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Abstract 

 

The solution of the multiple minima appear in many, many places of the scientific literature. 

There are many theories and computational approaches. But in our knowledge until now 

there is not a solution from a theoretical point of view. By this we mean that a technical 

formulation and the corresponding solution did not exist, up today. In this paper we solve it 

by taking into consideration the envelope. We construct recursively from a dimension to 

another the envelope. In each step we solve a multiple minima and so on. In this way by 

moving the “slides” obtained from the original functions, constructively we archive the goal.  

A technical fact is solving in each step a multiple minima of one dimension and on this way 

we move to the global minima. This method is completely new, and indeed we solve the 

theoretical problem. For them we reach the minimum of the envelope and at the same time 

to the minimum absolute of the function. 

From now on one has to take into consideration the construction of the global 

envelope.There exist several studies about the envelopes. Bibliography articles about the 

matter of the envelope are to be very important and for the previous matter are going to be 

very important. We relate as bibliography various references. Finally the tool used here 

was the Kakutani’s fix point theorem. 

 

Introduction 

 

∗ Emeritus Professor National University of San Luis (UNSL) 
San Luis, Argentina.Founder and First Director of the Insituto de MatemáticaAplicada San Luis (IMASL) 
(ex) Superior Resercher CONICET. Email: emarchi1940@gmail.com 
 

1 
 

                                                           



Empirical conformational energy functions are used to try to compute the three-

dimensional structures of polypeptides and proteins. 

The conformational energy surfaces of such molecules have many local minima, and 

conventional energy minimization procedures reach only a local minimum (near the 

starting point of the optimization algorithm) instead of the global minimum (the multiple-

minima problem). Several procedures have been developed to surmount this problem. A 

summary is given here of five of these methods,(i) build-up,(ii) Monte Carlo-plus-

minimization(MCM),(iii) relaxation of dimensionality,(iv) pattern-recognition-based 

importance-sampling minimization(PRISM), and surface, leaving only the potential well 

containing the global minimum, these and other procedures have been applied to a variety 

of polypeptide structural problems. These include the computation of the structures of 

open-chain and cyclic peptides, fibrous proteins and globular proteins. Present efforts are 

being devoted to scaling up these procedures from small polypeptides to proteins, to try to 

compute the three-dimensional structure of a protein from its amino sequence. 

Ever since Anfinsen demonstrated that proteins fold spontaneously to achieve their native 

conformation, attempts have been made to try to compute the three-dimensional structure 

of a native protein as the one for which the free energy of the system (protein plus solvent) 

is a minimum. Empirical potential functions and procedures for generations and 

minimization procedures are available, a difficult problem that had to be surmounted arose 

from the presence of many local minima in the conformational energy surface (the 

multiple-minima problem).[1] 

The multiple-minima problem is a severe one in the use of energy minimization in 

calculations of molecular conformation. Current minimization algorithms are very efficient 

in finding local minima but, having found a local minimum, are then trapped in the potential 

well of that minimum. Various approaches to the multiple-minima problem have been 

suggested in several recent papers. The build-up procedure is essentially an efficient and 

systematic search of the conformational energy space by a judicious choice of starting 

conformations from which to carry out minimizations. The Monte Carlo approach avoids 

minimization altogether and attempts to sample conformational energy space efficiently to 

locate the energetically favorable regions. In the annealing approach, when the 

minimization becomes trapped in a local minimum, the temperature of the system is raised 

and a Monte Carlo procedure is carried out to allow the system to escape from the local 

potential well. 
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We present a commentary of a method for relaxing a system, not by raising the 

temperature but by raising the dimensionality of the space. The idea is that, in higher 

dimensional space, there are many more degrees of freedom in which the atoms can 

move about, making it easier to adjust to a low-energy conformation. Many potential 

barriers in three dimensions will not exist  in higher dimensions. A method is presented for 

starting from a very-low-energy high-dimensional conformation and obtaining a low-energy 

there-dimensional structure from it by gradual contraction of the dimensionality. The 

method may also be used for escaping from a three-dimensional minimum, raising the 

dimensionality, and then contraction it back to the re dimensions. [2] 

A deterministic algorithm designed to search for the global minimum of a potential energy 

functional in the conformational analysis of molecules was proposed. The algorithm is 

based on the deformation of the original potential energy hypesurface in such a way as to 

obtain only a single minimum which, in most cases, is related to the global one. This single 

minimum can easily be attained from any starting point of the modified hypersurface by 

standard local minimization procedures. The position of this minimum with respect  to the 

global one in the original hypersurface may have been changed during deformation; 

therefore, reversing procedure is applied in which the global minimum is usually attained 

by gradually reversing the deformation. 

The hypersurface is deformed with the aid of the diffusion (or heat conduction) equation, 

with the original shape of the hypersurface having the meaning of the initial concentration 

(or temperature) distribution. The algorithm functions efficiently in one and two-

dimensional problems of chemical interest as well as in many dimensions for some test 

functions. Suggestions for extending it to higher dimensions for systems of chemical 

interest are provided and a possible application to molecular dynamics is indicated. The 

significance of the proposed method extend beyond its application in chemistry. 

The multiple-minima problem is the most formidable one in the conformational analysis of 

macromolecules. The number of minima appearing in the energy hypersurface typically 

varies as 3^m for hydrocarbon-like molecules or as 〖10〗^m for polypeptides, m being the 

number of monomer units. This means that a study based on some systematic or random 

exploration of the whole energy hypersurface in order to locate the global minimum quickly 

becomes impossible as the number of minima increases, even when applying rapidly 

computable atom-atom potentials and using the most powerful computers available today. 

Actually, at present, m=5 is a practical upper limit for polypeptides, whereas proteins 

contain of the order of 100 residues. Some other methods proposed in the literature do not 
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search the whole space, but their application is limited to polypeptides and then only to 

chains containing not more than 20 amino acid residues.[3] 

 

All this material has been obtained from the important contributions quoted in the 

bibliography. 

 

Mian topics 

 
Let us consider a non- empty rectangle 

with an interior point in the rectangle 𝐼𝐼 =  [𝑎𝑎, 𝑏𝑏]𝑥𝑥 [𝑐𝑐,𝑑𝑑] 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 𝑅𝑅2 then 𝑎𝑎 < 𝑏𝑏, 𝑐𝑐 < 𝑑𝑑. 

There is a real continuous function defined on it. This function in the applications of the 

physicists, biotechnologists, technologies, geologies, etc. represents the enough free 

energy, energies or potential. 

From an applied point of view it is important to reach the absolute minimum of such a 

function, since as it such minimum represents a possible point of the stable point or in a 

word, the most stable configuration. From a strict mathematical point of view is  important 

to reach such a point. 

For technical reasons it is assumed that such a minimum point is interior of 𝐼𝐼  

In other words    (𝑥𝑥 �  , 𝑦𝑦�)  ∈  𝐼𝐼 ̇=(𝑎𝑎, 𝑏𝑏)x (𝑐𝑐,𝑑𝑑)          

Now, we revised some factors of the case where the function is defined in rectangles. 

In other words, in such a way we are in a two dimensional 

 

𝑓𝑓 ∶  [𝑎𝑎, 𝑏𝑏] 𝑥𝑥 [𝑐𝑐,𝑑𝑑] → 𝑅𝑅 

 

In the previous paper [4] we stated the fact that the convex envelope reaches the minimum 

and equals the minimum of the function under consideration, this in the case of in any 

dimension. Moreover, this matter is regarding as a difficult and important problem of the 

multiple minima  

There is an aspect which is of importance. The fact that is important in the problem of one 

dimension, and it is going to be important for the study of two dimensions. This is that in 

one dimension if the function is “sharp” at the minimum as is illustrated in the figure 1, the 

“separation” hyperplane to the  
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 set formed by all the points(x,y) whose y is greater or equal to  f (x) and to the 

corresponding envelope: one to be stressed is that the point m is an interior and not in the 

boundary. Here we do draw the partial “slide” envelope since it depends en the whole 

range or domain. 

A second consideration that you have to take into account is when the case is 

geometrically given in the fig 2. 
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Then in all case we have a separation g hyperplane in a horizontal way and parallel to the 

axis. It is important to keep in mind that the slide function is similar to the one expressed in 

the previous case of only one dimension. 

 

The main results 

 

Without any less of generality we might consider a real continuous function f (x, y) ϵR 

defined on the square I=[𝑎𝑎1,𝑏𝑏1] x [𝑎𝑎2,𝑏𝑏2], with the property that the minimum it is reach in 

the interior  

 Ĭ  = (𝑎𝑎1, 𝑏𝑏1) x (𝑎𝑎2, 𝑏𝑏2). 

Then here we are going to study in very good way its minimum. 

Now let is take the slides function for any fixed 𝑦𝑦� ∈ [𝑎𝑎2,𝑏𝑏2] 

  

𝑓𝑓ӯ (x,ӯ) : [𝑎𝑎1,𝑏𝑏1]         R 

                      : x1    𝑓𝑓ӯ(x,ӯ) 

and on the other direction  

                                                        𝑓𝑓�̅�𝑥 ( �̅�𝑥,y) : [𝑎𝑎2, 𝑏𝑏2]        R 

                                                                       : y 1        f (�̅�𝑥,y) 

 

Then the convex envelope of a real function in a open interval can be constructed in two 

ways namely: by taking the supreme or maximum of all convex function from below. The 

second method is taking all the straight lives. In one dimension they provide the same 

convex curve: the envelope.  

On the other hand, let 𝐶𝐶.,ӯ be the convex envelope at the place ӯ and let be 𝐶𝐶�̅�𝑥,. at the 

place in the other remain coordinate: clearly both of then are continues. Since the f is 

continuous then both, 𝐶𝐶.,𝑦𝑦�  and 𝐶𝐶�̅�𝑥,. are continuous and convex,  

The sets of the minimum are non-empty convex and compact 

 

𝑚𝑚�̅�𝑥,. = �y  ϵ [𝑎𝑎2,𝑏𝑏2]: 𝐶𝐶�̅�𝑥, . (y)  = 𝑚𝑚𝑏𝑏𝑏𝑏
𝑧𝑧  𝐶𝐶𝑥𝑥,.���(z)� 

𝑚𝑚.,ӯ  =  �x ϵ [𝑎𝑎1,𝑏𝑏1]: 𝐶𝐶.,ӯ(x)  =   𝑚𝑚𝑏𝑏𝑏𝑏𝑧𝑧  𝐶𝐶.,𝑦𝑦�(𝑧𝑧)� 

 

 Therefore the graph of both functions  

G., = {(𝑥𝑥,𝑦𝑦): [𝑥𝑥,𝑦𝑦]𝜖𝜖 𝐼𝐼 𝑦𝑦 𝜖𝜖  𝑚𝑚𝑥𝑥 , . } 
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G,. = �(𝑥𝑥,𝑦𝑦): [𝑥𝑥,𝑦𝑦]𝜖𝜖 𝐼𝐼 𝑥𝑥 𝜖𝜖 𝑚𝑚.,𝑦𝑦� 

Are closed.  

Now consider the multivalued function   

𝜑𝜑: I => I 

    (x,y) => 𝜑𝜑(x,y) 

defined by 

𝜑𝜑(x,y)=𝑚𝑚𝑥𝑥., x 𝑚𝑚.,𝑦𝑦� 

This is a multivalued function defined on I where the image is non-empty, convex and 

compact, then we apply Kakutani’s fixed pewit theorem, which says: 

 

 Theorem 1 (Kakutani) 

 

Led K c 𝑅𝑅𝑛𝑛 be an non-empty and convex in compact and consider a multivalued  function 

L: K=>K, such that the set L(x)≠ ∅, is  conve x a nd compa ct a nd the  gra ph is  clos e d them 

there exists fixed pewit �̅�𝑥𝜖𝜖𝜖𝜖(�̅�𝑥). 

Using this important result to our function under consideration, there exists a fixed point, 

namely: 

 

(�̅�𝑥,ӯ) ϵ 𝜑𝜑 (�̅�𝑥,ӯ) 

 

From where, it means 

 

�̅�𝑥 ϵ 𝑚𝑚.,ӯ    and   ӯ ϵ𝑚𝑚�̅�𝑥,. 

 

𝐶𝐶.,ӯ(�̅�𝑥)  = 𝑚𝑚𝑏𝑏𝑏𝑏𝑧𝑧    𝐶𝐶   .,ӯ
(𝑧𝑧) 

 

𝐶𝐶𝑥𝑥,.���(ӯ)  = 𝑚𝑚𝑏𝑏𝑏𝑏𝑧𝑧    𝐶𝐶�̅�𝑥,. ; (z) 

 

Now we will prove that at such point we reach the minimum off defined an the entire I. For 

this consider the convex envelope from below, now by the following there simple and 

important results proved by J. Martinez Legaz[5], that says that in any dimension the 

envelope from below reaches the same minimum as the function and to a same point. 

Moreover, there is a tangent separation hyperplane parallel to the plane of the orthant or of 
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constant value whose axis are x,y, reaching the minimum of the function f under 

consideration. The minimum is reached in a point part of the graph of f and the separation 

plane just mentioned.  

 

Theorem 2 (Martin Legaz): let X be a vector topological space, C ⊆ X is a men- empty 

convex set, 𝑓𝑓: ∁  →R is a teal function. 

  

Which reaches the minimum in �̅�𝑥 𝜖𝜖 𝐶𝐶 and conv f is the convex envelope of: 𝑓𝑓: ∁ → R, then �̅�𝑥 

is also minimum of conv f. 

  

Proof : Since the constant function of value f(�̅�𝑥) is a convex minorant, then it holds 𝑓𝑓(�̅�𝑥) ≤ 

conv 𝑓𝑓, therefore 

 

𝑓𝑓 �̅�𝑥) ≤  𝑏𝑏𝑏𝑏𝑓𝑓 
𝑥𝑥𝜖𝜖𝑐𝑐  (conv 𝑓𝑓) (x) ≤  (conv 𝑓𝑓 ) (�̅�𝑥) ≤ 𝑓𝑓(�̅�𝑥) 

                   

From here we obtain that 
 𝑏𝑏𝑏𝑏𝑓𝑓 
𝑥𝑥𝜖𝜖𝑐𝑐  (conv 𝑓𝑓) (x) = (conv 𝑓𝑓)  (�̅�𝑥)  

 

q.e.d. 

 

One has that there is a point (�̅�𝑥 , ӯ) such that the hyperplane H minorant is parallel to the 

orthant x,y and moreover the value of H at the point ( �̅�𝑥 , ӯ ) it is the name as𝑓𝑓  �̅�𝑥 , ӯ ). 

On the other hand H is generated by the two perpendicular straight lives ℎ�̅�𝑥 and ℎӯ which 

intersect at point (�̅�𝑥 , ӯ ) and they generated H. 

Thus we have proved in a general way that this new method of perpendicular contraction 

of the minimum: Clearly it is interesting to set what is the method with the best algorithm 

from a point of view of complexity and saving rime of real computation. 

A new theory for linear programming is given by Marchi-Matons[6]  

 At such point, the function f reaches at least one minimum. According to the Martínez-

Legaz theorem, the minimum of the function is reached at the same place as the convex 

envelope from below. Moreover since a minimum is interior, one of the plane of the convex 

envelope, it is parallel to the plane determinates orthant constant.  
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On the other hand the minimum it is clearly interesting to set what is the method with the 

best algorithm from a point of view of complexity and saving the time. 

 

THE CASE FOR 𝑏𝑏 ARBITRARY DIMENSIONS 

 
Now after remembering the case of one and two, we are going to study the case with an 

arbitrary number of dimensions. In the case of two dimensions, we have solved the 

problem by a rather constructing way namely: from the fact that we move or partial on 

“slice” plans that for it we approach by the convex envelope in one dimension and then to 

move it accordingly through the same coordinate. A further problem is the effective 

computational determination of the convex envelope. We remark that our method it works 

only with the explicit computation of an enveloping in one dimension, and then moving it. 

For this reason, intuitively we consider it the better one. 

In the case of arbitrary number of dimensions we have a much more complex problem, 

however, applying the induction principle the proof  turned it in rather simple. Consider the 

following continuous function 

 

𝑓𝑓 ∶ [ 𝑎𝑎1,   𝑏𝑏1 ] 𝑥𝑥… 𝑥𝑥 [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛] = 𝐼𝐼𝑛𝑛 → 𝑅𝑅 

: 𝑥𝑥 ∈  𝐼𝐼𝑛𝑛 → 𝑓𝑓 (𝑥𝑥) 

 

Having at least a global minimum interior 

Take any point of the form 

 

𝑥𝑥1 = (𝑥𝑥1 
1 , … , 𝑥𝑥𝑛𝑛1) ∈   𝐼𝐼𝑛𝑛 

 

And consider the “slight” 

𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖 : 𝑋𝑋

𝑗𝑗 ≠ 𝑏𝑏  [𝑎𝑎𝑗𝑗 ; 𝑏𝑏𝑗𝑗] = 𝐼𝐼𝑚𝑚−1
𝑥𝑥𝑖𝑖 → 𝑅𝑅 

         

Defined as 

𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖(𝑥𝑥−𝑖𝑖) = 𝑓𝑓 (𝑥𝑥𝑖𝑖    ,𝑥𝑥−𝑖𝑖) 

where 𝑥𝑥−𝑖𝑖 = (𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛) 
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Note that 𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖 is a continuous function on 𝑥𝑥−𝑖𝑖 and 𝑓𝑓𝑖𝑖∙ (𝑥𝑥−𝑖𝑖) is continuous in 𝑥𝑥𝑖𝑖 , for any 𝑥𝑥−𝑖𝑖 

(Remind that the slight function 𝑓𝑓𝑖𝑖∙ (𝑥𝑥−𝑖𝑖) is the defined as 𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖(𝑥𝑥−𝑖𝑖), which is the defined on 

the interval 𝐼𝐼𝑖𝑖 =  [𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖] ) 

Then the minima of 𝑓𝑓𝑖𝑖∙ (𝑥𝑥−𝑖𝑖)  are reached by the envelope and then all of minima of the 

envelope is a non-empty, convex closed and bounded set.  

By the same argument the tangent at one minimum is parallel to the corresponding axis. 

Now, if we take the multivalued function 

𝜑𝜑 ∶  𝐼𝐼𝑛𝑛   ⟹ 𝐼𝐼𝑛𝑛 

 

𝑥𝑥 →  𝑚𝑚1(𝑥𝑥−1)𝑥𝑥 𝑚𝑚2(𝑥𝑥−2)𝑥𝑥… 𝑥𝑥𝑚𝑚𝑖𝑖  (𝑚𝑚−𝑖𝑖)𝑥𝑥…  𝑥𝑥𝑚𝑚𝑛𝑛(𝑥𝑥−𝑛𝑛) 

 

where  𝑚𝑚𝑖𝑖(𝑥𝑥−𝑖𝑖) = 𝑚𝑚𝑏𝑏𝑏𝑏𝑦𝑦𝑖𝑖
 𝑓𝑓𝑦𝑦𝑖𝑖(𝑥𝑥−𝑖𝑖) 𝐶𝐶 𝐼𝐼𝑖𝑖 

 

 

 

by the same argument given in the case of two dimension applying the fixed point of 

Kakutani that asserts that for any multivalued function defined on a non-empty subset  in 

any  Euclidean space with non-empty, convex and compact  images in the same set, with 

closed graph, it has a fixed point. This in our case since 𝜑𝜑 (𝑥𝑥) is convex, then we have the 

existence of a fixed point: 

�̅�𝑥 ∈  𝜑𝜑 (�̅�𝑥) 

At this point we have the same situation as in the case of two dimension by Martínez-

Legaz theorem the minimum of the function and envelope are the same, and there is a 

parallel plane to the orthant an separating the function. Trivially, this plane is generated by 

the half at straight lines of separating 𝑓𝑓𝑖𝑖˚(�̅�𝑥−𝑖𝑖) 

By the induction principle results true for any dimensions. 

As a important consequence we have obtain that for any dimensions n it is possible to find 

the absolute minimum, step by step with only at each step having difficulty of one 

dimension. 

This proof is inspired as analogous of non-cooperative game theory. 

 

NOTE:  We have used Kakutani’s fixed point theorem. However for higher dimension we 

are going to use it again. But we indicate for the future study of the subject that another 
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strong result is the fixed point theorem by Eilenberg and Montgomery that instead of 

having convexity in the text of Kakutani’s, is change for contractible. 

We remaind that a set M is contractible if there exist a continuous function 

𝛼𝛼: [0,1]𝑥𝑥 𝑀𝑀 → 𝑀𝑀 

     𝛼𝛼 (0,𝑚𝑚) =  𝑚𝑚0 ∈ 𝑀𝑀 

𝛼𝛼 (1,𝑚𝑚) = 𝑚𝑚 

 
The theorem says that under general conditions there exist a fixed point. 

It is my intuition that this theorem will be of great importance when one apply and study 

Morse theory, related to biotechnology. 

More over a further generalization of Eilenberg Montgomery it is possible to find a fixed 

point theorem with more general topological conditions: Beagle’s theorem. 

Finally we would to say that might a mathematical tool to used in more sophisticate set up 

or related with this is the non-cooperative game theory and the Morse theory. For this 

reason we incorporate some specific bibliography. 

As an addendum, we would lied to say that our method of face projection and the 

construction of the envelope, would be an important feature. Since in the future will 

probably be possible to construct the envelope then we include various papers regarding 

the envelope. 

 

Final Remarks 

 

In this paper we have solved proving the existence of a minimum point for the multiple 

minimum in an arbitrary dimension.  We have solved it by constructing a solution by 

means of the different envelopes in each step in such a way that in each we have a 

solution of one dimension. Thus it is obtained by means of n - steps where in each step 

the envelop of is  obtained after adding one more dimension.  

Our method is clearly constructive. 
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