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HOMOCLINIC ORBITS FOR FLOWS IN RB.

Charles TRESSER
L.A. 190 , Mécanique Statistique

Parc Valrose 06034  NICE  CEDEX

ABSTRACT. We propose a rough classification for volume contracting
flows in ]?3 with chaotic behavior. In the simpiest cases, one looks

at the nature of a homoclinic loop for the flow. Most configurations
have been studied at lenght in the literature ; here we examine briefly

the '"forgoten" case.

ORBITES HOMOCLINES DE FLOTS DE R° .

) )
RESUME. Nous proposons une classification grossiere des flots de R3

dissipatifs présentant des comportements érratiques. Dans les cas les
plus simples, on examine la nature d'une orbite homocline du flot. La
plupart des configurations ont été abondamment - étudiées dans la litte-

rature ; nous examinons ici brigvement le cas "oublié".

Classification "Physics Abstracts" : 02.30.Hq



It happens that a great deal of informations can be learned about the
origin and structure of chaotic behavior, as numerically observed with
dissipative flows in I?B, by looking at the characteristics of the tra-
Jectories (if any) which are bi-asymptotic (as time goes to +») to a
rough equilibrium (otherwise speaking, homoclinic orbits for flows in
1?3). Note that volume contraction in 123 prevents tori ; this enhan-
ces the importance of homoclinic orbits since one cannot find the type
of chaos associated with the destruction of tori. On can of cource ma-
nage that the relevant equilibrium be at the origin 0 j;then the linear

part of the differential equations reads (up to a possible time inver-

sion) :
X=X X
. ! (XA, X >0, x >x )
Y ==\ Y ! 2 } 2 ’ (1-a)
. 2 ( A = XA is not robust )
Z ==\ 1 2 3
3
or :
X = -pX - wY
Y = wX - pY (xy p>0) (1-b)
2 = N

Before going further with 3-dimersional flows, let us recall an.old and
well known result on the stability of saddle loops in I!Z. If the saddle
is at 0 , and if the linear part of the equations is like the two first
lines of (l-a) , one gets easily that attractivity (resp. repulsivity)
with respect to orbits starting from neighbor points inside the loop ,
is insured by the condition Al< Az (resp. Al> Az) . This result moti-

vates the following terminology :

A <A : Real Stable ., for short RS
A, > A, : Real Unstable , "o RU
A <p : Complex Stable , " " cS
A >p : Complex Unstable , " " Cu

In the R cases, we compare only X to A . This corresponds to the
3 1
assumption that, if a homoclinic orbit exists, it enters 0 along the

Z axis (according to the choice A >\ we have made) ; the other case
2 3



is exceptional. The choice A'>\ comes from Lorenz equations[3] .
2 3

Another important element in the analysis of a flow is the presence of
a special symetry. One can find (together with homoclinic loops) :
G : general case (no symetry),

Sl : invariance under the change of coordinates ( X, Y, Z) » (-X,-Y, Z),

52 : "wn " "n nn ( X, Y, Z) + (—X, Y:'Z)!

53 : " nn "n nn ( X, Y, Z) > (_X,_Y'_Z).

It is then natural to classify (1] flows in I?B with a homoclinic orbit
bi-asymptotic to 0 , according to table 1 . In this table, grey rectangles
correspond to cases where no chaos is to be obéerved (see however remarks
1 and 2 below) , black rectangles to unrzalisable situations, and the
numbers to some references related to the corresponding situation .

Remark 1l: A system whith a sligth departure from a symetry would better

r

be studied by first considering the symetric case, and then investigating

the effects of a small symetry breaking (see e.g. [1/5’5231]).

Remark 2: Homoclinic orbits for flows in 113 are destroyed by a general
small perturbation. However, table 1 is also (even more) usefull for a
more global study of one parameter families of flows containing a homo-
clinic situation (see most of the cited literature) , and even for fa-

milies which come '"close" to a homoclinic situation [1'26/311

(1,2,30,31]

For instance, the methods used to study the cases CS can be

used to explain why chaos may occur when one does not consider the pre-

cise value of the parameter such that a CS-homoclinic orbit exists[l‘28’3ll
In this note, we shall concentrate on the case RU-S3 3 RU—S2 would

lead to similar results, while RU-Sl contains the Lorenz attractor[3 1 The

analysis we shall make for definitness in the unstable case will set us

in a position to comment on the stahle cases ( S3 or 52) as well, In

the same way, methods (4-7] which have been developped for studies

in RU-S, have been easily adapted to RS—S1 ; this allowed to discover

1

and understand new types of non trivial dynamical behavior [1,16-10],



Indeed, the aproach we shall use here is also directly inspired

[u=2]

from previous works on Lorenz attractor ¢ we construct geome-
trically a "model flow", in a situation "after" the existence of a
homoclinic orbit (the meaning of "after" will become clear below).
The analysis starts with a linear flow (l1-a)-RU, in a cell C as re-
presented in figure (l-a).

If (as it is often the case in applications) one is interested in
a one parameter r family, it is natural to supose that for r small
enough, one has only negative eigenvalues at 0, and that the further
evolution is (e.g.) as follows :

-for r> Igv A > 0 and one gets a reasonable approximation by (1-a)RU
1

in the cell C for r > Tg > T,

-for rS <T < T, the two branches wg* and wg‘ of the unstable ma-
nifold of 0, converge respectively to the two stable fixed points Yas
created by the bifurcation at r = e,

-for r = r, , one has a pair of homoclinic orbits bi-asymptotic to 0.
Now, we supose that for some r > T, the interesting part of the dy-
namics is contained in the figure height cell of figure (1-b) . In order
to study the dynamics, we look at the first return map F on the uper

face of C. In the spirit of [§‘7] , it remains reasonable to
supose that the rectangle R of figure (l1-a) is transformed by F as
indicated in figure (2-a) ; in both figures, the lines drawn in R*
and its image are intended to indicate that F preserves the (linear)
strong stable foliation, otherwise speaking, F(x,y):(gy(x),f(y)) for
(x,y) in R* ( here g_ stands for a contraction whose rate depends on
y). Let us emphasize that T  should be (at least) deformed as repre-

sented in figure (1-b) by the non-linear part of the flow ; if no



torsion is involved, all orbits will eventually diverge out of the
figure height cell. Unfortunately, the torsion destroys the hope to
get a F which preserves globally a strong stable foliation as in R--Sl
cases.

Part of the points of R give rise to orbits making at least two
revolutions around M~ before the firs crossing whith RY U R™ . The
remaining ones give contributions to F(RY U R”) like what is represen-
ted in figure (2-b). The orbits issued from points in R~ can indeed
make an arbitrary number of loops around M~ ; eollect;ng all contri-
butions, ane gets for F(RY URT) the global aspect represented in fi-
gure (2-c).

The main statement onecan formulate about F and RU—53_2 flows
is that one can hope chaotic behavior but that a general existence
theorem for chaos is hopeless since the global properties of the flow
(like the torsion we invoked in our geometric construction) play a
fundamental role in the dynamics. This is in contrast whith CU cases

[19.21]

where a theorem by Sil'nikov insures chaotic behavior (positive
topological entropy on appropriate first return maps) when (or '"close"
to when) there exists a homoclinic orbit. On the other hand, all known
results about chaos in RU-S1 systems use some ad hoc hypotheses such
as the existence of an invariant strong stable foliation[“'g]or, at
least, some hyperbolicity-like conditions (ioy10] | these special
properties are robust but not necessarily verified by an arbitrary flow
in the RU-Sl class. The worst peculiarity of 53_2 is that I cannot ima-
gine a natural and simply formulated condition which would insure chaos
like in Sl cases ; an example in 53 or 52 of particular physical rele-
vance could be of some help to find such a condition (the fact that une

[17]
w

has not yet, to my knowledge,such an example is meaningless : as

discovered after and independently of the first investigations of RU-S1



cases in (16) ).

Having renounced to provide a rigorous analysis, let us make some

qualitative comments on the first return map F we have constructed.
It is easier to supose that the dissipation is very strong ; then the
x projection of the dynamics under F is correctly described by a one
dimensional map whose graph should look like what is represented in
figure (2-d). This is enough to allow a safe prediction of well known
phenomena such as cascades of period doubling bifurcations or inter-
mittency (one hope also these phenomena in CU and some CS systems).
The one dimensional map is also the more convenient se£ting for a
discussion of the stable cases : one has mainly to replace the half
cusp at the right of the graph by a parabolic-like curve in the X > 0
region, and to replace all sharp slopes in the X < 0 region which are
due to an orbit of the flow coming close to 0, by pieces of curves with
derivative going to zero. The occurence of chaos would then depend on
details of the vector field. The only general statement on can make
is that, like in all S cases, the proximity (both in phase space and
in paramater space) of a homoclinic orbit prevents chaosl1,2,30,311]

We insist on the fact that figure (1-b) corresponds to the simplest
form of torsion ; with an explicit example in RU-S3_2 , F can be much
more complicated than what we have goten with our geometrical construc-

tion. It is the case for the oscilator :

X + v-}. +( a- exp(-Xz)).i +m.( a.X - b.X9) =0 , (2)
a (d+c.x®)

which has been used to get the RU-S, '"strage attractor" represented in

3

. . . . [23,25,26 29]
figure 3 (this oscilator has been adapted from those used in “7*°7?

which cannot be in a RU class).

Our last remark is that heteroclinic loops may as well be usefull



[1,15]

to elucidate the origin and structure of chaotic behavior

(5]

some new results will be reported elsewhere
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TABLE CAPTION

Table 1 : Résumé of the rough classification proposed in the paper.
Shadded rectangles correspond to cases where no chaos is to be obser-
ved (modulo remarks 1 and 2 in the main text) , black rectangles to

unrealizable situations, and the numbers to some references.



FIGURE CAPTIONS

Figure 1 : (a): the cell C where the model flow is supposed to be linear.
The sets RE , ¥ which are used in the analysis of the model flow have
been represesnted ; ¥ is obtained by first intersection of the lateral
faces of C whith the orbits issued from points in RY . (b): the figure
height cell which corresponds to the simplest re-injection process in C

yielding non trivial dynamics.

Figure 2 : (a-c): the construction of F(R* U R7) by taking account of
various contributions as explained in the main text. (d): the one dimen-

sional map which represent reasonably the x-projection of the dynamics

under F in case of strong dissipation. The numbers on the bottom line
indicate the number of loops around M, starting from the upper face
of C, before returning to it for the first time. The dots indicate
typical points where the shape of the graph is necessarily modified
in a stable case. The dotted line corresponds to the branching point

of the "palm tree" in figure (2-c).

10

Figure 3 : The "strange attractor" numerically obtained with equation (2)

of the main text. One has taken a=1, b=0.00002, c=0.005, d=0.3, v=0.2, and

a=0.3. This yields : )\ ~1.687, A =~1.145, ) = 0.741.
1 2 3
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