DOES RANK-ONE CONVEXITY IMPLY QUASICONVEXITY?

BY

J.M. BALL

IMA Preprint Series # 262
August 1986

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
120. D.R.J. Chillingworth, Three Introductory Lectures on Differential Topology and Its Applications
121. Giorgio P. G. Cattaneo, Green's Formulas for Linearized Problems with Live Loads
122. F. Chiafoni and N. Garofalo, Unique Continuation for Nonnegative Solutions of Schrödinger Operators
123. J. L. Ericksen, Constitutive Theory for some Constrained Elastic Crystals
124. Minoh Masuda, Positive solutions of Schrödinger Equations
125. John W. L. P. Perry, A Model for Twinning
127. William Zame, Equilibria in Production Economies with an Infinite Dimensional Commodity Space
128. Myra Holtz Wooders, A Tiebout Theorem
130. Abstracts for the Workshop on Theory and Applications of Liquid Crystals
131. Yoshikazu Giga, A Remark on A Priori Bounds for Global Solutions of Semilinear Heat Equations
133. P. L. Lions and P.E. Souganidis, Differential Games and Directional Derivatives of Viscosity Solutions of Isaacs' Equations II
134. G. Capriz and P. Giovine, On Virtual Effects During Diffusion of a Dispersed Medium in a Suspension
135. Fall Quarter Seminar Abstracts
136. Umberto Mosco, Wiener Critierion and Potential Estimates for the Obstacle Problem
137. Chi-Sing Man, Admissible States, Negative Absolute Temperature, and the Entropy Maximum Principle
138. Abstracts for the Workshop on Oscillation Theory, Computation, and Methods of Compensated Compactness
139. Arle Lelartzowitz, Tracking Nonperiodic Trajectories with the Overturning Criterion
140. Arle Lelartzowitz, Convex Sets in \mathbb{R}^n as Affine Images of some Fixed Set in \mathbb{R}^n
141. Arle Lelartzowitz, Stochastic Tracking with the Overturning Criterion
142. Abstracts from the Workshop on Amorphous Polymers and Non-Newtonian Fluids
143. Winter Quarter Seminar Abstracts
144. D.G. Aronson and J.L. Vazquez, The Porous Medium Equation as a Finite-speed Approximation to a Hamilton-Jacobi Equation
145. E. Sanchez-Palencia and W. Weinberger, On the Edge Singularities of a Composite Conducting Medium
147. Chi-Sing Man and W. Cohen, A Coordinate-Free Approach to the Kinematics of Membranes
148. J.-L. Lions, Asymptotic Problems in Distributed Systems
149. Rainer Lauterbach, An Example of Symmetry Breaking with Submaximal Isotropy Subgroup
150. Abstracts from the Workshop on Metastability and Incompletely Posed Problems
151. B. Bozec-Karakiewicz and Jerry Bone, Wave-dominated Shelves: A Model of Knowledge Formation by Progressive Infragrowth Waves
152. Abstracts from the Workshop on Dynamical Problems in Continuum Physics
153. V. I. Oliker, The problem of Embedding S^2 into \mathbb{R}^n with Prescribed Gauss
154. R. Bertsch, The force on a Lattice Defect in an Elastic Body
155. J. Fleckinger and Michael Lapidus, Eigenvalues of Elliptic Boundary Value Problems with and Infinite Weight Function
156. K. Kohshi and M. Voggelis, Thin Plates with Rapidly Varying Thickness, and Their Relation to Structural Optimization
157. Michael C. Gurtin, Some Results and Conjectures in the Gradient Theory of Phase Transitions
158. A. Novik-Cohen, Energy Methods for the Cahn-Hilliard Equation
159. W. Biroli and U. Mosco, Wiener Estimates for Parabolic Obstacle Problems
160. E. Bennett and W. Zame, Prices and Bargaining in Cooperative Games
161. W.A. Harris and Y. Silberberg, The n-th Roots of Solutions of Linear Ordinary Differential Equations
162. William L. B. Beatty, Some Dynamic Problems in Continuum Physics
163. P. Berman and D. Phillips, Large-Time Behavior of Solutions to a Scalar Conservation Laws in Several Space Dimensions
164. A. Novik-Cohen, Interior Instabilities in Directional Solidification of a Purely Conducting Ball: The Kuram-yellow-Sivashinsky Equation
165. H.F. Weinberger, On Metastable Patterns in Peridynamic Systems
166. D. Arnold and R.S. Falk, Continuous Dependence on the Elastic Coefficients for a Class of Anisotropic Materials
168. Ingo Muller, Stress and Rubbers
169. Ingo Muller, Pseudoelasticity in Shape Memory Alloys - an Extreme Case of Thermomelastics
170. Luigi Magisterra, Persistence and Smoothness of Hyperbolic Invariant Manifolds for Functional Differential Equations
171. A. Dembo, M. B. Vaugel, and E. B. Saff, Homogenization Limits of the Equations of Elasticity in Thin Domains
173. J.L. Vazquez and C. Yarur, Isolated Singularities of the Solutions of the Schrödinger Equation with a Radial Potential
174. G. Dal Maso and U. Mosco, Wiener's Criterion and T-Convergence
175. John H. Maddocks, Stability and Folds
176. R. Hardt and D. Kinderlehrer, Existence and Partial Regularity of Static Liquid Crystal Configurations
177. M. Morozuk, Construction of Smooth Ergodic Cocycles for Systems with Fast Periodic Approximations
178. J.L. Ericksen, Stable Equilibrium Configurations of Elastic Crystals
179. Phase Transitions Behavior of Solutions of Some Elliptic Equations
181. R. Pego, Phase Transitions: Stability and Admissibility In One Dimensional Nonlinear Viscoelasticity
182. Mariano Giaquinta, Quadratic Functions and Partial Regularity
183. J. Bona, Fully Discrete and Galerkin Methods for the Korteweg De Vries Equation
184. J. Maddocks and J. Keller, Mechanics of Robes
185. F. Bernals, Qualitative Properties for some nonlinear higher order
186. F. Bernals, Finite Speed of Propagation and Asymptotic Rates for some Nonlinear Higher Order Parabolic Equations with Absorption
187. S. Reichlestein and S. Ralston, Some Forms with Minimal Strategy Spaces
188. T. Dlouhy, An Answer to Littlewood's Problem on Boundlessness
189. J. Rubinstein and R. Maunsell, Dispersion and Convection in Periodic Media
191. H. Bieras De Vasco, Existence and Asymmetric Stability for Strong Solutions of the Equation in the Whole Space
192. L.A. Caffarelli, J.L. Vazquez, and M.I. Velasco, Lipschitz Continuity of Solutions and Interfaces of the N-Dimensional Porous Medium Equation
193. R.J. Parnell and M. M. Smith, Functions and Floquet Exponents for Linear Difference Systems
194. R. Atkinson and J.A. Peletier, Ground States and Dirichlet Problems for $-\Delta u = fu$ in \mathbb{R}^n
195. G. Dal Maso and W. Mosco, The Wiener Modulus of a Radial Measure
196. H. A. Levine and W. Weinberger, Inequalities between Dirichlet and Neumann Eigenvalues
197. J. Rubinstein, On the Macroscopic Description of Slow Viscous Flow Past a Random Array of Spheres
198. G. Dal Maso and M. Mosco, Wiener Criteria and Energy Decay for Relaxation Dirichlet Problems
1. Background

Let $\Omega \subset \mathbb{R}^m$ be a bounded open set. Let $M^{n \times m}$ denote the set of real $n \times m$ matrices and suppose that $W: M^{n \times m} \to \overline{\mathbb{R}}$ is Borel measurable and bounded below. (Here $\overline{\mathbb{R}}$ denotes the extended real line with its usual topology.) We are interested in the problem of minimizing

$$I(u) = \int_{\Omega} W(Du(x))dx$$ \hspace{1cm} (1.1)

among functions $u \in W^{1,1}(\Omega; \mathbb{R}^n)$ satisfying appropriate boundary conditions. An important application is to nonlinear elasticity, when $W = W(A)$ is the stored-energy function of a homogeneous material and $u(x)$ is the deformed position of the particle at $x \in \Omega$ in a reference configuration; in this case we usually take $m = n = 3$, but the cases $1 < m < n < 3$ are also of interest and cover certain string and membrane problems. It is convenient to allow W to take the value $+\infty$ so as to include various constraints. In compressible nonlinear elasticity $(m = n = 3)$, for example, we may set $W(A) = +\infty$ for $\det A < b$, where $b > 0$ is a constant, to reflect the fact that infinite energy is required to make a reflection of the body or to homogeneously compress it to b times its original volume. Similarly, for an incompressible material it is convenient to set $W(A) = +\infty$ if and only if $\det A \neq 1$.

Connected with the existence and properties of minimizers for (1.1) are certain convexity conditions on W. Two of these conditions are rank-one convexity and quasiconvexity, and as we shall see the question raised in the title amounts roughly to asking whether they are the same. This has been an open problem since quasiconvexity was introduced by Morrey [21] over 30 years ago.
Most of the material in the paper is drawn from the existing literature, though the remarks in §6, §8(b), (c) are perhaps new.

2. Definitions

Let \(A \in M^{n \times m} \). We say that \(W \) is **rank-one convex at \(A \)** if

\[
W(A) \leq tW(A_1) + (1 - t)W(A_2)
\]

whenever \(t \in [0,1] \), \(A = tA_1 + (1 - t)A_2 \) and \(A_1, A_2 \in M^{n \times m} \) with \(A_2 - A_1 = \lambda \otimes \mu \) for some vectors \(\lambda \in \mathbb{R}^n \), \(\mu \in \mathbb{R}^m \). We say that \(W \) is **rank-one convex** if it is rank-one convex at every \(A \in M^{n \times m} \); equivalently, \(W \) is convex along all line segments in \(M^{n \times m} \) whose end-points differ by a matrix of rank one.

Replacing \(\lambda \) by \(\frac{-\lambda}{1-t} \) in (2.1) we see that \(W \) is rank-one convex at \(A \) if and only if

\[
W(A) \leq tW(A + \lambda \otimes \mu) + (1 - t)W(A - \frac{t}{1-t} \lambda \otimes \mu)
\]

for all \(t \in (0,1) \), \(\lambda \in \mathbb{R}^n \), \(\mu \in \mathbb{R}^m \). If \(W \) is finite in a neighbourhood of \(A \) and differentiable at \(A \) it follows easily that \(W \) is rank-one convex at \(A \) if and only if

\[
W(A + \lambda \otimes \mu) > W(A) + \nabla W(A)(\lambda \otimes \mu)
\]

for all \(\lambda \in \mathbb{R}^n \), \(\mu \in \mathbb{R}^m \). If in addition \(W \) is twice differentiable at \(A \) then (2.3) implies that the **Legendre-Hadamard condition**

\[
D^2 W(A)(\lambda \otimes \mu, \lambda \otimes \mu) = \frac{\partial^2 W(A)}{\partial \lambda^i \partial \lambda^j} \mu^i \mu^j > 0
\]

for all \(\lambda \in \mathbb{R}^n \), \(\mu \in \mathbb{R}^m \)

holds. Conversely, suppose that

\[
\text{dom } W := \{ A \in M^{n \times m} : W(A) < \infty \}
\]
is a rank-one convex set (i.e. $tA_1 + (1 - t)A_2 \in \text{dom } W$ whenever $A_1, A_2 \in \text{dom } W$, $A_2 - A_1 = \lambda \otimes \mu$, $t \in [0,1]$) and open, that $W \in C^2(\text{dom } W)$ and that (2.4) holds for all $A \in \text{dom } W$. Then by integrating $\frac{d^2}{dt^2} W(A + tA_1 \otimes \mu)$ twice we see that W is rank-one convex.

For $1 < p < \infty$ and $E \subset \mathbb{R}^n$ a bounded open set we denote by $W^{1,p}(E; \mathbb{R}^n)$ the Sobolev space of all weakly differentiable mappings $u: E \rightarrow \mathbb{R}^n$ such that $\frac{\|u\|_{L^p(E; \mathbb{R}^n)}}{\|Du\|_{L^p(E; M_n^{\mathbb{R}^n})}} < \infty$, and by $W^{1,p}_0(E; \mathbb{R}^n)$ the subset of $W^{1,p}(E; \mathbb{R}^n)$ consisting of those u vanishing in the usual sense (cf. [9, p. 277]) on the boundary ∂E of E.

Let $A \in M_n^{\mathbb{R}^n}$. We say that W is $W^{1,p}$-quasiconvex at A if
\[
\int_{E} W(A + D\phi(x)) dx > \int_{E} W(A) dx = (\text{meas } E) W(A)
\]
for every bounded open set $E \subset \mathbb{R}^n$ with $\text{meas } \partial E = 0$ and all $\phi \in W^{1,p}_0(E; \mathbb{R}^n)$, and that W is $W^{1,p}$-quasiconvex if it is $W^{1,p}$-quasiconvex at every $A \in M_n^{\mathbb{R}^n}$. If $p = \infty$ we abbreviate $W^{1,\infty}$-quasiconvex to quasiconvex.

The definition of quasiconvexity was introduced by Morrey [21]; the generalization to $W^{1,p}$-quasiconvexity was made in [9]. The definition is independent of E in the following sense; if (2.5) holds for one nonempty bounded open set $E \subset \mathbb{R}^n$, some $A \in M_n^{\mathbb{R}^n}$ and all $\phi \in W^{1,p}_0(E; \mathbb{R}^n)$ then W is $W^{1,p}$-quasiconvex at A (see [20, 9 Prop. 2.3]). Clearly if $1 < p < q < \infty$ and W is $W^{1,p}$-quasiconvex at A then W is $W^{1,q}$-quasiconvex at A.

The open question posed in the title can now be stated precisely: is every rank-one convex function W quasiconvex? Alternatively one can modify the question by adding the hypothesis that W be continuous (or finite and continuous). Whether adding such regularity hypotheses could affect the answer is not obvious.

3. Quasiconvexity Implies Rank-One Convexity

Suppose that in (2.5) we take the function ϕ to be piecewise affine, so that E is the disjoint union of a finite number N of open simplices E_i and a set of measure zero and $D\phi(x) = A_i - A$ for a.e. $x \in E_i$ where $A_i \in M_n^{\mathbb{R}^n}$.
is constant. An example with \(m = n = 2 \) is illustrated in Figure 3.1 above. Let \(\lambda_i = \frac{\text{meas } E_i}{\text{meas } E} \), so that \(\sum_{i=1}^{N} \lambda_i = 1 \). Then
\[
A = \frac{1}{\text{meas } E} \int_E D(Ax + \phi(x))dx = \sum_{i=1}^{N} \lambda_i A_i,
\]
and (2.5) becomes
\[
W(\sum_{i=1}^{N} \lambda_i A_i) \leq \sum_{i=1}^{N} \lambda_i W(A_i).
\]
Conversely, for a polyhedral domain \(E \) and any \(\phi \in W_0^{1,\infty}(E;\mathbb{R}^n) \) there exists a bounded sequence \(\phi(j) \in W_0^{1,\infty}(E;\mathbb{R}^n) \) of piecewise affine functions such that \(\phi(j) \to \phi \) uniformly and \(D\phi(j)(x) \to D\phi(x) \) a.e. in \(E \) (cf. [14, Chap. X]).

Therefore, for \(W \) finite and continuous, quasiconvexity at \(A \) is equivalent to the convexity condition (3.2) holding for all piecewise affine functions. If the matrices \(A_i \) were independent then (3.2) would be equivalent to convexity of \(W \) at \(A \). They are not independent, however, because together they form the gradient of a mapping; to understand the resulting compatibility conditions we recall an observation of Hadamard.

Let \(S \) be a smooth \((m-1) \)-dimensional surface with normal \(\nu \) at the point \(x \in S \). Let \(N \) be a neighbourhood of \(x \) in \(\mathbb{R}^m \) and suppose that \(u:N \to \mathbb{R}^n \) is continuous across \(S \) and \(C^1 \) on either side of \(S \). Let \(A, B \) denote the limits at \(x \) of \(Du \) from either side of \(S \). Equating the tangential derivatives at \(x \) we find that
for some $\lambda \in \mathbb{R}^n$. Thus for a piecewise affine function the gradient jumps by a matrix of rank < 1 across the faces of adjoining simplices.

By choosing E to be a rectangular parallelopiped, considering piecewise affine functions with just one interior node, and using the argument of Morrey [21, p. 45], we obtain the following result.

Theorem 3.1

Let $A \in M^{n \times m}$. Suppose that W is quasiconvex at A, that $W(A) < \infty$ and that W is continuous at A. Then W is rank-one convex at A.

As observed in [9, p. 232], it follows that if W is continuous (with values in \mathbb{R}) and quasiconvex then W is rank-one convex. Thus for continuous W quasiconvexity is equivalent to convexity when $m = 1$ or $n = 1$. Without some continuity assumption Theorem 3.1 is false, as shown by the example (see [9, p. 232])

$$W(0) = W(a \otimes b) = 0, \quad W(A) = +\infty \text{ otherwise,}$$

where $a \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ are given nonzero vectors and $m > 1$. As discussed in [9] the moral of this example is perhaps that for general W taking infinite values some other version of the quasiconvexity condition (for example, one based on weak lower semicontinuity or that in [7]) should be taken as the basic definition. However this issue is not crucial for the main problem discussed in this paper which is unresolved even for smooth integrands.

4. Quasiconvexity as a Necessary Condition Satisfied by a Minimizer

Let $x_0 \in \Omega$. We say that $u \in W^{1,1}(\Omega; \mathbb{R}^n)$ is a strong local minimizer of I at x_0 if there are numbers $\rho > 0$, $\varepsilon > 0$ such that $I(v) > I(u)$ whenever $v \in W^{1,1}(\Omega; \mathbb{R}^n)$ with $v(x) = u(x)$ for a.e. $x \in \Omega$ satisfying $|x - x_0| > \rho$ and $|v(x) - u(x)| < \varepsilon$ for a.e. $x \in \Omega$.

A version of the following result was first proved by Meyers [20] (see also
Theorem 4.1

Assume W is continuous on $\text{dom } W$. Let $x_0 \in \Omega$ and let u be a strong local minimizer of I at x_0. Suppose further that u is C^1 in a neighbourhood of x_0 with $Du(x_0) = A$ and $W(A) < \infty$. Then

$$\int_E W(A + D\phi(x))dx > \int_E W(A)dx$$

(4.1)

for all bounded open subsets $E \subset \mathbb{R}^n$ and all $\phi \in W^{1,\infty}_0(E;\mathbb{R}^n)$ such that

$$\text{ess sup } W(A + D\phi(x)) < \infty.$$

$x \in E$

Idea of proof

We 'blow up' the minimization problem in a neighbourhood of x_0, so that u becomes linear. This is done by defining, for $\varepsilon > 0$ sufficiently small,

$$u_\varepsilon(x) = u(x) + \varepsilon \tilde{\phi}\left(\frac{x - x_0}{\varepsilon}\right),$$

where $\tilde{\phi}$ is ϕ extended by zero outside E, making the change of variables $x - x_0 = \varepsilon y$, and letting $\varepsilon \to 0$ in the inequality $I(u_\varepsilon) > I(u)$.

Refinements of Theorem 4.1, including treatment of the case when $x_0 \in \partial \Omega$, are given in [8]. The condition (4.1) says roughly that W is quasiconvex at A, and this follows if W does not take the value $+\infty$. The proof of Theorem 3.1 still applies and gives the following result.

Corollary 4.2 (Graves [16])

Let the hypotheses of Theorem 4.1 hold. Then W is rank-one convex at A.

In view of the above discussion it would be very interesting (i) to give useful necessary and/or sufficient conditions for W to be quasiconvex at A, and (ii) to identify quasiconvexity at the values of $Du(x)$ as one of a set of sufficient conditions for u to be a local minimizer of I in, say, $W^{1,p}(\Omega;\mathbb{R}^n)$.
5. Other Roles Played by Rank-One Convexity and Quasiconvexity

Quasiconvexity was introduced by Morrey in connection with the direct method of the calculus of variations. In [21] he showed that if W is finite and continuous then quasiconvexity of W is a necessary condition for I to be sequentially weakly lower semicontinuous on $W^{1,\infty}(\Omega;\mathbb{R}^n)$. (The same argument shows in general [9, p. 230] that $W^{1,p}_\Omega$-quasiconvexity of W is necessary for I to be sequentially weakly (weak * if $p = \infty$) lower semicontinuous on $W^{1,p}(\Omega;\mathbb{R}^n)$.) He then showed that quasiconvexity is sufficient for I to be sequentially weakly lower semicontinuous on $W^{1,1}(\Omega;\mathbb{R}^n)$ provided W also satisfies certain growth conditions. Extensions of this result can be found in [20,1,19], but unfortunately they cannot be used to prove the existence of minimizers for I in nonlinear elasticity since they assume that W is everywhere finite. At present the only existence theorems applying to elasticity [3,7,9] allow W to be singular at the expense of assuming that W is polyconvex, i.e. W can be written as a convex function of minors of A of all orders r, $1 < r < \min(m,n)$. Polyconvexity implies quasiconvexity, but the converse is false [21,25,23,6].

Quasiconvexity is necessary for the existence of minimizers to certain perturbations of I. In fact the following result is proved in [9, Thm 5.1].

Theorem 5.1

Let $1 < p < \infty$, $A \in M^{m \times m}$ and $\chi_A = \{u \in W^{1,p}(\Omega;\mathbb{R}^n) : u - Ax \in W^{1,p}_\Omega(\Omega;\mathbb{R}^n)\}$. Let $\phi:[0,\infty) \to \mathbb{R}$ be bounded and continuous with $\phi(0) = 0$, $\phi(t) > 0$ for $t > 0$, and set $\psi(x,u) = \phi(|u - Ax|^2)$. Assume meas $\partial \Omega = 0$. If

$$J(u) := \int_\Omega [W(Du) + \phi(x,u)]dx$$ \hspace{1cm} (5.1)

attains an absolute minimum on χ_A then W is $W^{1,p}_\Omega$-quasiconvex at A.

For a given W and boundary conditions I may or may not attain a minimum. In either case it is of interest to study the behaviour of minimizing sequences of I, and it has been shown by Acerbi & Fusco [1], Dacorogna [12] (see also [2,17,13]) that they possess subsequences converging weakly in $W^{1,1}(\Omega;\mathbb{R}^n)$ to
minimizers of the relaxed functional

\[
\tilde{T}(u) := \int_{\Omega} W(Du(x)) \, dx,
\]

(5.2)

where \(W \) denotes the supremum of all quasiconvex functions less than \(W \). Again these results do not apply to elasticity on account of the strong growth hypotheses made.

The Euler-Lagrange equations for \(I \) are given by

\[
\frac{\partial}{\partial x^\alpha} \frac{\partial W}{\partial A^\alpha} (Du) = 0, \quad i = 1, \ldots, n.
\]

(5.3)

By definition, these equations are strongly elliptic if (2.4) holds for all \(A \) with equality only if \(\lambda \otimes \mu = 0 \). The slightly weaker condition of strict rank-one convexity (i.e. rank-one convexity with equality in (2.1) only if \(\lambda \otimes \mu = 0 \) or \(t = 0, 1 \)) is necessary, and nearly sufficient, for there to be no piecewise \(C^1 \) weak solution of (5.3) whose gradient jumps across a smooth (m-1)-dimensional surface (for the details see [4]). Neither strong ellipticity nor strict quasiconvexity are sufficient to prevent weak solutions having other types of singularities, such as that occurring in cavitation [5]. However, recently Evans [15] has proved a partial regularity result for absolute minimizers of \(I \) under a strict quasiconvexity hypothesis. Although he assumes \(W \) is everywhere finite, his theorem offers the first hope of a regularity theorem applying to nonlinear elasticity.

6. Rank-One Convexity at \(A \) Does not Imply Quasiconvexity at \(A \)

Let \(m > 1, n > 1 \). Then the closed cone

\[
\Lambda := \{ \lambda \otimes \mu : \lambda \in \mathbb{R}^n, \mu \in \mathbb{R}^m \}
\]

is a proper subset of \(M^{n \times m} \). Let \(A \in M^{n \times m} \) and let \(B \) be an open ball contained in \(M^{n \times m} \setminus (A + \Lambda) \). Let \(W \in C^\infty(M^{n \times m}) \) be negative in \(B \) and zero otherwise. Since \(W \) is zero on \(A + \Lambda \) it follows that \(W \) is rank-one convex at \(A \).

However, by choosing \(\phi \in W^{1, \infty}_0(E; \mathbb{R}^n) \) such that \(A + \nabla \phi(x) \in B \) on a set of posi-
tive measure we can violate (2.5), so that \(W \) is not quasiconvex at \(A \). This simple remark shows that in general Theorem 4.1 provides a stronger necessary condition than that of Graves.

The above example is easily adapted so as to apply to isotropic nonlinear elasticity with \(m = n > 1 \). The isotropy is expressed by the requirement that

\[
W(A) = \phi(v_1, \ldots, v_n), \quad A \in \mathbb{M}^{n \times n}
\]

(6.1)

for some symmetric function \(\phi \) of the singular values \(v_i = v_i(A) \) of \(A \) (the eigenvalues of \((A^T A)^{1/2} \)). Let \(A = 1, e = (1,1,\ldots,1) \in \mathbb{R}^n, \gamma > 1, \epsilon > 0 \), and let \(\phi \in \mathcal{C}^\infty(\mathbb{R}^n) \) be such that \(\phi(v) < 0 \) for \(|v - \gamma e| < \epsilon \), \(\phi(v) = 0 \) otherwise. We claim that for \(\epsilon \) sufficiently small, \(W(1 + \lambda \otimes \mu) = 0 \) for all \(\lambda, \mu \in \mathbb{R}^n \). If not, there would exist a sequence \(v^{(r)} \) converging to \(\gamma e \) in \(\mathbb{R}^n \), orthogonal matrices \(O^{(r)}, R^{(r)} \), and vectors \(\lambda^{(r)}, \mu^{(r)} \in \mathbb{R}^n \) such that

\[
1 + \lambda^{(r)} \otimes \mu^{(r)} = O^{(r)} (\text{diag } v^{(r)}) R^{(r)}.
\]

(6.2)

Extracting convergent subsequences and passing to the limit we find that

\[
1 + \lambda \otimes \mu = \gamma O
\]

(6.3)

for some \(\lambda, \mu \in \mathbb{R}^n \) and orthogonal matrix \(O \). This is easily seen to be impossible (for example, by evaluating \(OO^T \) and \(O^T O \)). We have thus shown that for \(\epsilon > 0 \) sufficiently small \(W \) is rank-one convex at \(1 \), and the same arguments as before shows that \(W \) is not quasiconvex at \(1 \). Note that by adding to \(\phi \) a term \(\phi_\delta \), where \(\delta > 0 \) is sufficiently small, we can arrange that \(W \) satisfies any desired growth conditions as \(|A| = \infty \), \(\det A = 0^+ \), and that \(W \) be strictly rank-one convex, but not quasiconvex, at \(1 \).

7. The Evidence Against

We collect together some remarks which might suggest that rank-one convexity does not imply quasiconvexity.
(a) The inequalities (3.2) arising from writing down the quasiconvexity condition for piecewise affine functions \(\phi \) do not obviously follow from rank-one convexity (for example, in the case discussed in [3, p. 355], where there are 3 interior nodes). A possible riposte to this, suggested by the results of Tartar [24] on separately convex functions, is that to derive (3.2) from rank-one convexity it may be necessary to use values of the deformation gradient other than those taken by \(A + D\phi(x) \).

(b) The analogous statement to 'rank-one convexity implies quasiconvexity' for integrands depending on higher derivatives of \(u \) is false. It is shown in [7, p. 146] that if \(m = 2, n = 3 \) and

\[
W(D^2u) = \epsilon_{ijk} u^i_{11} u^j_{12} u^k_{22},
\]

where \(\epsilon_{ijk} \) is the usual permutation symbol, then the map

\[
t + W(A + t\lambda \otimes u \otimes u)
\]

is affine for every \(A = (A^i_{\alpha\beta}) \), \(\lambda \in \mathbb{R}^3 \), \(\mu \in \mathbb{R}^2 \), where \((\lambda \otimes u \otimes u)_{\alpha\beta} := \lambda^i \mu^j \alpha^\beta \), but \(W \) does not satisfy the quasiconvexity condition

\[
\int_E W(A + D^2\phi(x))dx > \int_E W(A)dx
\]

for all \(\phi \in W^{2,\infty}_0(E; \mathbb{R}^3) \), for any \(A \).

(c) Rank-one convexity does not imply \(W^{1,p} \)-quasiconvexity in general. For example, if \(m = n > 3 \) and

\[
W(A) = \text{tr}(A^TA) + (\det A)^2,
\]

Then (see [3,9]) \(W \) is polyconvex, and thus quasiconvex, but is not \(W^{1,p} \)-quasiconvex if \(1 < p < n \).
8. The Evidence in Favour

The following remarks might suggest that rank-one convexity does imply quasiconvexity.

(a) If W is quadratic, that is

$$W(A) = c_{ij} a_i^j a_j^i$$ \hspace{1cm} (8.1)

for constants c_{ij}, and rank-one convex then W is quasiconvex. The only proof that seems to be known for this fact (see [26,22]) is to show that

$$I(\phi) = \int_E c_{ij} \phi_i^j \phi_j^i \, dx > 0$$

for all $\phi \in H^1_0(E;\mathbb{R}^n)$ by extending ϕ by zero outside E, taking Fourier transforms and using Plancherel's formula. Functions W formed by combining polyconvex and quadratic functions seem to be the only known examples of quasiconvex functions.

(b) For isotropic nonlinear elasticity, rank-one convexity implies that the quasiconvexity inequality holds for radial deformations.

Taking $m = n = 3$, for example, with $B = \{x \in \mathbb{R}^3: |x| < 1\}$, a radial deformation $u: B \to \mathbb{R}^3$ is one having the form

$$u(x) = \frac{r(R)}{R} x, \quad R = |x|, \hspace{1cm} (8.2)$$

where $r: [0,1] \to [0,\infty)$. If $u \in W^{1,\infty}(R;\mathbb{R}^3)$ with $\det Du(x) > 0$ a.e. $x \in B$ then $r \in W^{1,\infty}(0,1)$ with $r(0) = 0$, $r'(R) > 0$, a.e. $R \in (0,1)$ and

$$\sup_{R \in (0,1)} \frac{r(R)}{R} < \infty \hspace{0.5cm} (\text{cf. [5, p. 566]})$$

If the stored-energy function $W \in C^1(M^3_{+}^{3 \times 3})$, then there exists a symmetric function $\Phi = \Phi(v_1,v_2,v_3)$, defined and continuously differentiable for positive arguments, of the singular values v_1,v_2,v_3 of A. For a radial deformation (8.2) these singular values are given by $r'(R), \frac{r(R)}{R}$ and $\frac{r(R)}{R}$. Hence
\[\int_{W(D_u(x))} dx = \frac{1}{4\pi} \int_{R^2} \phi(r', \frac{r}{R}, \frac{r}{R}) dR. \]

Taking \(A = \text{diag}(v_1, v_2, v_3) \), \(\lambda, \mu \) parallel to the \(x^i \)-axis \((i = 1, 2, 3) \), it follows from (2.3), as is well known, that \(W \) rank-one convex implies that \(\phi \) is convex in each \(v_i \) separately. Hence

\[\phi(r', \frac{r}{R}, \frac{r}{R}) > \phi(r', \frac{r}{R}, \frac{r}{R}) + (r' - \frac{r}{R}) \phi_1(r', \frac{r}{R}, \frac{r}{R}), \]

a.e. \(R \in (0, 1) \).

We now note that

\[\frac{d}{dR} \left[\frac{R^3}{2} \phi(r', \frac{r}{R}, \frac{r}{R}) \right] = R^2 \left[\phi(r', \frac{r}{R}, \frac{r}{R}) + (r' - \frac{r}{R}) \phi_1(r', \frac{r}{R}, \frac{r}{R}) \right], \]

a.e. \(R \in (0, 1) \).

Combining (8.3)-(8.5) we deduce that for a radial deformation \(u \in W^{1, \infty}(B; R^3) \) with \(\det Du(x) > 0 \) a.e. \(x \in B \) and satisfying

\[u(x) = \lambda x, \ x \in \partial B, \]

we have

\[\int_{W(D_u(x))} dx > \frac{1}{4\pi} \int_{R^2} \phi(\lambda, \lambda, \lambda) dR = \int_{W(\lambda)} dx, \]

which is the required quasiconvexity inequality. For related results see [5, §6.3, 18].

The above argument can be thought of as an application of the field theory of the calculus of variations [10], the extremal \(\overline{r}(R) = \lambda R \) being regarded as embedded in the global field of extremals \(r(R) = \mu R, \ \mu > 0 \). The slope function of this field is given by \(p(R, r) = r/R \) and (8.4) expresses the positivity of the corresponding Weierstrass excess function.

It is instructive to note that in (8.4) rank-one convexity is applied at matrices whose choice is not at all evident a priori, and which do not form the gradient of a deformation.
(c) We present a plausibility argument that rank-one convexity implies quasiconvexity in general. For simplicity we suppose that \(W \in C^2(M^{n \times m}) \). The argument is based on the following interesting result of Knops & Stuart [18].

Theorem 8.1

Let \(\Omega \subset \mathbb{R}^m \) be a bounded, star-shaped domain with smooth boundary. Let \(W \) be rank-one convex, let \(A \in M^{n \times m} \) and let \(u \in C^2(\overline{\Omega}; \mathbb{R}^n) \cap C^1(\Omega; \mathbb{R}^n) \) be a solution to the Euler-Lagrange equation

\[
\frac{\partial}{\partial x^\alpha} \frac{\partial W}{\partial A_{\alpha}} (Du) = 0, \quad x \in \Omega, \tag{8.8}
\]

satisfying

\[
u(x) = Ax, \quad x \in \partial \Omega. \tag{8.9}
\]

Then

\[
I(u) < I(Ax). \tag{8.10}
\]

Suppose that \(W \) is rank-one convex but not quasiconvex. Then there exist \(A \in M^{n \times m} \) and \(\overline{\phi} \in W^{1, \infty}(\Omega; \mathbb{R}^n) \) such that

\[
I(Ax + \overline{\phi}) < I(Ax). \tag{8.11}
\]

Define, for \(\epsilon > 0 \),

\[
W_\epsilon(A) = W(A) + \epsilon \text{tr} (A^T A), \tag{8.12}
\]

\[
I_\epsilon(u) = \int_\Omega W_\epsilon(Du(x))dx. \tag{8.13}
\]

Then

\[
I_\epsilon(Ax + \overline{\phi}) < I_\epsilon(Ax), \tag{8.14}
\]

provided \(\epsilon \) is sufficiently small. With \(\epsilon \) so chosen, and assuming as we may
that \(\Omega \) is star-shaped with smooth boundary, we note that by the argument in (a) the second variation

\[
\delta^2 I_\varepsilon(Ax)(\phi, \phi) := \frac{d^2}{dt^2} I_\varepsilon(Ax + t\phi)|_{t=0}
\]

\[
> 2\varepsilon \int_\Omega |\nabla \phi|^2 dx.
\]

Hence [26,8] the linear map \(Ax \) minimizes \(I_\varepsilon \) locally in \(W^{1,\infty}(\Omega; \mathbb{R}^n) \) subject to the boundary condition (8.9). If we could apply an approximate 'mountain-pass' lemma we could conclude from (8.14) that there exists a critical point \(u \) of \(I_\varepsilon \) with \(I_\varepsilon(u) > I_\varepsilon(Ax) \). If we could also assert that \(u \) had sufficient regularity for Theorem 8.1 to hold then we would have a contradiction to Theorem 8.1, applied to the rank-one convex function \(W_\varepsilon \).

Examination of the proof of Theorem 8.1 shows that, as in (b), the rank-one convexity of \(W \) is applied in the above argument at some matrices, \(A \) and \(Nu(x) \), whose choice was not evident a priori.

9. Concluding Quotations

We end by quoting two passages from the work of Morrey concerning the problem discussed in this paper; the terminology has been altered to conform with ours.

(From Morrey [21]) 'It would seem that there is still a wide gap in the general case between the necessary and sufficient conditions for quasi-convexity which the writer has obtained. In fact, after a great deal of experimentation, the writer is inclined to think that there is no condition of the type discussed, which involves \(W \) and only a finite number of its derivatives, and which is both necessary and sufficient for quasi-convexity in the general case'.

(From Morrey [22]) 'It is an unsolved problem to prove or disprove the theorem that every rank-one convex function of \(Nu \) is quasi-convex'.
ACKNOWLEDGEMENT

This paper was completed following a visit to the Institute for Mathematics and its Applications, University of Minnesota. I would like to thank the members of the Institute, and especially Jerry Ericksen & David Kinderlehrer, for their hospitality and lively interaction. The research was also partially supported by a U.K. Science & Engineering Research Council Senior Fellowship.

References

15. L.C. Evans, 'Quasiconvexity and partial regularity in the calculus of variations', preprint.

24. L. Tartar, conference in the workshop, Metastability and incompletely posed problems.
