodic Cocycles for Systems with Fast
Periodic Approximations
177 J.L. Ericksen, Stable Equilibrium Configurations of Elastic Crystals
178 Petricio Aviles, Local Behavior of Solutions of Some Elliptic Equations
179 S.-N. Chow and R. Lauterbach, A Bifurcation Theorem for Critical Points of
Variational Problems
180 R. Pego, Phase Transitions: Stability and Admissibility in One Dimensional
Nonviscous Flow
181 Mariano Glauser, Quadratic Functions and Partial Regularity
182 J. Bona, Fully Discrete Galerkin Methods for the Korteweg De Vries Equation
183 J. Maddocks and J. Keller, Mechanics of Robes
184 F. Bernis, Qualitative Properties for some non-linear higher order
Evolution Equations
185 F. Bernis, Existence and Asymptotic Rates for some
Nonlinear Higher Order Parabolic Equations with Absorption
186 S. Recluse and A. Reiter, Game Forms with Minimal Strategy Spaces
An Answer to Littlewood's Problem on Boundness
187 J. Rubinstein and R. Mour, Dispersion and Convection in Periodic Media
188 W.H. Fleming and P.E. Souganidis, Asymptotic Series and the Method of
Vanishing Viscosity
189 H. Belrro De Vea Ig, Existence and Asymptotic Behavior for Strong Solutions
of Navier-Stokes Equations in the Whole Space
190 L.A. Caffarelli, J.L. Vazquez, and N.I. Wolanski, Lipschitz Continuity of
Solutions of the N-Dimensional Porous Medium Equation
191 R. Johnson and C. Pindor, Exponential Growth of Solutions of Linear Differential
Systems
192 F.V. Atkinson and L.A. Peletier, Ground States and Dirichlet Problems for
-Δ = f(u) in R
194 H. Levine and H.F. Whiteberger, Inequalities between Dirichlet and Neumann
Eigenvalues
195 J. Rubinstein, On the Macroscopic Description of Slow Viscous Flow Past a
Stack of Parallel Plates
196 G. Dal Maso and U. Mosco, Wirtinger's Energy and Density Decay for Relaxed
Dirichlet Problems
197 V. Oliker and P. Wolberg, On the Monge-Ampere Equation Arising in
The Reflecting Problem
198 M. Chipot, O. Kinderlehrer and L. Caffarelli, Some Smoothness
Properties of Solutions of Linear Systems
199 Y. Giga and R. Kohn, Characterizing Blow-up Using Similarity Variables
200 P. Cannars and H. M. Soner, On the Singularities of the Solution of
Dirichlet Problems for Hamilton-Jacobi Equations
201 Andrew Majda, Nonlinear Geometric Optics for Hyperbolic Systems of
Conservation Laws
202 Andrew Majda, Nonlinear Geometric Optics for Hyperbolic Systems of
Conservation Laws
203 G. Buttazzo, G. Dal Maso and U. Mosco, A Derivation Theorem for Capacities
With Respect to a Radon Measure
204 S. Cowin, M. Mehrabadi, On the Identification of Material Symmetry for
Anisotropic Elastic Materials
206 M. Chipot, On the Reynolds Lubrication Equation
207 R.V. Kohn and G.W. Milton, On the Bounding the Effective Conductivity of
Anisotropic Composites
208 I.J. Bakelman, Concerning the Torsion of Hardening Rods and Its
N-Dimensional Generalizations
209 I.J. Bakelman, The Boundary Value Problems for Non-linear Elliptic Equation
210 G. Dal Maso and U. Mosco, On the Large Deviation Functions of Markov Chains
211 Arle Leizarowitz, Control Problems with Random and Progressively Known Targ
212 R.W. Daugherty, Ergodicity of a Measure-Valued Markov Chain Induced by
Random Transformations
213 G. Dong, M. Qian and Xinglin Zhou, Killed Diffusions and Its Conditioning
214 Arle Leizarowitz, Controlling Diffusion Processes on Infinite Horizon with
Constant Cost Functions
215 Millard Beatty, The Poisson Function of Finite Elasticity
216 David Tatarski, Traveling Wave Solutions Arising From a Combustion Model
217 Yuh-Jia Lee, Sharp Inequalities and Regularity of Heat Semigroup on
Infinite Dimensional Spaces
218 D. Stroock, Lecture Notes
219 Claude Canuto, Spectral Methods and Maximum Principle
220 Thomas O'Brien, A Two Parameter Family of Pension Contribution Functions
and Stochastic Optimization
221 Takayuki Hida, Analysis of Brownian Functionals
222 Leonid Hurwicz, On Informational Decentralization and Efficiency of
Resource Allocation Mechanisms
223 E.B. Fabes and D.W. Stroock, A New Proof of Moser's Parabolic Harnack
Inequality via the Old Ideas of Nash
224 Minoru Murata, Structure of Solutions of (Δ + μ)f = 0 in R
225 Paul Dupuis, Large Deviations Analysis of Reflected Diffusion
Constrained Stochastic Approximation Algorithms (in convex sets
226 F. Bernal, Existence Results for Doubly Nonlinear Higher Order Parabolic
Equations on Unbounded Domains
227 S. Orey and S. Pelikan, Large Deviations Principles for Stationary Process
228 R. Guillen and S. Hildebrandt, Boundary Configurations Spanning Continua of
Minimal Surfaces
229 J. Baxter, G. Dal Maso and U. Mosco, Stopping Times and T-Convergence
230 Julio Bonalet, Self-Similar Solutions, Having Jumps and Intervals of
Constant Speed of a Diffusion-heat Conduction Equation
231 R. Hardt, D. Kinderlehrer & F.-H. Lin, A Remark About the Stability of
Smooth Equilibrium Configurations of Static Liquid Crystal
232 M. Chipot and M. Luskin, The Compressible Reynolds Lubrication Equation
233 J.H. Maddocks, A Model for Oscillations in Nematic Liquid Crystal
234 C. Foslie, G.R. Sell and R. Temam, Inertial Manifolds for Nonlinear
Evolution Equations
235 P.L. Chow, Expectation Functionals Associated with Some Stochastic Evolution
Equations
236 G. Buttazzo, Reinforcement by a Thin Layer with Oscillating Thickness
function and its Application to the Large Deviation Properties of
Erdos-Markov Process
238 H. Jenssen and H. Soner, A Regularity Result for Viscosity Solutions of
Hamilton-Jacobi Equations in One Space Dimension
239 B. Bozdar-Karakal, J.L. Bona and D.L. Cohen, Interaction of Shallow-Water
Waves and Bottom Topography
240 F. Colonius and W. Kliemann, Infinite Time Optimal Control and Periodic
Dirichlet Problems
241 Harry Kesten, Scaling Relations for 2D-Percolation
242 A. Lelahorwitz, Infinite Horizon Optimization for Markov Process with Finite Sigma Spaces
243 Louis H.Y. Chen, The Rate of Convergence In A Central Limit Theorem for Dependent Random Variables with Arbitrary Index Set
244 G. Kaliamkur, Stochastic Differential Equations In Duals of Nuclear Spaces with some Applications
245 Tzuu-Shuh Chiang, Yunsheng Chow and Yuh-Jia Lee, Evaluation of Certain Functional Integrals
246 L. Karp and W. Pinsky, The First Eigenvalue of a Small Geodesic Ball in a Riemannian Manifold
247 Chi-Sing Man, Towards An Acousticelastio Theory for Measurement of Residual Stress
248 Andreas Stoll, Invariance Principles for Brownian Intersection Local Time and Polymer Measures
249 R.W.R. Darling, Rate of Growth of the Coalescent Set In a Coalescing Stochastic Flow
250 R. Cohen, R. Hardt, D. Kinderlehrer, S-Y. Lin, M. Luskin, Minimum Energy for Liquid Crystals: Computational Results
251 Suzanne M. Lenhart, Viscosity Solutions for Weakly Coupled Systems of First Order PDEs
252 M. Cranston, E. Fabes, Z. Zhao, Condition Gauge and Potential Theory for the Schrödinger Operator
253 H. Brezis, J-M. Coron, E.H. Lieb, Harmonic Maps with Defects
254 A. Cervera, Flows of Stochastic Dynamical Systems: Nontriviality of the Lyapunov Spectrum
255 A. Cervera, Conditioning A 'Lifted' Stochastic System in a Product Case
256 R.J. Williams, Local Time and Excursions of Reflected Brownian Motion
257 H. Follmar, S. Gray, Large Deviations for the Empirical Field of a Gibbs Measure
258 A. Lelahorwitz, Characterization of Optimal Trajectories On an Infinite Horizon
259 Y.Giga, T. Miyakawa, H. Osada, Two Dimensional Navier Stokes Flow with Measures As Initial Vorticity
260 M. Chipot, V. Oliker, Sur Une Propriete Des Fonctions Propres De L'Operateur De Laplace Beltrami
261 V. Perez-Abrav, Decompositions of Semimartingales On Duals of Countably Nuclear Spaces
262 J.M. Ball, Does Rank-One Convexity Imply Quasiconvexity?
264 K.A. Pericak-Spector, On Radially Symmetric Slowness Waves in Elasticity
265 P.W. Shivaswamy, Chi-Sing Man, Simon W. Rekbin, Modelling of the Heart and Pericardium at End-Diastole
266 Jose-Luis Menaldi, Probabilistic View of Estimates for Finite Difference Methods
267 Robert Hardt, Harold Rosenberg, Open Book Structures and Unility of Minimal Submanifolds
268 Bernardo Cockburn, The Quasi-Monotone Schemes for Scalar Conservations Laws
269 H.R. Jauslin, W. Zimmermann, Jr., Dynamics of a Model for an Ac Josephson Effect In Superfluid 4He
270 A.K. Kapila, Introductory Lecture on Reacting Flows
271 J.C. Taylor, Do Minimal Solutions of Heat Equations Characterize Diffusions?
272 J.C. Taylor, The Minimal Eigenfunctions Characterize the Ornstein-Uhlenbeck Process
273 Chi-Sing Man, Quan-Xin Sun, On the Significance of Normal Stress Effects In the Flow of Glaciers
274 Omar Hijab, On Partially Observed Control of Markov Processes
275 Lawrence Gray, The Behavior of Processes with Statistical Mechanical Properties
276 R. Hardt, D. Kinderlehrer, M. Luskin, Remarks About the Mathematical Theory of Liquid Crystals
277 B. Cockburn, B. The Quasi-Monotone Schemes for Scalar Conservation Laws Part II
278 M. Chipot, T. Sideris, On the Abelian Higgs Model
279 C. Foias, B. Nicolaenko, G.R. Sell, R. Temam, Inertial Manifolds for the Kuramoto-Sivashinsky Equation and an Estimate of Their Lowest Dimension
280 R. Duran, On the Approximation of Miscible Displacement in Porous Media II: Method of Characteristics Combined with a Mixed Method
282 V. Twerksy, Dispersive Bulk Parameters for Coherent Propagation In Corrugated Random Distributions
283 W. Th. F. van Hollander, Mixing Properties for Random Walk In Random Scenner
284 H.R. Jauslin, Nondifferentiable Potentials for Nonequilibrium Steady States
285 K. Peter, G.R. Sell, Homoclinic Orbits and Bernoulli Bundles In Almost Periodic Systems
286 J. Douglas, Jr., Y. Yuan, Finite Difference Methods for the Transient Behavior of a Semiconductor Device
287 L. Kallian, Y. Yosida, The Extrapolation for Boundary Finite Elements
288 R. Durrett, B.H. Schonmann, Stochastic Growth Models
289 David Kinderlehrer, Remarks About Equilibrium Configurations of Crystals
290 O.G. Aronsson, J.L. Vasquez, Eventual C1-Regularity and Concavity For Flow In One-Dimensional Porous Media
291 L.R. Scott, R.M. Boyle, B. Bagheri, Distributed Data Structures for Scientific Computation
293 D.G. Aronson, L.A. Caffarelli, Optimal Regularity for One-Dimensional Por Medium Flow
294 Haim Brezis, Liquid Crystals and Energy Estimates for S^2-Valued Maps