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Abstract

In this paper we present a simple and fast geometric
method for modeling data by a union of affine sets. The
method begins by forming a collection of local best fit affine
subspaces. The correct sizes of the local neighborhoods
are determined automatically by the Jones’ β2 numbers;
we prove under certain geometric conditions that good lo-
cal neighborhoods exist and are found by our method. The
collection is further processed by a greedy selection proce-
dure or a spectral method to generate the final model. We
discuss applications to tracking-based motion segmentation
and clustering of faces under different illuminating condi-
tions. We give extensive experimental evidence demonstrat-
ing the state of the art accuracy and speed of the suggested
algorithms on these problems and also on synthetic hybrid
linear data as well as the MNIST handwritten digits data;
and we demonstrate how to use our algorithms for fast de-
termination of the number of affine subspaces.

Supp. webpage: http://www.math.umn.edu/∼lerman/lbf/

1. Introduction
Several problems from computer vision, for exam-

ple motion segmentation and face clustering, give rise
to modeling data by multiple subspaces. This is com-
monly referred to as Hybrid Linear Modeling (HLM).
In tracking-based motion segmentation, extracted feature
points (tracked in all frames) are clustered according to the
different moving objects. Under the affine camera model,
the vectors of coordinates of feature points corresponding
to a moving rigid object lie on an affine subspace of di-
mension at most 3 (see [1]). Thus clustering different mov-
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providing us an initial version before the code was available to the public;
Allen Yang for discussions regarding estimating the number of clusters in
GPCA; and the IMA for a stimulating multi-manifold modeling workshop.

ing objects is equivalent to clustering different affine sub-
spaces. Similarly, in face clustering, it has been proved that
the set of all images of a Lambertian object under a variety
of lighting conditions form a convex polyhedral cone in the
image space, and this cone can be accurately approximated
by a low-dimensional linear subspace (of dimension at most
9) [2, 3, 4]. If we assume that images of different faces lie
in different subspaces, then we can cluster these images by
segmenting an arrangement of linear subspaces using HLM.

Several algorithms have been suggested for solving the
HLM problem (or even solving the more general problem
of clustering manifolds), for example the K-flats (KF) al-
gorithm or any of its variants [5, 6, 7, 3, 8], methods based
on direct matrix factorization [9, 1, 10, 11], Generalized
Principal Component Analysis (GPCA) [12], Local Sub-
space Affinity (LSA) [13], RANSAC (for HLM) [14], Lo-
cally Linear Manifold Clustering (LLMC) [15], Agglom-
erative Lossy Compression (ALC) [16], Spectral Curva-
ture Clustering (SCC) [17] and Sparse Spectral Clustering
(SSC) [18].

In this paper, we describe two HLM algorithms: LBF
(Local Best-fit Flat) and SLBF (spectral LBF). The first ob-
tains state-of-the-art speed with nearly state of the art accu-
racy, and the second obtains state of the art accuracy (SLBF)
with reasonable run times. Both LBF and SLBF are based
on a straightforward geometric method for HLM, inspired
by [19, 20, 21] and [22, 23, 24], that can be used in a stand
alone manner or as an initialization of many of the above
methods. The basic idea is that for a data set X sampled
from a hybrid linear model (perhaps with some noise), there
are many points x such that the principal components of an
appropriately sized neighborhood of x give a good approx-
imation to the subspace x belongs to. An “appropriately
sized neighborhood” needs to be larger than the noise, so
that the subspace is recognized. However, the neighborhood
cannot be so large that it contains points from multiple sub-
spaces.

The contributions of this work, which extends [25], are
as follows:

• We make precise the local best-fit heuristic, using the β2
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numbers [19, 20, 21]. We give an algorithm to find good
neighborhoods in the above sense, and show that under
certain geometric conditions, the good neighborhoods
exist, and our algorithm finds them.

• Using the local best-fit heuristic we introduce the LBF
and SLBF algorithms for affine clustering. At each
point of a randomly chosen subset of the data, they use
the best fit flats of the “correct” neighborhoods to build
a global model with different methods (LBF is based on
energy minimization and SLBF is a spectral method).

• We show how extensive experiments on motion seg-
mentation data (the Hopkins 155 benchmark of [34]),
face clustering (the Yale face database), handwritten
digits (the MNIST dataset), and on artificial data, show-
ing that both algorithms, in particular SLBF, are accu-
rate on real and synthetic HLM problems, while LBF
runs extremely fast (often on the order of ten times faster
than most of the previously mentioned methods).

• We demonstrate how the local best-fit heuristic can be
used with other algorithms. In particular, we give exper-
imental evidence to show that the K-flats algorithm [3]
is improved by initialization that is based on the local
best-fit heuristic. We also use this heuristic to estimate
the main parameter of both RANSAC (for HLM) [14]
and ALC [16].

• We show how the combination of LBF and the elbow
method can quickly determine the number of affine sub-
spaces.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe in greater depth the LBF and SLBF al-
gorithms and state a theorem giving conditions that guaran-
tee that good neighborhoods can be found. Section 3 care-
fully tests the LBF and SLBF algorithms (while comparing
them to other common HLM algorithms) on both artificial
data of synthetic hybrid linear models and real data of mo-
tion segmentation in video sequences, face clustering and
handwritten digits recognition. It also demonstrates how to
determine the number of clusters by applying the fast algo-
rithm of this paper together with the straightforward elbow
method. Section 4 concludes with a brief discussion and
mentions possibilities for future work.

2. The local best-fit flats heuristic and the LBF
and SLBF algorithms

Our goal is to solve the HLM problem, that is, to par-
tition a data set X = {x1,x2, · · · ,xN} ⊆ RD into K
clusters X1, X2, . . ., XK , with each cluster approximated
by a d-dimensional affine subspace. In this section, we as-
sume that all flats have the same known dimension d and
that the number of flats K is known. The cases of unknown
K and mixed dimensions are addressed to some extent in

Section 3. In this section we describe two methods that have
at their heart an estimation of the locally affine scale of the
data.

Both methods, LBF and SLBF, break into two parts.
Their first part finds a set of candidate flats, i.e., affine sub-
spaces. It starts by randomly selecting points from the data,
and then chooses a “best neighborhood” around each point
(see Section 2.1). The best fit flats (in L2 sense) for these
neighborhoods, which we refer to as local best-fit flats, are
collected as candidates. We remark that the number of can-
didates is an input parameter in LBF.

The two algorithms process the candidates in different
ways: LBF uses energy minimization and SLBF uses a
spectral approach. Their sketches appear in Algorithms 2
and 4 and a more detailed explanation is in Sections 2.2 and
2.3.

2.1. Choosing the optimal neighborhood

Choosing the correct neighborhood is crucial for the suc-
cess of both proposed methods, and is in some sense the
central problem of this paper. If the neighborhood is too
small, even if the point is in a good affine cluster, then a
small amount of noise in the data will result in a flat which
does not match most of the points in the affine cluster. If
the neighborhood is too large, it will contain points from
more than one affine cluster, and the resulting best fit flat
will again not match any of the actual data points. While it
is possible to take a guess at the correct scale as a parameter,
we have found that it is possible to choose the correct scale
reasonably well automatically.

What we will do is start at the smallest scale (say d+ 1)
and look at larger and larger neighborhoods of a given point
x0. At the smallest scale, any noise causes the local neigh-
borhood to have higher dimension than d. As we add points
to the neighborhood, it becomes better and better approx-
imated in an average sense by its best fit flat, until points
belonging to other flats enter the neighborhood. We thus
take the neighborhood which is the first local minimum of
the ’average errors’ to the neighborhoods’ best fit flats; for
the ‘average error’, β2, to the best fit flat within a neighbor-
hood N of x0 we use the formula:

β2(N ) = min
d-flats L

√ ∑
y∈N ||y − PLy||2

|N |(maxx∈N ||x− x0||)2
, (1)

where PL denotes the projection onto the flat L. This notion
of scaled error introduced and utilized in [19, 20, 21], and
considered recently in [26] for dimension estimation. The
procedure we have just described is summarized in Algo-
rithm 1.

The following theorem tries to justify our strategy of fit-
ting the correct scale around each point. We work with a
“geometric” set of assumptions in the continuous setting,
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Algorithm 1 Neighborhood size selection for HLM by ran-
domized local best fit flats
Input: X = {x1,x2, · · · ,xN} ⊆ RD: data, x: a point in
X, S: start size, T : step size, ℓ,m (optional): mean shifts
parameters.

Output: N (x): a neighborhood of x.
Steps:
• (Optional) Update the point x as the center of its ℓ-
nearest neighborhood in X, while repeating m times
• k = −1
repeat

• k:=k+1
• Let Nk be the set of the S + kT nearest points in X
to x
• Set L̃k to be the best fit flat to Nk

• Compute β2(k) := β2(Nk) according to (1)
until k > 1 and β2(k − 1) < min{β2(k − 2), β2(k)}
• Output N (x) := Nk−1

where our data set will be presumed to be a collection of
tubes around flats. This corresponds roughly to a proba-
bilistic setting of sampling according to mixtures of uniform
distributions around subsets of d-flats. For convenience we
assume infinite tubes but restrict to local scales.

The analog of the discrete β2 of (1) when having an un-
derlying continuous set Ω in a ball of center x and radius r
is defined as follows:

β2(x, r) =

min
L

√√√√√ ∫
Ω∩B(x,r)

(
dist(x, L)

r

)2
dx

vol(Ω ∩B(x, r))
,

where the minimum is over all d-flats L (see also [21]).

Theorem 2.1. Let K ≥ 2, d < D , Li, i = 1, . . . ,K, be
K d-flats in RD, and Ωi := T (Li, wi) be K tubes in RD

around these flats of comparable widths {wi}Ki=1.
For fixed 1 ≤ i∗ ≤ K and fixed x ∈ Li∗ , let

y = y(x) = argminy∈Ω\Ωi∗
dist(y,x) (2)

and
r0 = r0(x) = dist(y,x). (3)

Assume that r0 > wi∗ . Then the function β2(x, r) is con-
stant for r in [0, wi∗ ], comparable to a function which is
decreasing for a sufficiently large subinterval of [wi∗ , r0],
and satisfies the inequality

β2(x, (1 + ε) · r0) ' β2(x, r0) (4)

for sufficiently small ε, i.e., it has an “approximate” local
minimum in the interval [r0, (1 + ε) · r0]. If d ≤ 4, then

ε ≈ wi∗/r0, and if d > 4 then ε ≈ (wi∗/r0)
4/d. As

wi∗/r0 approaches zero, all comparability constants men-
tioned above approach one.

2.2. The LBF Algorithm

The LBF algorithm searches for a good set of flats from
the candidates (described above) in a greedy fashion. A
measure of goodness of a K tuple of flats G is chosen; here,
it will be the average l1 distance of each point to its nearest
flat, i.e.,

G = GX(L1, · · · , LK) =
∑
x∈X

dist
(
x,∪K

i=1Li

)
. (5)

After randomly initializing K flats from the list of candi-
dates, p passes are made through the data points. One of the
current choices of flats is removed, and all the other candi-
dates are tried in its place. If G decreases, we replace the
current flat with the one which gives the lowest value for G.
We then move to the next pass, picking a random flat, etc.

Algorithm 2 LBF: energy minimization over randomized
local best-fit flats
Input: X = {x1,x2, · · · ,xN} ⊆ RD: data, d: dimension

of subspaces, C: number of candidate planes, K: number
of output flats/clusters, p: number of passes, S and T :
parameters for local scale calculation.

Output: A partition of X into K disjoint clusters {Xi}Ki=1,
each approximated by flats {Fi}Ki=1.
Steps:
1. Pick C random points in X
2. For each of the C points find appropriate local scale

using Algorithm 1
3. Generate C candidate flats L1, ..., LC from the best

fit flats to the neighborhoods from the previous step
4. Choose K flats from the candidates using Algo-

rithm 3; collect these in L
5. Partition X by sending points to nearest flats in L

The simplest choice of G is the sum of the squared dis-
tances of each point in X to its nearest flat, i.e., having the
power 2 in (5). However, in some special scenarios the
l1 energy of (5) is more robust to outliers than the mean
squared error (see [27] for theoretical support and [8] for
experimental support). One can also imagine using spectral
distances that measure the smoothness of the clusters with
respect to some kernel, or many other global energy func-
tionals of a partition. The nice thing about this method is
that it allows for energy functionals which may be hard to
minimize; since we are only testing the energy of our candi-
date configurations, as long as we can compute the energy
of a partition quickly, we can run the greedy descent.
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Algorithm 3 Greedy l1 candidate selection for HLM by
randomized local best fit flats
Input: X = {x1,x2, · · · ,xN} ⊆ RD: data, K: number

of flats, L1, ..., LC : candidate flats, and p: number of
passes.

Output: A set of K “active” flats L ⊂ {L1, ..., LC} .
Steps:
Initialize L by randomly choosing K “active” flats
LA1 , ..., LAK

for pass = 1 to p do
Pick a random flat LAl

⊂ L (1 ≤ l ≤ K)
for j = 1 to C −K do
• Pick one of the “inactive” flats Lj and form the
collection of flats L̃ = Lj

∪
L \ LAl

• Set sj =
∑N

i=1 minL∈L̃ ||xi − PLxi||
end for
If min sj <

∑N
i=1 minL∈{LA1

,...,LAK
} ||xi − PLxi||,

set LAl
:= Largmin sj

end for

2.3. The SLBF Algorithm

We can also process the candidate subspaces via a spec-
tral clustering method. We first find the neighborhoods
{Ni}Ni=1 for all points {xi}Ni=1 via algorithm 1 and fit d-
flats {Li}Ni=1 in these neighborhoods, then form the N ×N

matrices S and Ŝ as follows:

Si,j =
√

dist(xi, Lj) dist(xj , Li), (6)

and

Ŝi,j = exp(−Si,j/2σ
2
j ) + exp(−Si,j/2σ

2
i ), (7)

where

σj =

√
min

d-flats L

∑
x∈Nj

dist(x, L)2. (8)

Finally, we apply spectral clustering using the matrix Ŝ.
More precisely, we follow the main algorithm of [28, Sec-
tion 2], while replacing the matrix A there by Ŝ, multiply-
ing the unit eigenvectors of Step 3 (of [28, Section 2]) by
the corresponding square roots of eigenvalues and skipping
step 4. We remark that the two last changes to [28, Sec-
tion 2] are common to spectral-based manifold learning al-
gorithms (unlike spectral clustering), so that the similarity
matrix Ŝ is considered as a gram matrix, see e.g., Euclidean
MDS [29] and ISOMAP [30]. We describe this algorithm
in Algorithm 4, and refer to it as the SLBF (spectral LBF)
algorithm.

Algorithm 4 SLBF: spectral clustering based on best-fit
flats
Input: X = {x1,x2, · · · ,xN} ⊆ RD: data, σ: a parame-

ter, other parameters used by Algorithm 1.
Output: A partition of X into K disjoint clusters {Xi}Ki=1,

each approximated by a single flat.
Steps:
1. For each point xi, fit a subspace Li by Algorithm 1,

and find σi by (8)
2. Construct the N ×N matrix S and Ŝ by (6) and (7)
3. Let D be the N × N diagonal matrix, such that

Di,i =
∑N

j=1 Ŝi,j

4. Normalize Ŝ by: Ŝ = D− 1
2 ŜD− 1

2

5. Let U be the N ×K matrix whose columns are the
top K eigenvectors of Ŝ, and Σ be the K×K matrix
representing the top K eigenvalues of Ŝ

6. Implement K-means to the rows of N × K matrix
U Σ1/2 and partition X accordingly

2.4. Adaptation of the proposed algorithms to mo
tion segmentation data

Note that the first minimum in the Theorem 2.1 excludes
the left endpoint, and thus k = 0 is excluded in Algo-
rithm 1). In our experiments, we noticed that on data with-
out too much noise, it is useful to allow the first scale to
count as a local minimum and allow k = 0 in Algorithm 1).
We refer to the implementation of LBF and SLBF with
those two techniques tailored for motion segmentation data
as LBF-MS and SLBF-MS.

2.5. Complexity and storage of LBF and SLBF

We first discuss the complexity of Algorithm 1, which is
used in both the LBF and the SLBF algorithms. In order to
obtain β2(Nk), we need to obtain the top d singular values
of the |Nk| × D data matrix representing the |Nk| points,
which requires a complexity of O(d · D · |Nk|). To find
N (x), we need to generate β2(Nk) for any |Nk| = S+kT ,
where k = 1, 2, · · · , (N − S)/T , hence the complexity for
obtaining N (x) is of order:

O(d ·D ·
(N−S)/T∑

k=1

(S + kT )) ≤ O(d ·D ·N2/2T ).

We thus note that if T is in the order of N , e.g., T =
max(N/300, 2), the total complexity of Algorithm 1 is
O(d ·D ·N).

Next, we clarify the complexity of Algorithm 2. For
step 2 of this algorithm we need to run Algorithm 1 C times
and thus its complexity of order O(C·d·D·N). Step 3 of Al-
gorithm 2, requires C SVD decompositions for C matrices
of size at most N ×D, in order to obtain the first d vectors
in RD. It thus also has a complexity at most O(C ·d·D ·N).
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Step 4 of Algorithm 2 is an application of Algorithm 3.
The later algorithm requires the evaluation of the N × C
matrix representing the distances ||xi − PLjxi|| between
X = {x1, x2, · · · , xN} and L1, L1, · · · , LC . This costs
O(C ·d ·D ·N) operations, since each distance from a point
to a subspace costs O(d · D). Moreover, the p passes in
Algorithm 3 have complexity of order O(p · (C −K) ·N).
Therefore, step 4 of Algorithm 2 has a complexity of order
O(C ·N · (d ·D + p)). At last, Step 5 of Algorithm 2 has
a complexity of order O(K · d ·D ·N), which comes from
the construction of the N × K matrix of distances from
N points to K subspaces. Combining these complexities
together, we have an overall complexity of O(C · N · (d ·
D + p)) for the LBF Algorithm.

As for the storage of LBF, we note that the data set
is saved in an N × D matrix, the candidate subspaces
are organized in C projection matrices of size D × d and
that the algorithm also requires an N × C matrix of dis-
tances between the data points and the C candidate sub-
spaces. Therefore, the storage of LBF is in the order of
O(D ·N + C ·D · d+N · C).

We conclude with the complexity and storage of the
SLBF algorithm. Step 1 of Algorithm 4 has a complex-
ity of O(d · D · N2), since Algorithm 1 has a complexity
of O(d · D · N) and it is applied to every point in the set
X. The most expensive calculation of steps 2-4 in Algo-
rithm 4 is the construction of S, which requires a complex-
ity of O(d ·D ·N2). The SVD decomposition in step 5 has
a complexity of O(K · N2) and the K-means algorithm in
step 6 has a complexity of O(ns ·K · N ·D), where ns is
the iterations in K-means.

Combining these complexities together, we have an over-
all complexity of O((K + d · D) · N2 + ns · K · D · N)
for the SLBF Algorithm. Moreover, it stores the data set
in a D × N matrix, the candidate subspaces in N D × d
matrices (recall that in SLBF every data point is assigned
a subspace and thus C = N ) and it also uses the N × N
matrix S. Therefore , the storage of the SLBF Algorithm is
in the order of O(N ·D · d+N2).

3. Experimental results
In this section, we conduct experiments on artificial and

real data sets to verify the effectiveness of the proposed
algorithm in comparison to other hybrid linear modeling
(HLM) algorithms.

We measure the accuracy of those algorithms by the rate
of misclassified points with outliers excluded, that is

error% =
# of misclassified inliers

# of total inliers
× 100% . (9)

In all the experiments below, the number C in Algo-
rithm 3 is 70 ·K, where K is the number of subspaces, the
number p in Algorithm 3 is 5 · K, and the numbers S and

T in Algorithm 1 are 2 · d and 2 respectively, where d is the
dimension of the subspace. According to our experience,
LBF and SLBF are very robust to changes in parameters,
but unsurprisingly, there is a general trade off between ac-
curacy (higher C, higher p, smaller T ), and run time (lower
C, lower p, larger T ). We have chosen these parameters
for a balance between run time and accuracy. Nevertheless,
we have insisted to use the same parameters for all data sets
and experiments, even though particular parameters could
obtain even better or near perfect results for some of the
data sets. The experiments in Sections 3.1 and 3.2 run on
a computer with Intel Core 2 CPU at 2.66GHz and 2 GB
memory, and experiments in Sections 3.3 and 3.4 run on a
machine with Intel Core 2 Quad Q6600 at 2.4GHz and 8
GB memory.

3.1. Clustering Results on Simulated data

We compare our algorithm with the following al-
gorithms: Mixtures of PPCA (MoPPCA) [5], K-flats
(KF) [3], Local Subspace Analysis (LSA) [13], Spec-
tral Curvature Clustering (SCC) [17], Random Sam-
ple Consensus (RANSAC) for HLM [14], Agglomera-
tive Lossy Compression (ALC) [16] and GPCA with
voting (GPCA) [31]. Throughout the rest of the pa-
per, we use the Matlab codes of the GPCA, MoP-
PCA, RANSAC and KF algorithm from http://percep
tion.csl.uiuc.edu/gpca, the SCC algorithm from http://www
.math.umn.edu/∼lerman/scc, the LSA algorithm from
http://www.vision.jhu.edu/db, the ALC algorithm from
http://perception.csl.uiuc.edu/coding/motion/ and the SSC
algorithm from http://www.cis.jhu.edu/∼ehsan/ssc.htm.

For the SCC algorithm, we also tried a slightly modified
version tailored for motion segmentation as in step 6 of Al-
gorithm 4, which we refer to as SCC-MS (SCC for motion
segmentation): Following the notation of [Algorithm 2][17]
we let the matrix U be the N × K matrix whose columns
are the top K left singular vectors of A∗

C and also denote by
Σ the diagonal K × K matrix whose elements are the top
K left singular values of A∗

C . Then the K-means step of
SCC-MS is applied directly to the rows of the N ×K ma-
trix U Σ1/2 (as opposed to applying it to U (or its row-wise
normalization by 1) in SCC).

The MoPPCA algorithm is always initialized with a ran-
dom guess of the membership of the data points. The
LSCC algorithm is initialized by randomly picking 100×K
(d+1)-tuples (following [17]), and KF are initialized with
random guess. Since algorithms like KF tend to converge to
local minimum, we use 10 restarts for MoPPCA, 30 restarts
for KF, and recorded the misclassification rate of the one
with the smallest ℓ2 error for both of these algorithms. The
number of restarts was restricted by the running time and
accuracy. In SSC algorithm, we set the value λ to be 0.01,
as suggested in the code.
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Table 1. Mean percentage of misclassified points in simulation for linear-subspace cases or affine-subspace case.
(4, 5, 6)Linear 22 ∈ R4 42 ∈ R6 24 ∈ R4 102 ∈ R15

∈ R10

Outl. % 5 30 5 30 5 30 5 30 5 30

LSCC 3.0 6.9 2.3 2.6 7.7 22.4 0.5 3.8 1.8 28.2
LSCC-MS 3.8 10.0 2.4 4.1 8.5 36.7 0.7 31.9 1.4 19.8

LSA 18.7 19.6 10.9 12.7 44.3 21.0 7.6 9.9 6.1 6.6
KF 3.0 15.8 2.5 18.4 9.4 34.3 0.8 33.8 0.8 30.6

MoPPCA 3.1 14.2 2.5 17.7 8.4 34.2 0.9 38.8 1.4 34.7
GPCA 19.7 30.9 11.7 35.9 29.2 43.9 10.2 42.6 10.1 45.4

LBF 2.6 3.7 2.5 2.3 6.4 11.5 1.3 1.9 1.5 1.5
LBF-MS 2.7 3.0 2.6 2.6 6.6 11.7 1.7 2.2 1.4 1.5

SLBF 5.2 6.3 5.6 7.0 18.5 23.9 5.4 6.2 2.7 2.4
SLBF-MS 8.7 11.7 5.9 6.6 33.5 46.6 3.9 4.8 2.4 2.6

RANSAC (oracle) 3.3 2.6 2.3 2.2 8.6 9.8 0.9 6.7 1.8 1.4
RANSAC (ϵ from LBF) 2.4 2.8 2.2 2.5 5.8 7.5 30.4 42.8 0.7 13.5

ALC (oracle) 4.0 3.4 13.1 16.3 27.5 30.1 50.0 50.0 5.3 36.1
ALC (ϵ from LBF) 4.1 5.7 8.7 10.0 9.9 14.0 50.0 50.0 2.3 1.8

SSC 24.8 34.3 32.2 43.5 49.2 52.8 18.9 44.9 32.4 54.0
(4, 5, 6)Affine 22 ∈ R4 42 ∈ R6 24 ∈ R4 102 ∈ R15

∈ R10

Outl. % 5 30 5 30 5 30 5 30 5 30

SCC 0.0 0.6 0.0 0.0 0.2 0.5 0.0 0.7 0.0 5.8
SCC-MS 0.0 2.2 0.0 0.5 1.4 5.8 0.0 0.0 0.0 3.1

LSA 11.8 11.0 5.3 4.7 45.0 41.7 0.0 0.0 1.0 1.1
KF 7.3 15.1 9.9 26.0 19.7 37.1 11.1 24.9 7.3 23.5

MoPPCA 25.6 23.7 27.8 38.3 45.5 39.8 37.1 45.2 42.9 46.8
GPCA 13.8 14.4 22.6 22.1 33.6 32.4 36.0 29.6 26.7 29.1

LBF 0.2 2.0 0.0 0.7 0.3 4.5 0.0 0.3 0.0 0.0
LBF-MS 0.2 2.7 0.1 1.5 0.8 5.2 0.0 0.5 0.0 0.0

SLBF 0.0 1.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
SLBF-MS 0.0 0.1 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0

RANSAC (oracle) 13.2 12.2 11.5 11.2 31.5 28.4 2.6 9.2 1.1 2.2
RANSAC (ϵ from LBF) 6.3 41.2 10.1 47.9 10.5 45.8 40.7 N/A N/A 61.8

ALC (oracle) 0.0 0.0 0.0 0.0 35.9 25.1 0.0 40.0 0.0 65.0
ALC (ϵ from LBF) 0.7 0.4 0.0 0.0 0.7 0.3 0.0 0.0 0.0 0.0

SSC 1.1 1.9 0.1 0.1 6.6 6.4 0.0 0.0 0.0 0.0

Table 2. Mean running time for linear-subspaces cases and affine-subspaces cases.
(4, 5, 6)Linear 22 ∈ R4 42 ∈ R6 24 ∈ R4 102 ∈ R15

∈ R10

Outl. % 5 30 5 30 5 30 5 30 5 30

LSCC 0.7 0.8 16.0 1.8 2.1 2.0 13.3 5.7 5.1 8.4
LSCC-MS 0.5 0.5 1.2 1.4 1.7 1.5 5.1 5.6 4.0 4.6

LSA 8.8 16.0 11.1 20.8 28.3 54.4 31.3 31.5 38.2 54.4
KF 0.5 0.6 0.5 0.8 1.4 1.8 1.9 1.0 1.1 2.8

MoPPCA 0.2 0.5 0.3 0.7 1.2 2.0 1.7 1.1 1.0 3.3
GPCA 3.5 7.6 9.8 19.0 20.9 29.7 30.3 31.6 39.1 57.8

LBF 0.5 0.5 0.5 0.5 2.2 2.7 0.7 0.8 1.2 1.4
LBF-MS 0.4 0.5 0.4 0.5 2.0 2.6 0.5 0.6 1.0 1.3

SLBF 10.5 20.7 11.8 21.7 90.1 174.9 12.0 23.3 31.3 64.2
SLBF-MS 13.2 24.0 13.1 24.4 152.0 202.0 13.2 23.5 39.5 72.4

RANSAC (oracle) 8.0 9.5 15.7 16.1 14.8 18.3 44.4 46.4 104.0 103.7
RANSAC (ϵ from LBF) 9.2 11.4 17.9 19.0 19.3 23.8 48.7 44.9 114.3 141.6

ALC (oracle) 12.0 23.2 16.2 33.6 68.7 136.3 37.7 172.6 53.1 180.1
ALC (ϵ from LBF) 18.9 28.0 19.6 37.9 59.2 121.9 73.1 152.4 79.7 151.6

SSC 162.8 236.2 170.8 247.9 382.7 591.3 184.1 276.6 298.3 437.9
(4, 5, 6)Affine 22 ∈ R4 42 ∈ R6 24 ∈ R4 102 ∈ R15

∈ R10

Outl. % 5 30 5 30 5 30 5 30 5 30

SCC 0.9 1.0 1.7 2.0 5.1 2.5 6.1 13.7 5.6 6.0
SCC-MS 0.7 0.7 1.4 1.6 2.2 2.2 5.4 6.0 4.6 4.8

LSA 8.7 16.1 11.1 20.8 28.6 54.0 21.1 32.2 38.3 54.0
KF 0.5 0.6 0.6 0.7 2.4 1.4 0.6 1.7 1 1.4

MoPPCA 0.5 0.5 0.7 0.6 2.9 1.4 1.3 1.9 1.9 2.0
GPCA 2.4 6.9 5.1 9.8 11.2 26.1 20.2 31.9 38.4 49.9

LBF 0.5 0.6 0.5 0.6 2.2 2.8 0.7 0.8 1.2 1.5
LBF-MS 0.4 0.5 0.4 0.5 2.0 2.7 0.5 0.6 1.0 1.3

SLBF 9.4 19.1 8.8 19.0 71.8 143.1 9.2 19.4 35.1 61.4
SLBF-MS 10.5 21.7 10.1 21.9 79.9 175.5 10.4 21.1 40.1 66.7

RANSAC (oracle) 12.0 14.4 19.6 20.6 23.9 29.5 48.2 51.5 79.7 84.9
RANSAC (ϵ from LBF) 13.4 12.6 22.7 23.5 28.4 32.1 49.3 N/A N/A 60.6

ALC (oracle) 13.3 25.2 15.2 39.1 61.0 119.3 18.5 43.0 39.7 92.7
ALC (ϵ from LBF) 13.4 26.8 15.6 29.8 55.2 113.6 29.8 55.5 47.9 85.2

SSC 160.2 226.8 176.0 255.3 386.6 592.4 202.9 311.9 338.6 504.1
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The RANSAC and ALC algorithms for HLM [14, 16]
depends on a user supplied inlier threshold. RANSAC (or-
acle) and ALC (oracle) uses the oracle inlier bound given
by the true noise variance of the model and thus clearly has
an advantage over the other algorithms listed. RANSAC
(ϵ from LBF) and ALC (ϵ from LBF) estimates the inlier
threshold by the local best fit flats heuristic of this paper.
That is, it fits N neighborhoods for all N points using this
heuristic and estimates the least error of approximation by
d-flat in these N neighborhoods. The inlier bound ϵ is then
the average of these errors. For some cases this algorithm
run into error, then the result is reported as N/A. The rea-
son for this is that the RANSAC algorithm for HLM [14] is
very sensitive to the estimate of ε and an overestimate can
result in removal of points belonging to more than one sub-
space, so that the algorithm may exhaust all points before
detecting K subspaces. ALC (ϵ from LBF) may result in a
number of clusters different than K, though we still use the
same identification error as in (9), while comparing the true
label with all permutations of the computed label and use
the one with smallest error. We remark that due to outliers
we could not effectively use the voting procedure for ALC
described later.

The simulated data represents various instances of K
linear subspaces in RD. If their dimensions are fixed and
equal d, we follow [17] and refer to the setting as dK ∈
RD. If they are mixed, then we follow [31] and refer to
the setting as (d1, . . . , dK) ∈ RD. Fixing K and d (or
d1, . . . , dK), we randomly generate 100 different instances
of corresponding hybrid linear models according to the code
in http://perception.csl.uiuc.edu/gpca. More precisely, for
each of the 100 experiments, K linear subspaces of the cor-
responding dimensions in RD are randomly generated. The
random variables sampled within each subspace are sums
of two other variables. One of them is sampled from a
uniform distribution in a d-dimensional ball of radius 1 of
that subspace (centered at the origin for the case of linear
subspaces). The other is sampled from a D-dimensional
multivariate normal distribution with mean 0 and covari-
ance matrix 0.052 · ID×D. Then, for each subspace 250
samples are generated according to the distribution just de-
scribed. Next, the data is further corrupted with 5% or 30%
uniformly distributed outliers in a cube of sidelength de-
termined by the maximal distance of the former 250 sam-
ples to the origin (using the same code). Since most algo-
rithms (SCC, LSA, MoPPCA, LBF, SLBF, RANSAC, SSC)
do not support mixed dimensions natively, we assume each
subspace has the maximum dimension in the experiment.
GPCA and ALC support mixed dimensions natively, and
GPCA is the only algorithm for which we specify the di-
mensions for each subspace in mixed-dimension case (note
that the knowledge of dimensions are unnecessary in ALC
algorithm).

The mean (over 100 instances) misclassification rates of
the various algorithms is recorded in Table 1. The mean
running time is shown in Table 2. From Table 1 we can see
that our algorithms, i.e., LBF, LBF-MS, SLBF, SLBF-MS,
perform well in various artificial instances of hybrid linear
modeling (with both linear subspaces and affine subspaces),
and their advantage is especially obvious with many out-
liers and affine subspaces. The robustness to outliers is a
result of our use of both ℓ1 loss function (see e.g., [27])
and random sampling. The SLBF and SLBF-MS are better
at the affine cases because of their use of spectral cluster-
ing. Also unlike many other methods, the proposed meth-
ods natively supports affine subspace models (the particular
data has non-intersecting subspaces, which makes advan-
tageous to some other algorithms, e.g., SSC). The results
of RANSAC (ϵ from LBF) and ALC (ϵ from LBF) show
that the local best-fit heuristic can be effectively used to es-
timate the main parameter of RANSAC and ALC, i.e., to
estimate the local noise. Table 2 shows that the running
time of LBF/LBF-MS is less than the running time of most
other algorithms, especially GPCA, LSA, RANSAC, ALC
and SSC. The difference is large enough that we can also
use the proposed algorithm as an initialization for the oth-
ers. LBF and LBF-MS algorithms are slower than a single
run of K-flats, but it usually takes many restarts of K-flats
to get a decent result. Notice that the choice of C and p in
our algorithm function in a similar manner to the number of
restarts in KF. SLBF and SLBF-MS cost more time when
N is large, because of the construction of the N×N matrix
in spectral clustering, but it is still faster than SSC, which
also depends on a spectral matrix.

3.2. Clustering results on motion segmentation data

We test the proposed algorithms on the Hopkins 155
database of motion segmentation, which is available at
http://www.vision.jhu.edu/data/hopkins155. This data con-
tains 155 video sequences along with the coordinates of cer-
tain features extracted and tracked for each sequence in all
its frames. The main task is to cluster the feature vectors
(across all frames) according to the different moving ob-
jects and background in each video.

More formally, for a given video sequence, we denote the
number of frames by F . In each sequence, we have either
one or two independently moving objects, and the back-
ground can also move due to the motion of the camera. We
let K be the number of moving objects plus the background,
so that K is 2 or 3 (and distinguish accordingly between
two-motions and three-motions). For each sequence, there
are also N feature points y1,y2, · · · ,yN ∈ R3 that are de-
tected on the objects and the background. Let zij ∈ R2

be the coordinates of the feature point yj in the ith im-
age frame for every 1 ≤ i ≤ F and 1 ≤ j ≤ N . Then
zj = [z1j , z2j , · · · , zFj ] ∈ R2F is the trajectory of the
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Table 3. The mean and median percentage of misclassified points for two-motions and three-motions in Hopkins 155 database.

Checker Traffic Articulated All2-motion
Mean Median Mean Median Mean Median Mean Median

GPCA 6.09 1.03 1.41 0.00 2.88 0.00 4.59 0.38
LLMC 5 4.37 0.00 0.84 0.00 6.16 1.37 3.62 0.00
LSA 4K 2.57 0.27 5.43 1.48 4.10 1.22 3.45 0.59
LBF(4K,3) 3.65 0.00 3.89 0.00 4.43 0.15 3.78 0.00
LBF-MS(4K,3) 2.90 0.00 1.64 0.00 2.51 0.06 2.54 0.00
SLBF(2F ,3) 1.59 0.00 0.20 0.00 0.80 0.00 1.16 0.00
SLBF-MS(2F ,3) 1.28 0.00 0.21 0.00 0.94 0.00 0.98 0.00
SCC(4K,3) 2.42 0.00 4.44 0.00 9.51 2.04 3.60 0.00
SCC-MS(4K,3) 2.00 0.00 0.35 0.00 4.11 1.12 1.77 0.00
SSC-N(4K,3) 1.29 0.00 0.29 0.00 0.97 0.00 1.00 0.0
MSL 4.46 0.00 2.23 0.00 7.23 0.00 4.14 0.00
RANSAC 6.52 1.75 2.55 0.21 7.25 2.64 5.56 1.18

Checker Traffic Articulated All3-motion
Mean Median Mean Median Mean Median Mean Median

GPCA 31.95 32.93 19.83 19.55 16.85 28.66 28.66 28.26
LLMC 4K 12.01 9.22 7.79 5.47 9.38 9.38 11.02 6.81
LLMC 5 10.70 9.21 2.91 0.00 5.60 5.60 8.85 3.19
LSA 4K 5.80 1.77 25.07 23.79 7.25 7.25 9.73 2.33
LSA 5 30.37 31.98 27.02 34.01 23.11 23.11 29.28 31.63
LBF(4K,3) 8.50 1.26 16.31 13.52 20.75 20.75 10.77 1.70
LBF-MS(4K,3) 6.97 1.15 7.06 0.62 21.38 21.38 7.81 0.98
SLBF(2F ,3) 4.57 0.94 0.38 0.00 2.66 2.66 3.63 0.64
SLBF-MS(2F ,3) 3.33 0.39 0.24 0.00 2.13 2.13 2.64 0.22
SCC(4K,3) 7.80 1.04 8.05 2.37 7.07 7.07 7.81 0.67
SCC-MS(4K,3) 6.28 0.80 4.09 0.58 7.22 7.22 5.89 0.68
SSC-N(4K,3) 3.22 0.29 0.53 0.00 2.13 2.13 2.62 0.22
MSL 10.38 4.61 1.80 0.00 2.71 2.71 8.23 1.76
RANSAC 25.78 26.01 12.83 11.45 21.38 21.38 22.94 22.03

Table 4. The standard deviation to the mean and median percentage of misclassified points for two-motions and three-motions in Hopkins
155 database.

Checker Traffic Articulated All2-motion
Mean Median Mean Median Mean Median Mean Median

LBF(4K,3) 0.71 0.00 1.22 0.00 1.04 0.66 0.50 0.00
LBF-MS(4K,3) 0.53 0.00 1.06 0.00 1.14 0.28 0.47 0.00
WLBF(4K,3) 0.53 0.00 0.98 0.00 1.35 0.00 0.47 0.00
SLBF-MS(4K,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SCC(4K,3) 0.27 0.00 1.51 0.00 2.34 1.52 0.38 0.00
SCC-MS(4K,3) 0.33 0.00 0.25 0.00 1.03 0.46 0.25 0.00
SSC-N(4K,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Checker Traffic Articulated All3-motion
Mean Median Mean Median Mean Median Mean Median

LBF(4K,3) 1.52 0.58 3.71 9.69 7.37 7.37 1.43 0.65
LBF-MS(4K,3) 1.48 0.45 3.81 2.35 6.59 6.59 1.42 0.40
SLBF(4K,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLBF-MS(4K,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SCC(4K,3) 1.20 0.53 5.70 7.00 1.77 1.77 1.43 0.49
SCC-MS(4K,3) 0.94 0.50 3.25 0.54 2.54 2.54 0.92 0.33
SSC-N(4K,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

jth feature point across the F frames. The actual task of
motion segmentation is to separate these trajectory vectors
z1, z2, · · · , zN into K clusters representing the K underly-
ing motions.

It has been shown [1] that under the affine camera model,
the trajectory vectors corresponding to different moving ob-
jects and the background across the F image frames live
in distinct affine subspaces of dimension at most three in
R2F . Following this theory, we implement our algorithm
with d = 3.

We compare our algorithm with the following ones: im-
proved GPCA for motion segmentation (GPCA) [32], K-
flats (KF) [3] (implemented for linear subspaces), Local
Linear Manifold Clustering (LLMC) [15], Local Subspace

Analysis (LSA) [13], Multi Stage Learning (MSL) [33],
Spectral Curvature Clustering (SCC) [17] and SCC-MS (see
description earlier), Sparse Subspace Clustering (SSC) [18],
and RANSAC for HLM [14].

For GPCA (improved for motion segmentation), LLMC,
LSA, MSL and RANSAC (for HLM), we copy the re-
sults from http://www.vision.jhu.edu/data/hopkins155 (they
are based on experiments reported in [34] and [15]). We
perform our own experiments for SCC, SCC-MS, SSC-N
(SSC-B is not reported since it did not perform as well as
SSC-N), LBF, LBF-MS, SLBF, SLBF-MS, we perform the
experiments on our own and record the mean misclassifi-
cation rate and the median misclassification rate for each
algorithm for any fixed K (two or three-motions) and for
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Table 5. Average total computation times for all 155 sequences.
RANSAC LBF-MS (4K,3) LBF (4K,3) SCC-MS(4K,3) SLBF-MS(2F ,3) SLBF(2F ,3) SSC-N(4K,3)

60s 73s 91s 196s 28min 31min 427min
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Figure 1. The misclassification rate of some algorithms for the
Hopkins 155 database. The y-axis represent the percentage of
data sets that have misclassification rates (under corresponding
algorithms) lower than that of x-axis.

the different type of motions (“checker”, “traffic” and “ar-
ticulated”). Each experiment (testing the latter set of algo-
rithms) was repeated 500 times. The average misclassifica-
tion rates, standard deviation and running time are recorded
in Tables 6 and 7 and demonstrated in Figure 1.

Our misclassification errors for SCC are different
than [35] and [36] and our misclassification errors for SSC
are different than [18] (the difference between our and their
results differ more than twice the standard deviations of er-
rors obtained here). This can be explained by possible evo-
lutions of the codes since then (at least for SSC). We remark
though that the misclassification errors of SCC-MS here are
even slightly better than the misclassification errors of SCC
in [35].

From Table 3 and Figure 1 we can see that our algorithms
work well for the Hopkins database. Of all the methods
tested, SLBF-MS and SSC-N are the most accurate algo-

rithms. Besides SLBF/SLBF-MS and SSC-N, only SSC-
MS is better than LBF-MS. However, From Table 5, LBF-
MS ran more than 100 times faster than SSC-N and SLBF-
MS is also more than 10 times faster than SSC. In many of
the cases, the ℓ1 energy (as well as the ℓ2 energy) was lower
for the labels obtained by LBF than the true labels. We
thus suspect that the reason SLBF/SLBF-MS works better
than LBF/LBF-MS is that good clustering of the Hopkins
data requires additional type of information (e.g., spectral
information) to be combined with subspace clustering (i.e.,
hybrid linear modeling).

By adapting the parameters of SLBF-MS (or alterna-
tively, SLBF, LBF, LBF-MS), we can further improve its
misclassification errors on Hopkins 155 (e.g., total 0.81%
for two-motions and 2.12% for three-motions by SLBF-
MS). However, we have fixed in advance all parameters and
insist using the same parameters on all four kinds of data
(see the third paragraph of Section 3).

From Table 4 we can see that SLBF-MS, SLBF and SSC-
N have almost negligible standard deviations in Hopkins
155 database. LBF and LBF-MS are more random, but still
have comparable standard deviations with other good algo-
rithms such as SCC/SCC-MS.

3.3. Clustering results on Yale Faces B data set

We also test the proposed methods LBF, LBF-MS,
SLBF and SLBF-MS and compare them with ALC, SCC,
SSC and GPCA on Yale Faces B which is available
on http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.
We use 9 subsets of the Yale Face Database B consisting
of face images of 2, . . . , 10 persons respectively under 64
varying lighting conditions. For computational efficiency,
we follow [17] to downsample each image to 120×160 pix-
els, so the dimension of the image space is D′ = 120×160.
The 9 subsets contain the faces with the following indices:
[5, 8], [1, 5, 8], [1, 5, 8, 10], [1, 4, 5, 8, 10], [1, 2, 4,
5, 8, 10], [1, 2, 4, 5, 7, 8, 10], [ 1, 2, 4, 5, 7, 8, 9, 10],
[1, 2, 3, 4, 5, 7, 8, 9, 10] and [1, 2, 3, 4, 5, 6, 7, 8, 9,
10]. We apply PCA to the data matrix to reduce the dimen-
sion to D = 20 for all methods except GPCA. In GPCA,
we reduce the dimension to 5 to save running time (it of-
ten happened that GPCA got stuck with D = 20). We
also add another coordinate whose value is 1 to each point
so that GPCA is applicable to affine subspaces. By ap-
plying [37] to all data pointed we estimated that d = 2
(i.e., the local dimension around most data points was 2),
though almost any other method for dimension estimation
will give the same result since there is hardly any noise in
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face data. We thus input d = 2 and the correct number of
clusters for all algorithms except ALC. ALC (voting with
K) exactly follows [38, sec. (2.2)], in particular, it chooses
ε from 101 values in the range 10−5 − 103 (see the code in
http://perception.csl.uiuc.edu/coding/motion/#Software).

We see from Table 6 that our algorithms are very ac-
curate in this data set. SLBF and SLBF-MS are the best
algorithms besides ALC (ϵ from LBF), and LBF and LBF-
MS are also great considering the running time. Besides,
this data set proves that the local best-fit heuristic provides
a good estimation for the noise: ALC (ϵ from LBF) obtains
better results than ALC (voting with K) with perfect classi-
fication and a much smaller running time.

3.4. Clustering results on MNIST data set

Finally, we work on the MNIST data set (available at
http://yann.lecun.com/exdb/mnist/). This data set consists
of several thousand 28 × 28 images of the digits 0 through
9. We work on some subsets of the data which contain 2 or 3
digits and choose 200 images for each digit at random. We
apply PCA to reduce the dimension to D = 5 for GPCA and
to both D = 10 and D = 50 for the rest of algorithms. The
choice of both D = 10 and D = 50 provide richer testing
opportunities, this is however unavailable for GPCA, which
cannot handle D = 50 and often get stuck with D = 10.
We process the data the same way as in Section 3.3. We
run each experiment 500 times, using d = 3 and the correct
number of clusters, and record the misclassification rates,
the standard deviation and running time in Tables 8, 10, 9
and 11.

From Table 8 and 9, SLBF and SLBF-MS are the best
algorithms among all the methods in terms of classification
error, although the misclassification rate increases when
K = 3. SCC, SCC-MS, SSC, LBF and LBF-MS are also
good algorithms for this data set. ALC is almost as good
as SLBF and SLBF-MS when K = 2, but it fails when
K = 3. LBF, LBF-MS and K-flats are the fastest algo-
rithms in MNIST data set.

3.5. Automatic determination of the number of
affine sets

We explain how to use the elbow method to determine
the number of affine clusters in any HLM algorithm, in
particular LBF and SLBF. Fixing an arbitrary HLM algo-
rithm with the correct input of number of clusters K, let
Fj , j = 1, . . . ,K be the K flats returned by that algorithm
and WK be the sum of squared distances of all data points
to the flat, among these K flats, corresponding to their clus-
ters. That is,

WK =
K∑
j=1

∑
x∈Cj

dist2(x, Fj). (10)

We note that WK decreases as K increases.
A classical method for determining the number of clus-

ters is to find the “elbow”, or the K past which adding more
clusters does not significantly decrease the error. We search
for the elbow by finding the maximum of the Second Order
Difference (SOD) of the logarithm of WK [39]:

SOD(lnWK) = lnWK−1 + lnWK+1 − 2 lnWK . (11)

The optimal K is thus found by

KSOD = argmax
K

SOD(lnWK), . (12)

where K = 2, . . . ,Kmax.
In the following sections, we compare SOD (LBF), i.e.,

SOD applying LBF, SOD (LBF-MS), SOD (SLBF), SOD
(SLBF-MS), SOD (SCC), SOD (SCC-MS) and SOD(SSC)
with ALC [16] and part of GPCA [12] on a number of arti-
ficial data sets and real data sets. These experiments run on
a machine with Intel Core 2 Quad Q6600 at 2.4GHz and 8
GB memory.

3.5.1 Finding the number of clusters on artificial data

We test the above use of our algorithms for detect-
ing the number of clusters while comparing it with
some other methods (three variations of ALC, number
of clusters by GPCA and SOD with SSC and SCC). In
these experiments, data sets are generated by the Mat-
lab code borrowed from the GPCA [12] package on
http://perception.csl.uiuc.edu/gpca. For each subspace
100d initial data points are uniformly sampled in a unit
cube in this subspace centered around the origin and then
corrupted with Gaussian noise in RD of standard deviation
0.05. For the last four experiments, we restrict the angle
between subspaces to be at least π/8 for separation. The
dimension d is given and we let Kmax = 10 in SOD. In
ALC (voting), we try 101 different values from 10−5 to 103

for ϵ (as in [38]) and choose the estimated K by major-
ity. In ALC (ϵ from LBF), we choose the average noise
in the neighborhood using the local best-fit heuristic as the
distortion rate ϵ. In ALC (oracle), we input the true noise
level (ϵ = 0.05) as the distortion rate. For GPCA, we use
the original idea of [12, eqs. (26), (28)] to find the num-
ber of clusters (see our implementation in the supplemental
webpage). We project the data onto a d + 1-dimensional
subspace by PCA and let the tolerance of rank detection be
0.05 (chosen by trying different values and picking the one
obtaining the lowest error). This algorithm is independent
of other parts of the GPCA algorithm and is thus extremely
fast and can perform in high ambient dimensions. We even
tried other ideas of [31, eqs. (3.28), (3.29)] (for the same
given dimension d), while applying them to several HLM
algorithms (even though they were originally presented for
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Table 6. Mean percentage of misclassified points and mean running time on clustering Yale Faces B data set.
K 2 3 4 5 6 7 8 9 10

e% 0.0 0.0 0.0 0.1 0.0 0.0 0.4 0.8 0.5LBF
t(s) 0.60 0.89 0.83 1.40 1.47 1.96 2.54 3.19 4.00
e% 0.0 0.0 0.0 0.0 0.8 0.0 0.8 1.1 1.0LBF-MS
t(s) 0.32 0.48 0.54 0.90 1.04 1.47 1.98 2.56 3.26
e% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.9SLBF
t(s) 3.70 7.90 14.00 28.32 43.50 63.79 118.99 179.70 249.42
e% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3SLBF-MS
t(s) 3.26 7.26 13.45 24.09 39.85 62.57 102.13 148.99 203.37

ALC e% 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(voting with K) t(s) 126.31 306.63 564.27 880.38 1251.14 1719.52 2274.04 3043.32 4360.81

ALC e% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(ϵ from LBF) t(s) 3.25 7.13 12.81 20.45 29.28 40.08 52.49 66.58 82.63

e% 0.0 0.0 0.0 1.1 2.7 2.1 2.2 5.7 6.6SCC
t(s) 0.57 0.92 1.45 2.30 2.27 4.57 6.58 10.29 7.51
e% 0.0 0.0 2.9 4.1 7.5 16.7 23.0 28.2 32.5SCC-MS
t(s) 0.52 0.62 0.93 1.36 1.86 2.52 3.31 4.23 5.37
e% 0.0 49.5 0.0 26.6 9.9 25.2 28.5 30.6 19.8GPCA
t(s) 1.42 2.72 4.91 8.08 11.71 33.11 99.49 286.36 1122.50
e% 30.4 57.4 38.1 35.6 36.4 38.2 40.7 40.5 41.2K-flats
t(s) 0.44 0.61 0.78 1.00 1.42 1.83 2.73 2.91 3.42
e% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 4.6SSC
t(s) 36.56 56.21 80.87 107.82 137.83 174.81 219.22 276.81 570.57

Table 7. The standard deviation to the mean percentage of misclassified points on clustering Yale Faces B data set.
Real K 2 3 4 5 6 7 8 9 10

LBF 0.0 0.2 0.0 1.3 0.3 0.1 0.1 1.2 0.4
LBF-MS 0.0 0.1 0.0 0.2 0.2 0.0 0.1 0.1 0.2

SLBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SLBF-MS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ALC(voting with K) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ALC(ϵ from LBF) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SCC 0.0 0.0 0.0 0.5 1.8 3.5 3.6 4.4 5.5
SCC-MS 0.0 0.0 9.4 8.5 7.8 9.4 7.2 7.3 6.6

GPCA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
K-flats 1.0 7.2 9.4 8.4 8.3 7.4 6.7 5.9 5.7
SSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.2 6.0

GPCA). Nevertheless, they did not work well and we thus
did not report them. Each experiment is repeated 100 times
(except for SOD(SSC), which is repeated 10 times due to its
low speed) and the error rates of finding the number of clus-
ters K and the computation time (in seconds) are recorded
in Table 12.

As in Table 12, ALC (oracle) and ALC (ϵ from LBF)
work the best for low dimensions (d = 1, 2, 3), but in real
problems this choice (the noise level) for ϵ is usually un-
known. The local best-fit flat heuristic provides a good es-
timation for the distortion rate and helps ALC reduce its
running time. ALC (voting) is not as good as SOD (LBF)
for artificial data. All options of ALC suffer from the com-
putation complexity, especially ALC (voting). SOD (LBF)
and SOD (LBF-MS) get reasonable outputs and have obvi-
ous advantage of computing time. GPCA is very fast, but
does not work well.

3.5.2 Finding the number of clusters on Yale Faces B
data set

We use the Yale Faces B as in Section 3.3 for testing the
above algorithms for detecting the number of clusters. The
ambient dimension is reduced to D = 20 by PCA for all
of the methods and the intrinsic dimension of subspaces is

set as d = 2 (see Section 3.3). For SOD with different
clustering algorithms, we let Kmax = 6, 8, 8, 10, 10, 12, 14,
16 and 18 respectively for 2 to 10 clusters. For GPCA, we
let tolerance be 0.05 which does not affect the performance
in this experiment. Each experiment is repeated 500 times
(except for SOD(SSC), which is repeated 10 times due to
its low speed). The error rate of finding the correct number
of clusters and the computation time are recorded in Table
13.

We see from Table 13 that SOD (SLBF), SOD (SLBF-
MS), ALC (ϵ from LBF) and ALC (voting) have perfect
detection of K; SOD (SLBF) and SOD (SLBF-MS) are
faster than ALC (voting) on data with small sizes, but
slower with large sizes; LBF provides a good estimation
for the distortion rate and makes ALC (ϵ from LBF) much
faster than ALC (voting); SOD (LBF) and SOD (SLBF)
have nearly perfect detection and obvious advantage of ef-
ficiency; GPCA does not work well on finding the number
of clusters.

3.5.3 Finding the number of clusters on MNIST data
set

We preprocess MNIST exactly the same way as we did in
Section 3.4. The ambient dimension is reduced to both
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Table 8. Mean percentage of misclassified points and mean running time on clustering MNIST data set (D=5 for GPCA, D=10 for other
algorithms).

subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]
K 2 2 2 2 3 3 3

e% 8.0 8.5 12.9 25.5 28.8 28.1 20.2LBF
t(s) 0.4 0.4 0.3 0.4 0.7 0.7 0.7
e% 9.7 7.8 8.8 24.0 40.2 33.5 21.5LBF-MS
t(s) 0.2 0.2 0.2 0.2 0.5 0.4 0.4
e% 0.5 1.0 2.0 3.0 3.8 19.7 17.3SLBF
t(s) 13.9 13.7 13.5 14.5 41.9 41.0 42.7
e% 0.5 1.0 2.0 3.0 3.8 19.7 17.3SLBF-MS
t(s) 12.8 13.7 13.0 14.6 38.6 46.3 39.0

ALC e% 0.2 2.2 3.5 48.5 4.2 42.7 45.3
(voting with K) t(s) 830.5 823.3 813.3 753.2 1789.5 1871.8 1987.7

ALC e% 20.3 32.0 51.8 27.5 4.0 30.3 14.5
(ϵ from LBF) t(s) 23.2 22.5 21.6 23.0 55.6 54.7 54.0

e% 7.0 6.4 11.4 23.4 22.8 26.7 39.2SCC
t(s) 1.2 1.5 1.4 1.3 2.5 2.7 2.3
e% 6.3 7.9 10.5 23.2 23.3 26.9 32.8SCC-MS
t(s) 0.9 0.8 1.1 1.0 1.9 1.9 1.5
e% 22.3 30.8 32.5 47.0 48.2 33.8 31.0GPCA
t(s) 8.7 9.2 9.4 10.8 24.9 24.5 22.5
e% 11.1 6.8 6.3 29.1 43.9 40.7 29.2K-flats
t(s) 0.4 0.4 0.4 0.4 0.9 0.8 0.6
e% 4.5 3.5 9.0 21.0 19.5 24.5 49.3SSC
t(s) 220.6 196.6 200.8 203.2 322.6 333.0 338.2

Table 9. Mean percentage of misclassified points and mean running time on clustering MNIST data set (D=50).
subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]
K 2 2 2 2 3 3 3

e% 20.5 13.1 18.2 30.2 26.3 24.1 19.2LBF
t(s) 2.8 2.8 2.6 3.1 5.2 5.1 4.7
e% 12.5 16.9 10.7 19.1 23.5 27.3 24.3LBF-MS
t(s) 1.3 1.3 1.3 1.3 2.3 2.3 2.3
e% 8.3 4.3 2.3 13.8 4.3 17.5 21.7SLBF
t(s) 15.1 15.0 14.6 16.8 37.5 38.5 39.5
e% 5.5 3.3 5.0 5.5 3.2 18.5 21.7SLBF-MS
t(s) 11.8 12.3 12.3 12.5 34.3 36.9 34.4

ALC e% 47.0 46.0 48.8 100.0 100.0 100.0 65.3
(voting with K) t(s) 1469.2 1445.6 1489.2 679.0 1530.1 1528.5 3032.4

ALC e% 50.5 50.8 50.5 99.8 99.8 99.8 67.0
(ϵ from LBF) t(s) 93.0 93.6 91.0 9.4 18.2 17.9 163.5

e% 5.8 4.9 5.3 17.1 23.0 29.7 33.6SCC
t(s) 0.9 1.0 1.1 0.9 1.6 2.0 1.7
e% 5.1 5.4 5.1 26.2 28.6 41.7 33.0SCC-MS
t(s) 0.9 1.0 1.2 1.0 1.8 1.9 2.0
e% N/A N/A N/A N/A N/A N/A N/AGPCA
t(s) N/A N/A N/A N/A N/A N/A N/A
e% 10.9 14.9 13.5 30.4 45.3 41.6 26.9K-flats
t(s) 2.8 2.9 2.9 3.1 6.2 5.6 5.1
e% 16.8 2.0 3.2 20.0 11.3 17.8 45.5SSC
t(s) 411.8 402.7 395.1 396.0 760.9 763.1 777.0

D = 10 and D = 50 by PCA for all of the methods in-
cluding GPCA and 3 is given as the intrinsic subspace di-
mension. For SOD with different clustering algorithms, we
let Kmax = 6, and 8 respectively for 2 and 3 clusters. For
GPCA, we let the tolerance be 0.05 which does not affect
the performance in this experiment. Each experiment is re-
peated 500 times (except for SOD(SSC), which is repeated
10 times due to its low speed). The error rate of finding
the correct number of clusters and the computation time are
recorded in Tables 14 and 15.

For all the methods, determining the number K of clus-
ters becomes very difficult when the real K is larger than 3.
For real K ≤ 3, we see from Table 14 that when we project
data to 10-dimensional space, ALC and GPCA fail in most
cases, except for ALC (ϵ from LBF) on digits [3 6 8]. SOD

(SLBF), SOD (SLBF-MS) and SOD (SSC) outperform all
others although they are not very efficient.

3.6. Initializing Kflats with the local bestfit heuris
tic

Here we demonstrate that our choice of neighborhoods
in Algorithm 1 can be used to get a more robust initializa-
tion of K-flats. We work with geometric farthest insertion.
For fixed neighborhood sizes, say of m neighbors, this goes
as follows: we pick a random point x0 and then find the best
fit flat F0 for the m point neighborhood of x0. Then we find
the point x1 in our data farthest from F0, find the best fit flat
F1 of the m neighborhood of x1, and then choose the point
x2 farthest from F0 and F1 to continue. We stop when we
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Table 10. The standard deviation to the mean percentage of misclassified points on clustering MNIST data set (D=5 for GPCA, D=10 for
other algorithms).

subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]
K 2 2 2 2 3 3 3

LBF 3.5 4.1 10.0 11.4 11.6 8.3 9.5
LBF-MS 5.9 3.8 10.0 10.0 10.3 7.2 7.8

SLBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SLBF-MS 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ALC(voting with K) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ALC(ϵ from LBF) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SCC 2.3 2.7 4.6 9.9 9.4 7.5 11.9
SCC-MS 2.0 3.7 5.2 10.2 8.3 8.5 9.2

GPCA 0.0 0.0 0.0 0.0 0.0 0.0 0.0
K-flats 7.6 8.5 7.8 5.7 7.4 7.5 5.9
SSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 11. The standard deviation of the mean percentage of misclassified points on clustering MNIST data set (D=50).
subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]
K 2 2 2 2 3 3 3

LBF 5.6 8.0 8.3 10.6 11.0 6.0 6.0
LBF-MS 8.7 10.5 11.4 11.2 12.3 8.9 9.1

SLBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SLBF-MS 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ALC(voting with K) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ALC(ϵ from LBF) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SCC 0.6 1.0 0.9 10.3 3.7 4.3 13.9
SCC-MS 0.4 0.7 0.9 15.5 5.4 4.5 5.8

GPCA N/A N/A N/A N/A N/A N/A N/A
K-flats 7.2 11.3 11.1 7.5 7.3 8.1 7.7
SSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0

have K flats; we use these as an initialization for K-flats.
We work on three data sets. Data set #1 consists of 1500

points on three parallel 2-planes in R3. 500 points are drawn
from the unit square in x, y plane, and then 500 more from
the x, y, z+.2 plane, and then 500 more from the x, y, z+.4
plane. This data set is designed to favor the use of small
neighborhoods. The next data set is three random affine
sets with 15% Gaussian noise and 5% outliers, generated
using the Matlab code from GPCA, as in Section 3.1. This
data set is designed to favor large neighborhood choices. Fi-
nally, we work on a data set with 1500 points sampled from
3 planes in R2 as in Figure 2. The error rates of K-flats with
farthest insertion initialization with fixed neighborhoods of
size 10, 20, ..., 160 are plotted against the error rate for far-
thest insertion with adapted neighborhoods (searched over
the same range), averaged over 400 runs in Figure 3. Al-
though our method did not always beat the best fixed neigh-
borhood, it was quite close; and it always significantly bet-
ter than the wrong fixed neighborhood size. Both methods
did significantly better than a random initialization.

In Figure 2 we plot the number of neighbors picked by
our algorithm for each point of a realization of data set #3.

4. Conclusions and future work
We presented a very simple geometric method for HLM

based on selecting a set of local best fit flats. The size of
the local neighborhoods is determined automatically using
the ℓ2 β numbers; it is proven under certain geometric con-
ditions that good local neighborhoods exist and are found
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Figure 2. Color map of neighborhood size obtained by the local
best-fit flat heuristic. The color value represents the number of
neighbors chosen at that point. Note that the algorithm chooses
smaller neighborhoods for points closer to the intersection of the
planes.

by this method. We give extensive experimental evidence
demonstrating the state of the art accuracy and speed of the
algorithm on synthetic and real hybrid linear data.

We believe that the next step is to adapt the method for
multi-manifold clustering. As it is, our method, while quite
good at unions of affine sets, cannot successfully handle
unions of curved manifolds. We believe that by gluing to-
gether groups of local best fit flats related by some smooth-
ness conditions, we will be able to approach the problem of
clustering data which lies on unions of smooth manifolds.
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Table 12. The mean percentage of incorrectness (e%) for finding the number of clusters K and the computation time in seconds t(s) on
artificial data.

no minimum angle minimum angle = π/8

16 ∈ R524 ∈ R533 ∈ R516 ∈ R324 ∈ R333 ∈ R4102 ∈ R15 16 ∈ R324 ∈ R333 ∈ R4102 ∈ R15

SOD e% 22 2 0 58 32 12 0 2 6 5 0
(LBF) t(s) 10.43 13.76 14.83 9.84 13.08 14.49 34.16 9.95 13.22 14.47 34.04
SOD e% 13 1 3 67 33 9 0 3 8 6 0

(LBF-MS) t(s) 8.70 11.90 12.92 8.37 11.54 12.84 27.56 8.42 11.60 12.84 27.69
SOD e% 75 10 5 0 90 95 55 0 85 90 55

(SLBF) t(s) 1097.19 2148.06 2895.85 1076.24 1774.74 2629.26 16124.50 1224.96 2387.70 2830.83 16510.13
SOD e% 90 95 70 0 90 85 85 0 75 80 80

(SLBF-MS) t(s) 908.76 2094.68 3141.77 927.25 1740.03 2695.59 15754.05 990.88 2302.66 3010.64 16493.95
ALC e%(K) 24 12 11 32 30 17 100 5 9 9 100

(voting) t(s) 2094.75 2700.07 3530.26 1207.54 2346.69 3628.24 119584.04 1184.08 2354.19 3956.05 117353.17
ALC e%(K) 1 0 1 20 20 3 58 0 3 1 63

(ϵ from LBF) t(s) 23.72 43.50 57.50 19.76 36.67 53.25 1516.02 19.81 36.60 53.01 1770.77
ALC e%(K) 1 0 0 34 31 1 16 0 10 1 13

(oracle) t(s) 23.74 43.44 59.14 20.49 37.49 53.59 1370.92 20.22 37.41 54.11 1354.11
e% 88 100 100 27 100 100 100 13 100 100 100GPCA
t(s) 0.03 0.09 0.12 0.06 0.09 0.12 1.30 0.04 0.09 0.12 1.30

SOD e%(K) 35 21 1 63 39 17 0 9 32 11 1
(SCC) t(s) 32.09 61.26 95.79 25.83 59.41 76.13 475.45 26.74 41.95 61.53 466.79
SOD e%(K) 71 32 2 80 50 12 0 46 33 3 0

(SCC-MS) t(s) 31.78 67.77 111.15 22.29 55.25 74.07 475.50 24.53 51.98 75.03 471.31
SOD e%(K) 10 80 70 100 70 70 100 50 80 80 100
(SSC) t(s) 39.88 2634.80 3039.55 1708.37 2447.01 2925.27 14918.10 1452.43 2101.84 2641.68 14227.32

Table 13. The mean percentage of incorrectness (e%) for finding the correct number of clusters K and the computation time in seconds
t(s) on Yale Faces B data set.

Real K 2 3 4 5 6 7 8 9 10

SOD e%(K) 0.0 0.2 0.0 0.4 0.4 0.2 0.4 2.2 5.6
(LBF) t(s) 1.22 2.38 3.19 5.32 6.41 9.92 15.25 22.17 31.19
SOD e%(K) 0.0 0.2 0.2 0.0 0.2 0.2 0.4 2.6 1.0

(LBF-MS) t(s) 0.73 1.65 2.21 3.77 4.53 7.46 11.86 18.10 25.83
SOD e%(K) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(SLBF) t(s) 69.94 167.00 160.86 364.18 408.30 772.41 1527.42 2395.91 3818.62
SOD e%(K) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(SLBF-MS) t(s) 69.92 167.65 160.96 364.37 409.56 777.07 1526.85 2396.82 3826.75
ALC e%(K) 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(voting) t(s) 127.85 305.82 567.46 902.63 1278.08 1744.64 2284.50 2945.04 3718.86
ALC e%(K) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(ϵ from LBF) t(s) 3.25 7.13 12.81 20.45 29.28 40.08 52.49 66.58 82.63
e%(K) 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0GPCA
t(s) 0.07 0.13 0.52 0.71 1.02 1.56 2.70 2.65 3.38

SOD e%(K) 0.0 0.0 0.0 3.4 30.8 6.4 15.2 47.8 52.0
(SCC) t(s) 5.51 13.27 11.02 24.64 25.12 53.43 85.35 125.24 188.25
SOD e%(K) 0.0 0.0 9.4 31.0 46.6 79.0 84.4 90.0 94.6

(SCC-MS) t(s) 4.93 10.54 10.87 20.14 21.26 34.66 54.05 83.12 120.95
SOD e%(K) 100.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 50.0
(SSC) t(s) 163.26 355.51 511.81 868.86 1100.86 1588.92 2524.68 3263.78 4340.78

Table 14. The mean percentage of incorrectness (e%) for finding the correct number of clusters K and the computation time in seconds
t(s) on MNIST data set (D=10).

subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]
K 2 2 2 2 3 3 3

SOD e% 16.8 3.8 50.8 50.4 75.6 70.0 54.8
(LBF) t(s) 3.5 3.2 3.0 3.3 7.7 7.5 7.3
SOD e% 9.6 6.6 33.4 68.2 80.4 76.6 44.2

(LBF-MS) t(s) 1.9 1.9 1.9 1.8 4.6 4.6 4.7
SOD e% 0.0 0.0 0.0 0.0 0.0 100.0 0.0

(SLBF) t(s) 173.9 164.6 160.3 248.6 710.1 610.9 548.5
SOD e% 0.0 0.0 0.0 0.0 0.0 100.0 0.0

(SLBF-MS) t(s) 164.6 159.9 150.1 228.5 676.6 586.4 556.2
ALC e% 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(voting) t(s) 830.4 823.2 813.2 753.2 1789.5 1871.8 1987.5
ALC e% 100.0 100.0 100.0 100.0 100.0 0.0 100.0

(ϵ from LBF) t(s) 23.2 22.5 21.5 22.9 55.6 54.7 54.0
e% 100.0 100.0 100.0 100.0 100.0 100.0 100.0GPCA
t(s) 1.0 1.0 1.0 1.1 2.8 2.8 2.7

SOD e%(K) 3.8 7.8 66.4 81.8 64.4 47.6 82.6
(SCC) t(s) 14.5 13.3 14.7 16.9 37.5 34.1 35.0
SOD e%(K) 2.4 16.4 53.0 77.4 70.4 49.6 77.8

(SCC-MS) t(s) 13.7 13.8 13.5 16.4 38.0 35.6 29.4
SOD e%(K) 0.0 0.0 0.0 100.0 0.0 100.0 100.0
(SSC) t(s) 233.6 210.3 213.3 218.4 380.0 386.4 390.5
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Table 15. The mean percentage of incorrectness (e%) for finding the correct number of clusters K and the computation time in seconds
t(s) on MNIST data set (D=50).

subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]
K 2 2 2 2 3 3 3

SOD e% 45.0 35.0 54.0 79.0 72.0 67.0 60.0
(LBF) t(s) 22.9 23.5 22.2 24.9 56.2 54.6 51.1
SOD e% 32.0 22.0 38.0 66.0 44.0 82.0 58.0

(LBF-MS) t(s) 12.2 12.2 12.2 12.2 29.3 29.4 29.4
SOD e% 0.0 0.0 0.0 0.0 0.0 100.0 100.0

(SLBF) t(s) 204.2 198.1 207.8 295.8 864.5 766.5 706.1
SOD e% 0.0 0.0 100.0 0.0 0.0 100.0 100.0

(SLBF-MS) t(s) 213.7 201.7 176.6 259.9 748.1 640.0 681.1
ALC e% 100.0 100.0 100.0 100.0 100.00 100.0 100.0

(voting) t(s) 1469.2 1445.6 1489.2 679.0 1530.1 1528.5 3032.4
ALC e% 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(ϵ from LBF) t(s) 93.0 93.6 91.0 9.4 18.2 17.9 163.5
e% N/A N/A N/A N/A N/A N/A N/AGPCA
t(s) N/A N/A N/A N/A N/A N/A N/A

SOD e%(K) 0.0 4.0 1.0 50.5 78.8 30.3 83.8
(SCC) t(s) 14.9 10.6 11.6 11.6 24.7 26.2 25.4
SOD e%(K) 0.0 0.0 0.0 42.4 89.9 97.0 93.9

(SCC-MS) t(s) 12.6 13.0 14.7 13.9 34.0 36.8 30.7
SOD e%(K) 0.0 0.0 0.0 0.0 0.0 100.0 100.0
(SSC) t(s) 426.4 417.6 409.3 413.5 823.8 821.2 836.8

Figure 3. Using our neighborhood choice to improve initialization of k-flats: the first row is the visualization of three data sets, and the
seconds row shows the corresponding figures such that the vertical axis is accuracy, and the horizontal axis is fixed neighborhood size in
geometric farthest insertion for initialization of K flats. The red line is the result of using adapted neighborhoods. The data sets are #1,#2,
and #3 as described in Section 3.6. Random initialization leads to errors of .4 or greater for all three data sets.

A. Proof of Theorem 2.1
Proof. In order to demonstrate the basic ideas about the
proof, we also use an L∞ version of the continuous β2,
which is formed as follows:

β∞(x, r) = min
d−flats L

max
y∈Ω∩B(x,r)

dist(x, L)

r
.

Clearly, the function β∞ is not robust to noise, unlike β2.

However, direct computations are easier with β∞ and there
is no need in the various comparability constants, which are
1 in this case.

Assume for simplicity that w1 = · · · = wK = w and
also assume without loss of generality that i∗ = 1. Denote
the underlying set by Ω, i.e., Ω = ∪K

i=1Ωi. Note that if
r ≤ w, then B(x, r) is full, i.e., B(x, r) \ Ω1 = ∅. By
scaling invariance we immediately obtain that β∞(x, r) =
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β∞(x, w) = 1/2 and β2(x, r) = β2(x, w) for all r ≤ w.
On the other hand, if w ≤ r ≤ r0, then

β∞(x, r) =
w

r

and is decreasing. Clearly, β∞ has a local minimum at r0
since there is a jump at this point in the width of the minimal
tube containing Ω ∩B(x, r).

If r ≤ w, then in a similar way to the argument above,

β2(x, r) =
D − d

D + 2
.

For r > w, the function β2 cannot be calculated so eas-
ily. However, we can approximate it in the following way.
We apply the regions Td(x, r) := Bd(x, r) × BD−d(x, r)
(where Bd and BD−d are d-dimensional and (D − d)-
dimensional balls respectively) to form the function

β̃2
2(x, r)

= min
d−flatL

∫
Ω∩Td(x,r)

(
dist(x, L)

r

)2
dx

volD(Ω ∩ Td(x, r))
.

We simplify this function for w ≤ r ≤ r0 as follows:

β̃2(x, r) =

∫
Ω1∩Td(x,r)

(
dist(x, L1)

r

)2
dx

vol(Ω1 ∩ Td(x, r))

=

∫
BD−d(x,w)

||x||2dx
r2

∫
BD−d(x,w)

dx
=

∫ w

t=0
t2 · tD−d−1dt

r2
∫ w

t=0
tD−d−1dt

=
D − d

D − d+ 2
· w

2

r2
= Cd,D · w

2

r2
,

and thus note that it is decreasing on [w, r0].
We note that for r ≥ w

Td(x,
√
r2 − w2) ⊆ B(x, r) ⊆ Td(x, r) ,

and clearly if r ≤
√
r20 − w2: Td(x, r) \ Ω1 = ∅. Conse-

quently for

ν0 =

√
1− w2

r20
,

we have that for r ≤
√
r20 − w2,

νD−d+2
0 β̃2(x, r) ≤ β2(x, r) ≤ νd−D

0 β̃2(x, r) ,

that is, β̃2 and β2 are comparable for r ≤ ν0 · r0, and the
comparability constant approaches one as w/r0 approaches
zero.

We conclude by showing that the local minimum of β2

occurs nearby r0. For this purpose we will find a sufficiently
small constant ε such that

εr0 > w and f(ε) ' 1, (13)

where

f(ε) :=
β2
2(x, (1 + ε)r0)

β2
2(x, r0)

=

mind−flatL
∫
Ω∩Bd(x,(1+ε)r0)

dist(x, L)dx

volD(Ω ∩Bd(x, (1 + ε)r0))

· volD(Ω ∩Bd(x, r0))

mind−flatL
∫
Ω∩Bd(x,r0)

dist(x, L)dx
· 1

(1 + ε)2
. (14)

We estimate f(ε) by bounding from below its first multi-
plicative fraction in (14). Assume without loss of generality
that y ∈ T2. In order to estimate f(ε) we first notice the
following upper bounds on volumes of tubes within balls:

volD(Ω ∩Bd(x, (1 + ε)r0)) ≤ volD(Ω1 ∩Bd(x, (1 + ε)r0))

+ (K − 1) · volD(Ω2 ∩Bd(x, (1 + ε)r0))

We bound the ratio between those volumes as follows

g(ε) =
volD(Ω2 ∩Bd(x, (1 + ε)r0))

volD (Ω1 ∩Bd(x, (1 + ε)r0))

' volD(Bd(x, 2ε
1
2 r0)×BD−d(x, w))

volD(Bd(x, (1 + ε)r0)×BD−d(x, w))
' ε

d
2 ,

(15)

where the first inequality was derived using (13).
Next, we bound from below the numerator of the first

multiplicative fraction in (14) as follows (while using the
notation z for the center of mass of Ω ∩Bd(x, (1 + ε)r0)):

min
d−flatL

∫
Ω∩Bd(x,(1+ε)r0)

dist2(x, L)dx '

min
d−flat L containing z

∫
Ω2∩Bd(x,(1+ε)r0)

dist2(x, L)dx+

min
d−flatL

∫
Ω1∩Bd(x,(1+ε)r0)

dist2(x, L)dx . (16)

We remark that we applied the assumption r0 ≫ w in
neglecting the integral over Ω1 ∩ Ω2 ∩ Bd(x, (1 + ε)r0).
Equation (15) implies that z is sufficiently close to x so
that the first term in the RHS of (16) is approximately
εr20 volD(Ω2 ∩Bd(x, (1 + ε)r0)). For the second term, the
best L2 d-flat is L1 (on which Ω1 is centered) and thus this
term is estimated by w2 volD(Ω1 ∩Bd(x, (1 + ε)r0)). We
can thus estimate the first multiplicative fraction in (14) us-
ing g(ε) of (15) as follows

mind−flatL
∫
Ω∩Bd(x,(1+ε)r0)

dist(x, L)dx

volD Ω ∩Bd(x, (1 + ε)r0)

' w2 + g(ε)εr20
1 + (K − 1)g(ε)

. (17)
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Notice that the second multiplicative fraction in (14) is
easily estimated in the following way:∫

Ω∩Bd(x,r0)
dist(x, L)dx(1 + ε)2

volD(Ω ∩Bd(x, r0))
≈ (1 + ε)2w2 . (18)

Combining (14), (17) and (18), we obtain that ε needs to
satisfy the equation:

C1w
2 + C2g(ε)εr

2
0

1 + g(ε)
' (1 + ε)2w2 . (19)

Equation (13) and (19) imply the requirement: g(ε)r20 >
C4w

2. In view of (15) and (13) we obtain that ε can be
taken to be in the order of w/r0 if d ≤ 4 and in the order of
(w/r0)

4/d if d ≥ 5. By carefully checking all comparabil-
ity estimates above we note that they tend to be equalities
or strict inequalities when w/r0 approaches zero.
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