STOPPING TIMES AND τ CONVERGENCE

BY

J. BAXTER, G. DAL MASO, U. MOSCO

IMA Preprint Series # 229

March 1986
Stopping Times and Γ-Convergence\(^{(1)}\)

by

J. Baxter, G. Dal Maso, U. Mosco

University of Minnesota, Minneapolis, MN 55455 (USA)
SISSA, 34014 Trieste (Italy)
Universita di Roma, 00185 Roma (Italy)

AMS subject classification numbers-35K05, 35J20, 60G40, 60J45
Keywords and phrases: variational convergence, compactness, stopping times.

\(^{(1)}\) This work was supported in part by the National Science Foundation.
Summary

The equation $\partial u/\partial t = \Delta u - \mu u$ represents diffusion with killing. The strength of the killing is described by the measure μ, which is not assumed to be finite or even σ-finite (to illustrate the effect of infinite values for μ, it may be noted that the diffusion is completely absorbed on any set A such $\mu(B)=\infty$ for every nonpolar subset B of A). In order to give a rigorous mathematical meaning to this general diffusion with killing, one may interpret the solution u as arising from a variational problem, via the resolvent, or one may construct a semigroup probabilistically, using a multiplicative functional. Both constructions are carried out here, and applied to the study of the diffusion equation, as well as to the study of the related Dirichlet problem for the equation $\Delta u - \mu u = 0$. The class of diffusions studied here is closed with respect to limits when the domain is allowed to vary. Two appropriate forms of convergence are considered, the first being δ-convergence of the measures μ, which is defined in terms of the variational problem, and the second being stable convergence in distribution of the multiplicative functionals associated with the measures μ. These two forms of convergence are shown to be equivalent.
1. Let \(D \) be an open set in \(\mathbb{R}^d \), \(d \geq 0 \). Let \(\mathcal{M}_0 \) be the class of nonnegative measures, not necessarily \(\sigma \)-finite, which do not charge polar sets. For each \(\mu \) in \(\mathcal{M}_0 \), we wish to consider two problems:

Problem 1 To find the solution \(u \) of the \(\mu \)-Dirichlet problem on \(D \) with data \(g \) on \(\partial D \), that is:

\[
\begin{align*}
(1.1) & \quad -\Delta u + \mu u = 0 \text{ on } D, \\
(1.2) & \quad u = g \text{ on } \partial D.
\end{align*}
\]

For brevity, we will say that a solution of (1.1) is \(\mu \)-harmonic on \(D \). (This usage is not related to the notion of \(\mu \)-harmonic functions, as defined for example in [12], VIII.1.)

Problem 2 To find the solution \(v : (0, \infty) \times \mathbb{R}^d \to \mathbb{R} \) of the \(\mu \)-diffusion equation with initial data equal to some measure \(\nu \) on \(\mathbb{R}^d \), that is:

\[
\begin{align*}
(1.3) & \quad \partial v / \partial t = \Delta v - \nu \mu \text{ on } (0, \infty) \times \mathbb{R}^d, \\
(1.4) & \quad \lim_{t \to 0^+} v(t, \cdot) = \nu \text{ in distribution sense.}
\end{align*}
\]

We could generalize problem 2 to the case that \(\nu \) satisfies a boundary condition

\[
(1.5) \quad v(t, \cdot) = 0 \text{ on } \partial D \text{ for all } t,
\]

but this problem is really included in the previous form of problem 2 for an appropriate choice of \(\mu \), as we shall see.

Naturally, it is necessary to give a precise meaning to equations (1.1) and (1.3) when \(\mu \) is a general measure. This was done for (1.1) in [8] and [9], by defining \(u \) as the solution of a variational problem (see section 2). The measure \(\mu \) in this case represents a penalization on the solution. It was shown in [8] that the general form of problem 1 provides an appropriate framework for studying limits of solutions of Dirichlet problems in varying domains with "holes" (cf. [7],[16],[17],[18],[19]). Equation (1.3) can also be interpreted variationally, in terms of the resolvent family associated with \(-\Delta + \mu \). In the present paper we will consider this formulation, and at the same time we will develop a probabilistic interpretation for both problems 1 and 2. The solution of (1.3) will be defined (section 4) using an appropriate multiplicative functional \(M(\mu) \) associated with \(\mu \) for each \(\mu \) in \(\mathcal{M}_0 \). A multiplicative functional is a special type of randomized stopping time (see section 3). We will show (section 6) that the usual probabilistic method can be applied to solve problem 1, that is, the analogue of the Feynman-Kac formula which is used when \(\mu \) has a finite density \(h \) with respect to Lebesgue on \(\mathbb{R}^d \) (see equation (6.22)). We will also (Theorem 6.2 and Lemma 6.4) give two criteria for the Dirichlet regularity of a point for a \(\mu \)-harmonic function.
It should be noted that, when measures \(\mu \) which are not Radon are used, that two distinct measures \(\mu_1 \) and \(\mu_2 \) can induce the same variational solutions for problems 1 and 2. Thus we define (section 2) two measures \(\mu_1 \) and \(\mu_2 \) to be equivalent if this is the case. Because of the variational formulation of these problems, we may express the equivalence of \(\mu_1 \) and \(\mu_2 \) more briefly by requiring that

\[
\int u^2 d\mu_1 = \int u^2 d\mu_2,
\]

for all functions \(u \) in \(H^1(\mathbb{R}^d) \).

We will show (Lemma 4.2) that \(\mu_1 \) and \(\mu_2 \) are equivalent if and only if \(\mu_1(V) = \mu_2(V) \) for every finely open set \(V \) in \(\mathbb{R}^d \).

The study of limits of solutions of problem 1 in varying domains [8] referred to earlier, was carried out using the notion of \(\mathcal{C} \)-convergence of measures (see section 2). In particular, it was shown in [8] that the space of measures is compact with respect to \(\mathcal{C} \)-convergence, and that finite measures with smooth densities are dense in \(\mathcal{M}_0 \) with respect to \(\mathcal{C} \)-convergence. A similar analysis can be carried out for problem 2, using the resolvent family, and we shall show this in section 4. At the same time, we will develop the connection between \(\mathcal{C} \)-convergence of measures and \textit{stable convergence} of stopping times. This latter convergence was applied in [4] and [5] to study the limits of diffusions in varying regions with holes, using, in particular, the fact that the space of stopping times is compact with respect to stable convergence [3]. In the present paper we will show (Theorem 3.2) that the space of multiplicative functionals is compact with respect to stable convergence. Furthermore, we show (Theorem 4.3) that a sequence \(\mu_n \) \(\mathcal{C} \)-converges to \(\mu \) if and only if the associated sequence of multiplicative functionals \(\mathcal{M}(\mu_n) \) converges stably to \(\mathcal{M}(\mu) \). We thus obtain a probabilistic interpretation of \(\mathcal{C} \)-convergence of measures. Whereas in the analytical theory of \(\mathcal{C} \)-convergence, the convergence is defined in terms of functionals on \(L^2 \)-spaces, the probabilistic notion is expressed as a weak convergence for associated probability measures on an appropriate sample space.

In section 3 we develop some general facts concerning stable convergence (Lemmas 3.3, 3.4, Theorem 3.1). As one application, in Theorem 3.3 we show the relation between stable convergence of multiplicative functionals and strong resolvent convergence for the associated semigroups. This enables us to show the correspondence between \(\mathcal{C} \)-convergence and stable convergence, and to prove a criterion.
for δ-convergence (Theorem 4.3, Corollary).

2. In this section we shall approach problems 1 and 2 of section 1 analytically, from the variational standpoint. The results we state are for the most part proved in [8] and [9], and we shall follow the terminology of those papers. We will give a precise meaning to the weak inhomogeneous boundary value problem (2.1), (2.2), and thence to the resolvent operator. The resolvent operator would provide an indirect route to the definition of diffusion with a general killing measure, i.e. to problem 2, but we will use a more direct probabilistic approach in sections 3 and 4 to accomplish the same task. After proving some convergence and regularity results for solutions of (2.1), (2.2), and in particular for resolvents, we introduce the idea of δ-convergence of measures (Definition 2.7). As we show in section 4, this form of convergence is entirely parallel to the stable convergence defined probabilistically in section 3, so we will develop many of our later convergence results in terms of stable convergence. The link between the two forms of convergence is made through the convergence of the resolvent operator.

Before proceeding we note some terminology. A measure will mean as usual a countably additive set function, taking values in $[0, \infty]$, and so not necessarily finite. In particular a measure is nonnegative unless explicitly stated to be a signed measure. We may at times refer to a measure as nonnegative for emphasis. A set of classical capacity zero is a polar set, and a property that is true except on a polar set will be said to hold quasi everywhere or q.e. We will often consider functions in $H^1(D)$ where D is an open set in \mathbb{R}^d. Such functions are given quasi everywhere. More precisely, for any function $v \in H^1(D)$ the limit

$$\lim_{r \downarrow 0} \int_{B_r(x)} v(y)dy / m(B_r(x))$$

exists and is finite for quasi every x in D. Here $B_r(x)$ denotes the open ball with center x and radius r, and $m(B)$ denotes the Lebesgue measure of B, for any Borel set B. We will adopt the following convention concerning the pointwise values of a function v in $H^1(D)$: for every $x \in D$ we will always require that

$$\lim \inf_{r \downarrow 0} \int_{B_r(x)} v(y)dy / m(B_r(x)) \leq v(x) \leq \lim \sup_{r \downarrow 0} \int_{B_r(x)} v(y)dy / m(B_r(x))$$

With this convention the pointwise value $v(x)$ is determined quasi everywhere in D, and the function v is quasi continuous in D, i.e. for any $\varepsilon > 0$ there exists an open set U of capacity less than ε such that the
restriction of \(v \) to \(D-U \) is continuous.

We now consider an inhomogenous version of problem \(I \). Let \(D \) be an open set in \(\mathbb{R}^d \), \(\mu \) a member of the class \(\mathcal{M}_0 \) defined in section 1, so that \(\mu \) is a measure that does not charge polar sets but may be infinite on nonpolar sets. Let \(f \in L^2(D) \), \(g \in H^1(D) \). \(L^2(D) \) denotes the measurable functions on \(D \) which are square-integrable with respect to Lebesgue measure on \(D \). We consider a solution \(u \) of

\begin{align*}
(2.1) & \quad -\Delta u + \mu u = f \quad \text{in} \ D \\
(2.2) & \quad u = g \quad \text{on} \ \partial D.
\end{align*}

In order to interpret these equations rigorously, we make the following definitions:

Definition 2.1 A function \(u \in H^1_{\text{loc}}(D) \cap L^2_{\text{loc}}(D, \mu) \) will be called a **local weak solution** of (2.1) if

\begin{equation}
(2.3) \quad \int_D \nabla u \cdot \nabla v \, dx + \int_D uv \, d\mu = \int_D fv \, dx
\end{equation}

for every \(v \in H^1(D) \cap L^2(D, \mu) \) with support \(v \) compact in \(D \). When \(f = 0 \) we will also say that \(u \) is **\(\mu \)-harmonic** on \(D \). A local weak solution \(u \) of (2.1) will be called a **weak solution** of the boundary problem (2.1), (2.2) if

\begin{equation}
(2.4) \quad u = g \quad \text{on} \ \partial D.
\end{equation}

(Of course, (2.4) implies that \(u \in H^1(D) \).)

We note that unless \(\mu \) is a Radon measure (that is, \(\mu(K) < \infty \) for every compact set \(K \)), the weak solutions just defined are not solutions in the distribution sense in \(D \) (see [8], Remark 3.9). However if \(\mu \in \mathcal{M}_0 \) is Radon, it is proved in [8] (Proposition 3.8) that \(u \) is a local weak solution of (2.1), according to Definition 2.1, if and only if

\begin{equation}
(2.5) \quad u \in H^1_{\text{loc}}(D) \cap L^2_{\text{loc}}(D, \mu)
\end{equation}

and \(u \) is a solution of the equation (2.1) in the sense of distributions, that is

\begin{equation}
(2.6) \quad \int_D \nabla u \cdot \nabla \phi \, dx + \int_D u \phi \, d\mu = \int_D f \phi \, dx \quad \text{for every} \ \phi \in C_0^\infty(D).
\end{equation}

The solutions of (2.1), (2.2) can be characterized in variational terms as follows:

Proposition 2.1 Let \(D \) be any open set in \(\mathbb{R}^d \). Let \(f \in L^2(D) \) be given and let \(g \in H^1(D) \) be given such that there exists some \(w \in H^1(D) \cap L^2(D, \mu) \) with \(w - g \in H^1_0(D) \). Then \(u \) is a weak solution of (2.1), (2.2) if and only if \(u \) is the (unique) minimum point of the functional
\begin{equation}
F(v) = \int_D |\nabla v|^2 dx + \int_D v^2 d\mu - 2 \int_D f v dx
\end{equation}

on the set \(v \in \mathcal{H}^1(D), v-g \in \mathcal{H}^1_0(D)\). Moreover, \(u \in \mathcal{H}^1(D) \cap \mathcal{L}^2(D, \mu)\) and condition (2.3) holds for every \(v \in \mathcal{H}^1_0(D) \cap \mathcal{L}^2(D, \mu)\). Furthermore, if \(D\) is bounded, such a solution \(u\) exists for arbitrary \(\mu \in \mathcal{M}_0\). If \(D\) is unbounded, \(u\) exists for every \(\mu \in \mathcal{M}_0\), such that \(\mu \geq \lambda m\), where \(m\) denotes Lebesgue measure in \(\mathbb{R}^d\) and \(\lambda\) is any positive constant.

For \(D\) bounded, the proof can be found in [9], Theorem 2.4 and Proposition 2.5. The same proof can be adapted to the case \(D\) unbounded.

Note that in (2.7) the integral \(\int_D v^2 d\mu\) is well defined, because \(v \in \mathcal{H}^1(D)\) can be specified up to sets of capacity zero and these sets have \(\mu\) measure zero.

Let us introduce a special class of measures \(\mu \in \mathcal{M}_0\), corresponding to homogeneous Dirichlet conditions on Borel sets of \(\mathbb{R}^d\).

Definition 2.2 For any Borel set \(E\), let \(\mu_{\infty_E}\) denote the measure which is \(+\infty\) on all nonpolar Borel subsets of \(E\), and 0 on every Borel subset of \(E^C\) and on every polar set.

The boundary problem (2.1), (2.2), with \(g = 0\) on \(\partial D\), can be formulated as an equation of the form (2.1) in \(\mathbb{R}^d\), provided we replace the measure \(\mu\) with the measure \(\mu + \nu_{\infty_E}\), with \(E = D^C\).

Proposition 2.2 Let \(D\) be an open set in \(\mathbb{R}^d\), \(f \in \mathcal{L}^2(D), \mu \in \mathcal{M}_0\). Then \(u\) is a weak solution of the boundary problem

\begin{align}
\text{(2.8)} & \quad -\Delta u + \mu u = f \text{ in } D, \\
\text{(2.9)} & \quad u = 0 \text{ on } \partial D, \\
\text{(in particular, } u \in \mathcal{H}^1_0(D), \text{ if and only if } u |_{D} \text{ is a weak solution of the equation} \\
\text{(2.10)} & \quad -\Delta U + (\mu + \nu_{\infty_E}) U = f \text{ in } \mathbb{R}^d, \text{ with } E = D^C.
\end{align}

Proof Let us first recall that \(V \in \mathcal{H}^1(\mathbb{R}^d)\) and \(V = 0\) q.e. on \(E = D^C\) implies that \(V |_{D} \in \mathcal{H}^1_0(D)\), see e.g. J. Deny [11], L Hedberg [15].

Let \(u\) be a solution of (2.8),(2.9). By Proposition 2.1, \(u \in \mathcal{H}^1_0(D) \cap \mathcal{L}^2(D, \mu)\) and (2.3) holds for every \(v \in \mathcal{H}^1_0(D) \cap \mathcal{L}^2(D, \mu)\). Let \(U = u\) in \(D\), \(U = 0\) in \(E = D^C\). Then \(U \in \mathcal{H}^1(\mathbb{R}^d) \cap \mathcal{L}^2(\mathbb{R}^d, \mu + \nu_{\infty_E})\). Now let \(V \in \mathcal{H}^1(\mathbb{R}^d) \cap \mathcal{L}^2(\mathbb{R}^d, \mu + \nu_{\infty_E})\) with compact support; since \(V = 0\) q.e. on \(E\), we have \(V |_{D} \in \mathcal{H}^1_0(D)\), and therefore
\[\int \nabla U \nabla V \, dx + \int \nabla V \, d(\mu + \infty_E) = \int f \, V \, dx, \] and hence \(U \) is a weak solution of (2.10).

Now let \(U \) be a solution of (2.10) and let \(u = U \big|_D \). Since \(U \in L^2(\mathbb{R}^d, \mu + \infty_E) \) we have \(U = 0 \) q.e. on \(E \), thus \(u \in H^1_0(D) \) and \(u \) is a weak solution of (2.8), so the proposition is proved.

In view of Proposition 2.1, with every \(\mu \in \mathcal{M}_0 \) we associate the family of resolvent operators
\[R^D_{\lambda}(\mu) = (\Delta + \lambda m)^{-1}, \quad \text{D open} \subset \mathbb{R}^d, \quad \lambda \in \mathbb{R}^+, \] as in the following

Definition 2.3 Let \(D \) be bounded open and \(\lambda \geq 0 \) or \(D \) unbounded open and \(\lambda > 0 \). Then the operator \(R^D_{\lambda}(\mu) \colon L^2(D) \to L^2(D) \)

is defined to be the mapping that associates with every \(f \in L^2(D) \) the (unique) weak solution \(u \in H^1_0(D) \cap L^2(D, \mu) \) of the problem:
- \(\Delta u + (\mu + \lambda m)u = f \) in \(D \)
- \(u = 0 \) on \(\partial D \),

where \(m \) denotes the Lebesgue measure on \(\mathbb{R}^d \).

By Proposition 2.1, the linear operators \(R^D_{\lambda}(\mu) \) are well defined and continuous with
\[\|R^D_{\lambda}(\mu)\| \leq (\lambda + \lambda_1(\mu, D))^{-1}, \tag{2.11} \]
where
\[\lambda_1(\mu, D) = \inf \left(\frac{\int_D |\nabla v|^2 \, dx + \int_D v^2 \, d\mu}{\int_D v^2 \, dx} \right) \]
(note that \(\lambda_1(\mu, D) > 0 \) if \(D \) is bounded).

This is easily proved by taking \(v = u \) in (2.3), where \(\mu \) has been replaced by \(\mu + \lambda m \), giving
\[\int_D |\nabla u|^2 \, dx + \int_D u^2 \, d\mu + \lambda \int_D u^2 \, dx \leq \|f\|_{L^2(D)} \|u\|_{L^2(D)}; \]

hence
\[(\lambda + \lambda_1(\mu, D)) \int_D u^2 \, dx \leq \|f\|_{L^2(D)} \|u\|_{L^2(D)}; \]

which implies (2.11).

Let us also remark that the range of \(R^D_{\lambda}(\mu) \) is dense in \(H^1_0(D) \cap L^2(D, \mu) \) with respect to the norm.
\[\int_D |\nabla u|^2 dx + \int_D u^2 d\mu + \int_D u^2 dx \] ^{1/2}.

In fact, if not there exists \(v \in H^1_0(D) \cap L^2(D, \mu) \), \(v \neq 0 \), such that
\[\int_D \nabla u \cdot \nabla v dx + \int_D uv d\mu + \lambda \int_D uv dx = 0 \]
for every \(u = R^D_\lambda(\mu)f \) and every \(f \in L^2(D) \). Taking Definition 2.3 into account, this implies \(\int_D f v dx = 0 \) for every \(f \in L^2(D) \), giving a contradiction.

For every \(f \in L^2(\mathbb{R}^d) \) and every open subset \(D \) of \(\mathbb{R}^d \) we now define \(R^D_\lambda(\mu)f \) to be \(R^D_\lambda(\mu) \) applied to the restriction of \(f \) to \(D \). We will then define \(R^D_\lambda(\mu)f \) to be zero outside \(D \), so that \(R^D_\lambda(\mu)f \) is defined on all of \(\mathbb{R}^d \) when convenient.

The following comparison principle holds, for local weak solutions of equation (2.1) (see [9], Theorem 2.10):

Proposition 2.3 Let \(\mu_1, \mu_2 \in \mathcal{M}_0 \) and let \(u_1, u_2 \) be local weak solutions of the equations
\[-\Delta u_1 + \mu_1 u_1 = f_1 \text{ in } D, \]
\[-\Delta u_2 + \mu_2 u_2 = f_2 \text{ in } D, \]
where \(D \) is an open set in \(\mathbb{R}^d \). If \(\mu_1 \leq \mu_2 \) as measures on \(D \), \(0 \leq f_2 \leq f_1 \) on \(D \), and \(0 \leq u_2 \leq u_1 \) on \(\partial D \), then \(0 \leq u_2 \leq u_1 \) quasi everywhere in \(D \).

We recall that for \(u, v \in H^1_{\text{loc}}(D) \) we say that \(u \leq v \) on \(\partial D \) if and only if \((v-u)\wedge 0 \in H^1_0(D)\).

Corollary Let \(D_1 \) and \(D_2 \) be open sets in \(\mathbb{R}^d \), \(\mu \in \mathcal{M}_0 \), \(f \in L^2(D) \), \(f \geq 0 \). Then \(R^{D_1}_\lambda(\mu)f \leq R^{D_2}_\lambda(\mu)f \) quasi everywhere on \(\mathbb{R}^d \), provided \(\lambda \geq 0 \) and \(D \) is bounded or \(\lambda > 0 \) and \(D \) is unbounded.

Resolvents on unbounded regions can be approximated by resolvents on bounded domains, according to the following

Lemma 2.1 Let \(D_1, D_2 \) be open sets in \(\mathbb{R}^d \), with \(D_1 \uparrow D_2 \). Let \(\mu \in \mathcal{M}_0 \), \(\lambda > 0 \), \(f \in L^2(\mathbb{R}^d) \). Then \(R^{D_1}_\lambda(\mu)f \rightarrow R^{D_2}_\lambda(\mu)f \) in \(L^2(\mathbb{R}^d) \) as \(n \rightarrow \infty \).

Proof By (2.11), the operators \(R^{D_1}_\lambda(\mu) \) are uniformly bounded in \(n \) from \(L^2(\mathbb{R}^d) \) into \(L^2(\mathbb{R}^d) \). Therefore, it suffices to prove the lemma for every \(f \) in a dense subset of \(L^2(\mathbb{R}^d) \). We assume that \(f \) has compact support in some \(D_0 \). We may also assume that \(f \geq 0 \) in \(D \). Let \(u_n = R^{D_1}_\lambda(\mu)f \) and \(u = R^{D_2}_\lambda(\mu)f \).

Since \(f \geq 0 \), \(u_n \) converges monotonically downward to a limit \(w \) in \(D \).
Clearly \(u_n \in H^1_0(D_n) \) for each \(n \geq n_0 \) and hence by (2.7)

\[
\int_{D_n} |\nabla u_{n_0}|^2 \, dx + \int_{D_n} u_{n_0}^2 d(\mu + \lambda m) - 2 \int_{D_n} f u_{n_0} \, dx \
\geq \int_{D_n} |\nabla u_n|^2 \, dx + \int_{D_n} u_n^2 d(\mu + \lambda m) - 2 \int_{D_n} f u_n \, dx.
\]

Hence \(\int_D |\nabla u_{n_0}|^2 \, dx + \int_D u_{n_0}^2 d(\mu + \lambda m) + 2 \int_{D_n} f u_{n_0} \, dx \geq \)

\[
\geq \int_D |\nabla u_n|^2 + \lambda \int_D u_n^2 \, dx.
\]

Thus \(\| u_n \|_{H^1(D)} \) is bounded and hence, since \(u_n \rightharpoonup w \), \(u_n \to w \) weakly in \(H^1(D) \).

Let \(v \in H^1(D) \cap L^2(D, \mu) \) and let the support of \(v \) be compact in \(D \). Let us suppose \(v \geq 0 \). Let \(n_1 \) be such that support \(v \subset D_{n_1} \). Then, by (2.3) for each \(n \geq \max(n_0, n_1) \),

\[
\int_D |\nabla u_n|^2 \, dx + \int_D u_n^2 d(\mu + \lambda m) = \int_D f v \, dx.
\]

By weak convergence in the first term and monotone convergence in the second term, we obtain

\[
\int_D |\nabla w|^2 \, dx + \int_D w^2 d(\mu + \lambda m) = \int_D f v \, dx.
\]

Since \(w \) is a weak limit of elements in \(H^1_0(D) \), then \(w \in H^1_0(D) \). Since \(w \leq u \), \(w \in L^2(D, \mu) \). Hence, by the uniqueness part of Proposition 2.1, \(u = w \). This proves Lemma 2.1.

Remark 2.1 It follows in particular from Lemma 2.1 that if \(f \geq 0 \) a.e. in \(\mathbb{R}^d \) and if the functions \(R^D_{\lambda}(\mu) \) are pointwise defined in \(\mathbb{R}^d \) according to the convention mentioned above, then \(R^D_{\lambda}(\mu) f \in L^2(\mathbb{R}^d, \mu) \) q.e. in \(\mathbb{R}^d \).

With each \(\mu \in M_0 \) and each open set \(D \) in \(\mathbb{R}^d \) we associate the following functional \(F^D_\mu(v) \) defined on \(L^2_{\text{loc}}(D) \) by setting:

(2.12) \[
F^D_\mu(v) = \int_D |\nabla v|^2 \, dx + \int_D v^2 \, d\mu \text{ if } v \in H^1_0(D),
\]

(2.13) \[
F^D_\mu(v) = +\infty \text{ if } v \in L^2(D), \text{ but } v \text{ not in } H^1_0(D).
\]

If \(D = \mathbb{R}^d \), we denote the corresponding functional by \(F_\mu \).

Since \(\mu \) does not charge polar sets, the functional \(F^D_\mu \) is lower semicontinuous in \(L^2(D) \).
By Proposition 2.1, knowledge of F_D^{0} is sufficient to determine the solution of the μ-Dirichlet problem. Clearly two different measures μ_1, μ_2 may give rise to the same functional. This leads to

Definition 2.4 Two measures $\mu_1, \mu_2 \in \mathcal{M}_0$ are equivalent, in which case we write $\mu_1 \sim \mu_2$, if $F_D^{0}(\mu_1)(v) = F_D^{0}(\mu_2)(v)$ for every open set $D \subset \mathbb{R}^d$, and every $v \in L^2(D)$.

Obviously, $\mu_1 \sim \mu_2$ if and only if

\[
\int_{\mathbb{R}^d} v^2 d\mu_1 = \int_{\mathbb{R}^d} v^2 d\mu_2 \text{ for every } v \in H^1(\mathbb{R}^d).
\]

We will see in Lemma 4.2 that two measures are equivalent if and only if they agree on all finely open sets.

We need the following result from [8] (Lemma 4.5):

Proposition 2.4 For every $\mu \in \mathcal{M}_0$ there exists a nonnegative Radon measure ν, with $\nu \in H^{-1}(\mathbb{R}^d)$, and a nonnegative Borel function $q : \mathbb{R}^d \rightarrow [0, \infty]$, such that $\mu \sim q\nu$ in the sense of Definition 2.4.

We recall that a Radon measure ν on \mathbb{R}^d belongs to the space $H^{-1}(\mathbb{R}^d)$ (the dual space of $H^1(\mathbb{R}^d)$) if there exists a constant $c > 0$ such that

\[
|\int_{\mathbb{R}^d} \Phi d\nu| \leq c \|\Phi\|_{H^1(\mathbb{R}^d)}
\]

for every $\Phi \in C_c^\infty(\mathbb{R}^d)$. We also recall that if ν is a nonnegative Radon measure on \mathbb{R}^d which belongs to $H^{-1}(\mathbb{R}^d)$, then $\nu \in \mathcal{M}_0$ and (2.15) holds for every $\Phi \in H^1(\mathbb{R}^d)$.

We will denote by \mathcal{M}_1 the space of measures of the form $q\nu$, with $\nu \in H^{-1}(\mathbb{R}^d)$, and q a nonnegative Borel function from \mathbb{R}^d to $[0, \infty]$.

Proposition 2.4 can now be expressed by saying that for each $\mu \in \mathcal{M}_0$ there exists $\mu_1 \in \mathcal{M}_1$ with $\mu_1 \sim \mu$.

For later work we will need the classical Newtonian potential operator and its analogues on \mathbb{R}^d, $d \geq 2$. Thus we make the following

Definition 2.5 Let μ be a measure on \mathbb{R}^d, $d \geq 2$. Define the operators $\text{Pot}^+, \text{Pot}^-$ by

\[
\text{Pot}^+ \mu(x) = \int k^+(|x-y|) \mu(dy), \quad \text{Pot}^- \mu(x) = \int k^-(|x-y|) \mu(dy),
\]

where $k(r) = c_d r^{d-2}$ if $d \geq 3$, and $k(r) = -c_d \log r$ if $d = 2$. Let a_d denote the area of the unit sphere in \mathbb{R}^d. Then $c_d = 2/(d-2)a_d$ for $d \geq 3$, $c_d = 2/a_d$ for $d = 2$.

$\text{Pot}^+ \mu, \text{Pot}^- \mu$ are defined everywhere on \mathbb{R}^d in the finite or $+\infty$ sense, for all measures μ. Of course $\text{Pot}^- \mu = 0$ if $d = 3$.
For any μ such that $\text{Pot}^-\mu$ is finite on \mathbb{R}^d, we define the classical potential $\text{Pot} \mu$ of μ by $\text{Pot} \mu = \text{Pot}^+\mu - \text{Pot}^-\mu$. In particular $\text{Pot} \mu$ is defined for any finite measure when $d \geq 3$, and $\text{Pot} \mu$ is defined for any finite measure with compact support when $d = 2$. In these cases $\text{Pot} \mu$ is finite except on a polar set.

Let \mathcal{M}_2 denote the space of finite measures μ on \mathbb{R}^d such that $\text{Pot}^+\mu$ is bounded and continuous on \mathbb{R}^d and $\text{Pot}^-\mu$ is finite on \mathbb{R}^d. It is well known that $\text{Pot} \mu$ is continuous if and only if $\text{Pot}^-\mu$ is finite on \mathbb{R}^d and

$$\lim_{\varepsilon \to 0} \sup_{x \in B} \int_{\{ |x-y| \leq \varepsilon \}} k^+ (|x-y|) \mu(dy) = 0$$

for every bounded set B in \mathbb{R}^d (see, for instance, [1]). It follows easily that if $\mu \in \mathcal{M}_2$ and ν is a measure with $0 \leq \nu \leq \mu$, then $\nu \in \mathcal{M}_2$.

We may strengthen Proposition 2.4 somewhat:

Proposition 2.5 For every $\mu \in \mathcal{M}_0$ there exists a measure $\psi \in \mathcal{M}_2$, and a nonnegative Borel function $h : \mathbb{R}^d \to [0, \infty]$, such that $\mu \sim h \psi$ in the sense of Definition 2.4.

Proof By Proposition 2.4 there exists a nonnegative Radon measure $\nu \in H^{-1} (\mathbb{R}^d)$, and a nonnegative Borel function $q : \mathbb{R}^d \to [0, \infty]$, such that $\mu \sim q \nu$. Replacing ν by $q_1 \nu$, where q_1 is an appropriate small positive Borel function, we may assume that ν is finite and $\text{Pot}^- \nu$ is finite on \mathbb{R}^d. Since ν is finite, $\text{Pot}^+ \nu$ is finite except on at most a set of capacity zero. Thus $\text{Pot} \nu < \infty$, ν-a.e. It follows from [12], I.V.9, that there exists a sequence $\nu_n \in \mathcal{M}_2$ with $\nu = \sum_{n=1}^{\infty} \nu_n$. By choosing positive constants c_n sufficiently small, we have $\nu = \sum_{n=1}^{\infty} c_n \nu_n$ such that $\psi \in \mathcal{M}_2$. Since $\nu \ll \psi$, the proposition follows.

Measures in \mathcal{M}_2 will play an important role in what follows. The next proposition gives one useful property of these measures.

Proposition 2.6 Let $\mu \in \mathcal{M}_2$, let D be open in \mathbb{R}^d, $u \in H^1_{0c}(D)$, $u \mu$-harmonic on D. Then there exists w, continuous on D, such that $u = w$ quasi everywhere.

Proof Let $x \in D$. Let B be an open ball containing x with compact closure in D, with diameter less than 1. Let w^\pm denote the solution of the μ-Dirichlet problem on B with boundary data u^\pm. Let v^\pm denote the solution of the ordinary Dirichlet problem on B with boundary data u^\pm. w^\pm, v^\pm exist by Proposition 2.1. Clearly $w^\pm = v^\pm$ on ∂B, so by Proposition 2.3 $w^\pm \leq v^\pm$ q.e. on B. By uniqueness for the μ-Dirichlet problem (Proposition 2.1), $u = w^+ - w^-$ on B. Hence $|u| \leq v^+ + v^-$.
q.e. on B, and hence u is locally bounded on D.

Since $\Delta u = \mu u$ in distribution sense in B (see [8], Proposition 3.8), we have

$$u = -\text{Pot}^+(u^+ | B\mu) + \text{Pot}^+ (u^- | B\mu) + h$$

where h is harmonic in B. Since u^+ and u^- are bounded in B, the measures $u^+ | B\mu$ and $u^- | B\mu$ belong to \mathcal{M}_2, therefore the corresponding potentials are continuous, hence u is continuous on B.

Proposition 2.7 Let D be a bounded open set in \mathbb{R}^d, $\mu, \mu_\tau \in \mathcal{M}_0$ with $\mu_\tau \rightharpoonup \mu$ as $n \to \infty$, $g \in H^1(D) \cap L^2(D, \mu)$, $g \geq 0$, $f \in L^2(D)$, $f \geq 0$. Let u_τ, u denote the solutions, in the sense of Definition 2.1, of

- $\Delta u + \mu_\tau u = f$ in D, $u_\tau = g$ on ∂D, and
- $\Delta u + \mu u = f$ in D, $u = g$ on ∂D.

Then $u_\tau \rightharpoonup u$ quasi everywhere as $n \to \infty$, and $\|u_\tau - u\|_{H^1(D)} \to 0$ as $n \to \infty$.

Proof

By Proposition 2.3, $u_\tau \rightharpoonup u$ and $u_\tau \geq 0$ for all n. Let $w = \lim_{n \to \infty} u_\tau$. By (2.12), (2.13), and Proposition 2.1, for every $\mu \in \mathcal{M}$ we have

$$F^D_{\mu}(u) - 2 \int_D f u \, dx \geq F^D_{\mu_\tau}(u_\tau) - 2 \int_D f u_\tau \, dx \geq F^D_{\mu_\tau}(u_\tau) - 2 \int_D f u_\tau \, dx.$$

Hence

$$\int_D |\nabla u|^2 \, dx + \int_D u^2 d\mu + 2 \int_D fu_\tau \, dx \geq \int_D |\nabla u_\tau|^2 \, dx.$$

Thus $\|u_\tau\|_{H^1(D)}$ is bounded, so $u_\tau \rightharpoonup w$ weakly in $H^1(D)$, and also $u_\tau - g \rightharpoonup w - g$ weakly in $H^1(D)$. Since $u_\tau - g \in H^1_0(D)$, $w - g \in H^1_0(D)$.

By the lower semicontinuity of $F^D_{\mu_\tau}$ we obtain from (2.17)

$$F^D_{\mu_\tau}(w) - 2 \int_D f w \, dx \leq \lim \inf_{n \to \infty} \left[F^D_{\mu_\tau}(u_\tau) - 2 \int_D f u_\tau \, dx \right] \leq \lim \sup_{n \to \infty} \left[F^D_{\mu_\tau}(u_\tau) - 2 \int_D f u_\tau \, dx \right] \leq F^D_{\mu}(u) - 2 \int_D f u \, dx.$$

By taking the limit as $n \to \infty$ we obtain
(2.18) \[F^D_{\mu}(w) - 2 \int_D f w dx \leq F^D_{\mu}(u) - 2 \int_D f u dx. \]

By Proposition 2.1, \(u \) is the unique minimum point of the functional

\[F^D_{\mu}(v) - 2 \int_D f v dx \]

on the set \(\{ v : v \in H^1(D), \ v - g \in H^1_0(D) \} \). Since \(w - g \in H^1_0(D) \), from (2.18) we obtain \(w = u \) and

(2.19) \[F^D_{\mu}(u) = \lim_{n \to \infty} F^D_{\mu_n}(u_n). \]

Since \(\mu_n \uparrow \mu \) and \(u_n \downarrow u \), we have

\[\int_D u^2 d\mu \leq \lim_{n \to \infty} \int_D u_n^2 d\mu_n. \]

Therefore from (2.19) we obtain

(2.20) \[\int_D |\nabla u|^2 dx = \lim_{n \to \infty} \int_D |\nabla u_n|^2 dx \]

Since \((u_n) \) converges to \(u \) weakly in \(H^1(D) \) and \(u_n - g \in H^1_0(D) \), (2.20) implies that \((u_n) \) converges to \(u \) strongly in \(H^1(D) \), so Proposition 2.7 is proved.

We now introduce a variational convergence for sequences \((\mu_n) \) in \(\mathcal{M}_0 \), using the notion of \(\Gamma \)-convergence for functionals in the calculus of variations (see [10] and also [2], where such convergence is called epi-convergence). \(\Gamma \)-convergence in turn is based on the abstract Kuratowski convergence, which can be formulated in an arbitrary metric space \(X \) as follows:

Definition 2.6 Let \((F_n) \) be a sequence of functions from \(X \) into \(\bar{\mathbb{R}} \), and let \(F \) be a function from \(X \) into \(\bar{\mathbb{R}} \). We say that \((F_n) \) \(\Gamma \)-converges to \(F \) in \(X \) if the following conditions are satisfied:

(a) for every \(u \in X \) and for every sequence \((u_n) \) converging to \(u \) in \(X \)

\[F(u) \leq \lim \inf_{n \to \infty} F_n(u_n); \]

(b) for every \(u \in X \) there exists a sequence \((u_n) \) converging to \(u \) in \(X \) such that

\[F(u) \geq \lim \sup_{n \to \infty} F_n(u_n). \]

We now define the \(\delta \)-convergence of a sequence \((\mu_n) \) in \(\mathcal{M}_0 \) in terms of the \(\Gamma \)-convergence of the corresponding functionals \(F_{\mu_n} \) defined on the space \(L^2(\mathbb{R}^d) \) by the equations (2.12) and (2.13) with \(D = \mathbb{R}^d \).
Definition 2.7 We say that a sequence \((\mu_n)\) in \(\mathcal{M}_0\) \(\gamma\)-converges to the measure \(\mu \in \mathcal{M}_0\) if the sequence of functionals \((F_{\mu_n})\) \(\Gamma\)-converges to the functional \(F_{\mu}\) in \(L^2(\mathbb{R}^d)\) as in Definition 2.5.

The following proposition shows that our definition of \(\gamma\)-convergence is equivalent to Definition 4.8 of [8].

Proposition 2.8 Let \((\mu_n)\) be a sequence in \(\mathcal{M}_0\) and let \(\mu \in \mathcal{M}_0\). The following conditions are equivalent:

(a) \((\mu_n)\) \(\gamma\)-converges to \(\mu\);
(b) \((F_{\mu_n})\) \(\Gamma\)-converges to \(F_{\mu}\) in \(L^2(D)\) for every open set \(D\) in \(\mathbb{R}^d\);
(c) \((F_{\mu_n})\) \(\Gamma\)-converges to \(F_{\mu}\) in \(L^2(D)\) for every bounded open set \(D\) in \(\mathbb{R}^d\).

Proof For every open set \(D\) in \(\mathbb{R}^d\) we consider the following functionals on \(L^2(D)\):

\[
F_{\mu}^+(u) = \inf \{ \limsup_{n \to \infty} F_{\mu_n}(u_n) : u_n \to u \text{ in } L^2(D) \},
\]

\[
F_{\mu}^-(u) = \inf \{ \liminf_{n \to \infty} F_{\mu_n}(u_n) : u_n \to u \text{ in } L^2(D) \}.
\]

If \(D=\mathbb{R}^d\), we denote the corresponding functionals by \(F^+_\mu\) and \(F^-\mu\).

It is easy to see (by a diagonal argument) that the infima in (2.21) and (2.22) are achieved by suitable sequences and that \(F_{\mu}^+\) and \(F_{\mu}^-\) are lower semicontinuous on \(L^2(D)\) (see [10], Proposition 1.8). Moreover, \(F_{\mu}^\Gamma\) is the \(\Gamma\)-limit in \(L^2(D)\) of the sequence \((F_{\mu_n}^\Gamma)\) if and only if

\[
F_{\mu}^+ = F_{\mu}^- \quad \text{and both equal } F_{\mu}^\Gamma \text{ on } L^2(D).
\]

Since \(F_{\mu}^- \leq F_{\mu}^+\) on \(L^2(D)\) and \(F_{\mu}^-(u) = F_{\mu}^+(u) = F_{\mu}^\Gamma(u)\) if \(u\) is not in \(H^1_0(D)\), it follows that the \(\Gamma\)-convergence of \(F_{\mu_n}^\Gamma\) to \(F_{\mu}^\Gamma\) is equivalent to the inequalities

\[
F_{\mu}^+ \leq F_{\mu}^\Gamma \leq F_{\mu}^- \quad \text{on } H^1_0(D).
\]

Let us prove that (a) implies (b). Assume (a), which is equivalent to \(F_{\mu}^- = F_{\mu} = F_{\mu}^+\) on \(L^2(\mathbb{R}^d)\).

Let \(D\) be open in \(\mathbb{R}^d\). Let us prove that

\[
F_{\mu}^\Gamma \leq F_{\mu}^- \quad \text{on } H^1_0(D).
\]

Let \(u \in H^1_0(D)\) with \(F_{\mu}^-(u) < \infty\). By (2.22) there exists a sequence \((u_n)\) converging to \(u\) in \(L^2(D)\) such that
\[F^D_-(u) = \lim_{n \to \infty} \inf_{n \to \infty} F^D_{\mu_n}(u_n). \]

We may assume \(u_n \in H^1_0(D) \) for every \(n \). If we extend \(u_n \) to \(\mathbb{R}^d \) by putting \(u_n = 0 \) outside \(D \), we have that \(u_n \in H^1(\mathbb{R}^d) \) and \(F^D_{\mu_n}(u_n) = F_{\mu_n}(u_n) \), therefore
\[F^D_-(u) = \lim_{n \to \infty} \inf_{n \to \infty} F_{\mu_n}(u_n) \geq F_-(u) = F_{\mu}(u) \]

and (2.23) is proved.

Let us prove that
\[F^D_+ \leq F^D_{\mu} \text{ on } H^1_0(D). \]

Let \(u \in H^1_0(D) \) with compact support in \(D \) and such that \(F^D_{\mu}(u) < \infty \). We extend \(u \) to \(\mathbb{R}^d \) by putting \(u = 0 \) outside \(D \), so that \(u \in H^1(\mathbb{R}^d) \) and \(F_+(u) = F_{\mu}(u) = F^D_{\mu}(u) \).

By (2.21) there exists a sequence \((u_n) \) converging to \(u \) in \(L^2(\mathbb{R}^d) \) such that
\[F^D_{\mu}(u) = F_+(u) = \lim_{n \to \infty} \sup_{n \to \infty} F_{\mu_n}(u_n) < \infty. \]

Therefore \(u_n \in H^1(\mathbb{R}^d) \) for \(n \) large enough and
\[\lim_{n \to \infty} \sup_{n \to \infty} \int_{\mathbb{R}^d} |\nabla u_n|^2 dx \leq \sup_{n \to \infty} F_{\mu_n}(u_n) < \infty, \]

so that \((u_n) \) converges to \(u \) weakly in \(H^1(\mathbb{R}^d) \).

Let \(\Phi \in C^\infty_0(D) \) with \(0 \leq \Phi \leq 1 \) and \(\Phi = 1 \) on the support of \(u \). Then \(\Phi u_n \in H^1_0(D) \) and, by Rellich's theorem, the sequence \((\Phi u_n) \) converges to \(u \) in \(L^2(D) \), hence
\[F^D_+(u) = \lim_{n \to \infty} \sup_{n \to \infty} F^D_{\mu_n}(\Phi u_n) = \lim_{n \to \infty} \sup_{n \to \infty} \left\{ \int_D [\Phi^2 |\nabla u_n|^2 + 2 \Phi u_n \nabla \Phi \nabla u_n + u_n^2 |\nabla \Phi|^2] dx + \int_D \Phi^2 u_n^2 d\mu_n \right\} \leq \lim_{n \to \infty} \sup_{n \to \infty} F_{\mu_n}(u_n) + \int_D [2 \Phi u \nabla \Phi u + u^2 |\nabla \Phi|^2] dx = F_{\mu}(u). \]

Therefore (2.24) is proved when \(u \) has compact support on \(D \). In the general case \(u \in H^1_0(D) \), there exists a sequence \((v_n) \) of functions in \(H^1_0(D) \) with compact support in \(D \) which converges to \(u \) strongly in \(H^1_0(D) \) and such that the sequence \((v_n^2) \) is increasing and converges to \(u^2 \) pointwise quasi everywhere on \(D \). By the monotone convergence theorem and by the lower semicontinuity of \(F^D_+ \) we obtain
\[F^D_+(u) \leq \liminf_{n \to \infty} F^D_+(v_n) \leq \lim_{n \to \infty} F^D_{\mu_n}(v_n) = F^D_{\mu}(u), \]

which proves (2.24).

Condition (b) follows now from (2.23) and (2.24).
The implication (b) \(\Rightarrow \) (c) is trivial. Let us prove that (c) implies (a). Assume (c). We prove that
\[
(2.25) \quad F_\mu \leq F_- \text{ on } H^1(\mathbb{R}^d).
\]
Let \(u \in H^1(\mathbb{R}^d) \) with \(F_-(u) < \infty \). By (2.22) there exists a sequence \((u_n)\) converging to \(u \) in \(L^2(\mathbb{R}^d) \) such that
\[
\lim \inf_{n \to \infty} \int_{\mathbb{R}^d} |\nabla u_n|^2 \, dx \leq \lim \inf_{n \to \infty} F_{\mu_n}(u_n) = F_-(u) < \infty.
\]
We may assume that \(u_n \in H^1(\mathbb{R}^d) \) and that \((u_n)\) converges to \(u \) weakly in \(H^1(\mathbb{R}^d) \).

Let \(\psi \) be a nonincreasing function on \(\mathbb{R}_+ \) of class \(C^\infty \) such that \(0 \leq \psi \leq 1 \), \(\psi(t) = 1 \) for \(0 \leq t \leq 1 \), and \(\psi(t) = 0 \) for \(t \geq 2 \). For every \(k \in \mathbb{N} \), let \(\varphi_k \in C^\infty_0(\mathbb{R}^d) \) be defined by
\[
(2.26) \quad \varphi_k(x) = \psi \left(\frac{|x|}{k} \right).
\]
Let us fix \(k \in \mathbb{N} \) and a bounded open set \(D \) containing the support of \(\varphi_k \), so that \((\mathcal{F}_{\mu_n}^D) \Gamma \)-converges to \(\mathcal{F}_{\mu}^D \) in \(L^2(D) \). Then \((\varphi_k u_n)\) converges to \(\varphi_k u \) in \(L^2(D) \) as \(n \to \infty \), hence
\[
F_\mu(\varphi_k u) = \mathcal{F}_{\mu}^D(\varphi_k u) \leq \lim \inf_{n \to \infty} \mathcal{F}_{\mu_n}^D(\varphi_k u_n) = \\
= \lim \inf_{n \to \infty} \left\{ \int_D |\nabla u_n|^2 + 2\varphi_k u_n \nabla \varphi_k \nabla u_n + u_n^2 |\nabla \varphi_k|^2 |dx + \int_D \varphi_k^2 u_n^2 d\mu_n \right\} \leq \lim \inf_{n \to \infty} \mathcal{F}_{\mu_n}(u_n) + \int_{\mathbb{R}^d} [2\varphi_k u \nabla \varphi_k \nabla u + u^2 |\nabla \varphi_k|^2] \, dx.
\]
Since \((\nabla \varphi_k)\) converges to 0 uniformly on \(\mathbb{R}^d \) and \((\varphi_k u)\) converges to \(u \) in \(H^1(\mathbb{R}^d) \), by the lower semicontinuity of \(F_\mu \) we obtain
\[
F_\mu(u) \leq \lim \inf_{k \to \infty} F_\mu(\varphi_k u) \leq \lim \inf_{n \to \infty} F_{\mu_n}(u_n) = F_-(u),
\]
which proves (2.25).

Let us prove that
\[
(2.27) \quad F_+ \leq F_\mu \text{ on } H^1(\mathbb{R}^d).
\]
Let \(u \in H^1(\mathbb{R}^d) \) with \(F_+(u) < \infty \) and let \((\varphi_k)\) be the sequence in \(C^\infty_0(\mathbb{R}^d) \) defined in the previous step of the proof.

Let us fix \(k \in \mathbb{N} \) and a bounded open set \(D \) containing the support of \(\varphi_k \) so that \((\mathcal{F}_{\mu_n}^D) \Gamma \)-converges to \(\mathcal{F}_{\mu}^D \) in \(L^2(D) \). Since \(\varphi_k u \in H^1_0(\mathbb{R}^d) \), there exists a sequence \((u_n)\) converging to \(\varphi_k u \) in \(L^2(D) \) such that
\(F_\mu (\phi_k u) = F^D_\mu (\phi_k u) = \lim_{n \to \infty} F^D_\mu (u_n) < \infty. \)

Then \(u_n \in H^1_0(D) \) for \(n \) large enough. If we extend \(u_n \) to \(\mathbb{R}^d \) by putting \(u_n = 0 \) outside \(D \) we obtain that \(u_n \in H^1(\mathbb{R}^d) \) and \((u_n) \) converges to \(\phi_k u \) in \(L^2(\mathbb{R}^d) \), hence

\[
F_+ (\phi_k u) \leq \lim \sup_{n \to \infty} F_\mu (u_n) = \lim_{n \to \infty} F^D_\mu (u_n) = F_\mu (\phi_k u).
\]

Since \((\phi_k u) \) converges to \(u \) strongly in \(H^1(\mathbb{R}^d) \) and \((\phi_k^2 u^2) \) is increasing and converges to \(u^2 \) quasi everywhere in \(\mathbb{R}^d \), by the monotone convergence theorem and by the lower semicontinuity of \(F_+ \) we obtain

\[
F_+ (u) \leq \lim \inf_{k \to \infty} F_+ (\phi_k u) = \lim_{k \to \infty} F_\mu (\phi_k u) = F_\mu (u),
\]

which proves (2.27).

Condition (a) now follows from (2.25) and (2.27).

Let us mention some general properties of \(\mathcal{X} \)-convergence as established in [8].

\(\mathcal{X} \)-convergence in \(\mathcal{M}_0 \) is metrizable ([8], Prop. 4.9), and \(\mathcal{M}_0 \) is compact under \(\mathcal{X} \) ([8], Theorem 4.14).

The \(\mathcal{X} \)-convergence of a sequence \(\mu_n \) to \(\mu \) in \(\mathcal{M}_0 \) can be characterized in variational terms ([8], Prop. 4.10), as convergence for every bounded open set \(D \subset \mathbb{R}^d \) and every \(f \in L^2(D) \) of the minimum values \(m_n \) to \(m \), where

\[
m_n = \min_{v \in H^1_0(D)} \left[F^D_\mu (v) + \int_D fv dx \right],
\]

\[
m = \min_{v \in H^1_0(D)} \left[F^D_\mu (v) + \int_D fv dx \right].
\]

However, more conveniently for our present purposes, \(\Gamma \)-convergence (hence \(\mathcal{X} \)-convergence) can be characterized in terms of strong convergence of the resolvents in \(L^2(D) \), as we shall see in the next proposition.

With each \(\mu \in \mathcal{M}_0 \), each open set \(D \) in \(\mathbb{R}^d \), and each \(\lambda > 0 \) we associate the Moreau-Yosida approximation \((F^D_\mu)_\lambda \) of \(F^D_\mu \), defined for every \(f \in L^2(D) \) by

\[
(\mu^D)_\lambda (f) = \min_{v \in H^1_0(D)} \left[F^D_\mu (v) + \lambda \int_D (v-f)^2 dx \right].
\]

Proposition 2.9 Let \((\mu_n) \) be a sequence in \(\mathcal{M}_0 \), let \(\mu \in \mathcal{M}_0 \), let \(D \) be open in \(\mathbb{R}^d \), and let \(\lambda > 0 \). The following conditions are equivalent:
(a) the functionals $F^D_{\mu_n}$ Γ-converge to F^D_{μ} in $L^2(D)$ as $n \to \infty$;
(b) the resolvent operators $R^D_{\lambda}(\mu_n)$ converge strongly to $R^D_{\lambda}(\mu)$ in $L^2(D)$ as $n \to \infty$;
(c) the Moreau-Yosida approximations $(F^D_{\mu_n})_{\lambda}$ converge pointwise to $(F^D_{\mu})_{\lambda}$ in $L^2(D)$ as $n \to \infty$.

To prove Proposition 2.9 we need the following

Lemma 2.2 Suppose that

\[F^D_{\mu}(u) \leq \liminf_{n \to \infty} F^D_{\mu_n}(u_n) \]

for every $u \in L^2(D)$ and every sequence (u_n) converging to u strongly in $L^2(D)$. Then (2.29) holds for every $u \in L^2(D)$ and every sequence (u_n) converging to u weakly in $L^2(D)$.

Proof Let $u \in L^2(D)$ and let (u_n) be a sequence converging to u weakly in $L^2(D)$ such that

\[\liminf_{n \to \infty} F^D_{\mu_n}(u_n) < \infty. \]

Then $u_n \in H^1_0(D)$ for infinitely many n and

\[\lim_{n \to \infty} \int_D |\nabla u_n|^2 dx < \infty, \]

so we may assume that (u_n) converges to u weakly in $H^1_0(D)$. Let (ψ_k) be the sequence in $C^\infty_0(R^d)$ defined by (2.26). Let us fix $k \in \mathbb{N}$. Then $\psi_k u_n \in H^1_0(D)$ and $(\psi_k u_n)$ converges to $\psi_k u$ weakly in $H^1_0(D)$ and, by Rellich's theorem, strongly in $L^2(D)$. Therefore, by the hypothesis,

\[F^D_{\mu}(\psi_k u) \leq \liminf_{n \to \infty} F^D_{\mu_n}(\psi_k u_n). \]

\[= \liminf_{n \to \infty} \left\{ \int_D [\psi_k^2 |\nabla u_n|^2 + 2\psi_k u_n \nabla \psi_k \nabla u_n + u_n^2 |\nabla \psi_k|^2] dx \right\} \]

\[\leq \liminf_{n \to \infty} F^D_{\mu_n}(u_n) + \int_D [2\psi_k u \nabla \psi_k \nabla u + u^2 |\nabla \psi_k|^2] dx. \]

In the last inequality we have used the fact that, by Rellich's theorem, (u_n) converges to u in $L^2(D_k)$ where $D_k = \{ x : x \in D, \nabla \psi_k(x) \neq 0 \}$. Since $(\nabla \psi_k)$ converges to 0 uniformly on R^d and $(\nabla \psi_k u)$ converges to u in $H^1_0(D)$, we then obtain

\[F^D_{\mu}(u) \leq \liminf_{n \to \infty} F^D_{\mu}(\psi_k u) \leq \liminf_{n \to \infty} F^D_{\mu_n}(u_n), \]

and the lemma follows.
We will now proceed with the

Proof of Proposition 2.9 By Lemma 2.2 the equivalence of (a), (b), and (c) could be obtained as a consequence of an abstract result ([2], Theorem 3.26 with X=L^2(D)). However we prefer to give a more direct proof here.

Let $F_n = F_{\mu_n}$, $F = F_{\mu}$ and, correspondingly, $(F_n) = (F_{\mu_n})$, $(F) = (F_{\mu})$. (a)\Rightarrow(b). Assume (a). Let $f \in L^2(D)$, $u_n = \lambda R^D_\Lambda (\mu_n)f$, and $u = \lambda R^D_\Lambda (\mu)f$. We have to prove that (u_n) converges to u strongly in $L^2(D)$.

By the definition of Γ-convergence there exists a sequence (v_n) converging to u in $L^2(D)$ such that

$$F(u) = \lim_{n \to \infty} F_n(v_n).$$

By the minimum property of u_n (Proposition 2.1) we have

$$F_n(u_n) + \lambda \int_D (u_n - f)^2 dx \leq F_n(v_n) + \lambda \int_D (v_n - f)^2 dx,$$

hence

$$\limsup_{n \to \infty} F_n(u_n) + \lambda \int_D (u_n - f)^2 dx \leq \liminf_{n \to \infty} F_n(v_n) + \lambda \int_D (v_n - f)^2 dx = F(u) + \lambda \int_D (u - f)^2 dx.$$

Since

$$F_n(u_n) + \lambda \int_D (u_n - f)^2 dx \geq \int_D |\nabla u_n|^2 dx + (\lambda/2) \int_D u_n^2 dx - \lambda \int_D f^2 dx,$$

the sequence (u_n) is bounded in $H^1_0(D)$, hence it contains a subsequence which converges weakly in $H^1_0(D)$ to a function $w \in H^1_0(D)$. We will relabel this subsequence as (u_n) again. By Lemma 2.1, we have

$$F(w) \leq \liminf_{n \to \infty} F_n(u_n).$$

Moreover,

$$\int_D (w - f)^2 dx \leq \liminf_{n \to \infty} \int_D (u_n - f)^2 dx.$$

Hence, by using (2.30), we obtain

$$F(w) + \lambda \int_D (w - f)^2 dx \leq \liminf_{n \to \infty} \left[F_n(u_n) + \lambda \int_D (u_n - f)^2 dx \right] \leq \limsup_{n \to \infty} \left[F_n(u_n) + \lambda \int_D (u_n - f)^2 dx \right] \leq F(u) + \lambda \int_D (u - f)^2 dx.$$

Since u is the unique minimum point of problem (2.28) (see
Proposition 2.1), we obtain \(w = u \) and

\[
(2.33) \quad F(u) + \lambda \int_D (u-f)^2 \, dx = \lim_{n \to \infty} [F_n(u_n) + \lambda \int_D (u_n-f)^2 \, dx].
\]

From (2.31), (2.32), (2.33) and from the equality \(u = w \) it follows that

\[
\int_D (u-f)^2 \, dx = \lim_{n \to \infty} \int_D (u_n-f)^2 \, dx,
\]
and hence that \((u_n) \) converges to \(u = w \) strongly in \(L^2(D) \). The limit being independent of the subsequence, the whole original sequence \((u_n) \) converges to \(u \) in \(L^2(D) \) and (b) is proved.

(b) \(\Rightarrow \) (c) Assume (b). Let \(f \in L^2(D), \ u_n = \lambda R^D_\lambda (\mu_n) f, \) and \(u = \lambda R^D_\lambda (\mu) f. \) By taking the test function \(u = u_n \) in the equation satisfied by \(u_n \) we obtain

\[
F_n(u_n) + \lambda \int_D u_n^2 \, dx = \lambda \int_D f u_n \, dx.
\]

Since \(u_n \) is the minimum point of problem (2.28) we have

\[
(F_n)_\lambda f = F_n(u_n) + \lambda \int_D (u_n-f)^2 \, dx = \lambda \int_\mu (f-u_n) \, dx.
\]

In the same sense we obtain

\[
(F)_\lambda f = \lambda \int_D f (f-u) \, dx.
\]

By (b), the sequence \((u_n) \) converges to \(u \) in \(L^2(D) \), hence \((F)_\lambda f \) converges to \((F)_\lambda f \) as \(n \to \infty \), and (c) is proved.

(c) \(\Rightarrow \) (a) Assume (c). We set

\[
G_n(v) = F_n(v) + \lambda \int_D v^2 \, dx,
\]

\[
G(v) = F(v) + \lambda \int_D v^2 \, dx.
\]

By condition (c) we have

\[
(2.34) \quad \min_{v \in H^1_0(D)} [\ G(v) + \int_D f v \, dx \] = \lim_{n \to \infty} \min_{v \in H^1_0(D)} [\ G_n(v) + \int_D f v \, dx \]
\]
for every \(f \in L^2(D) \).

Let us consider the following functionals on \(L^2(D) \):

\[
F_+(u) = \inf \{ \limsup_{n \to \infty} F_n(u_n) : u_n \to u \text{ in } L^2(D) \},
\]

\[
F_-(u) = \inf \{ \liminf_{n \to \infty} F_n(u_n) : u_n \to u \text{ in } L^2(D) \}.
\]
In order to prove that \((F_n) \) \(\Gamma \)-converges to \(F \) in \(L^2(D) \), it is enough to show that
\[
(2.35) \quad F \leq F_- \text{ on } L^2(D),
\]
\[
(2.36) \quad F_+ \leq F \text{ on } H^1_0(D) \cap L^2(D, \mu).
\]

Let us prove (2.35). Let \(u \in L^2(D) \). Since \(G \) is convex and lower semicontinuous on \(L^2(D) \) we have (see for example [3], Proposition 4.1)
\[
(2.37) \quad G(u) = \sup_{f \in L^2(D)} \inf_{v \in L^2(D)} [G(v) + \int_D f(v-u) dx].
\]

If \((u_n) \) converges to \(u \) in \(L^2(D) \), by (2.34) we have for every \(f \in L^2(D) \)
\[
\min_{v \in H^1_0(D)} [G(v) + \int_D f(v-u) dx] = \lim_{n \to \infty} \min_{v \in H^1_0(D)} [G_n(v) + \int_D f(v-u_n) dx] \leq \inf_{n \to \infty} G_n(u_n).
\]

By taking the supremum with respect to \(f \in L^2(D) \) in the previous inequality and by using (2.37) we obtain
\[
G(u) \leq \inf_{n \to \infty} G_n(u_n).
\]

Hence
\[
F(u) \leq \inf_{n \to \infty} F_n(u_n).
\]

Since \((u_n) \) is an arbitrary sequence converging to \(u \) in \(L^2(D) \) we obtain
\[
F(u) \leq F_-(u) \text{ and (2.35) is proved.}
\]

Let us prove (2.36). Let \(f \in L^2(D) \), \(u_n = - (1/2) R^0 \lambda \mu f \), and \(u = - (1/2) R^0 \lambda \mu f \). By Proposition 2.1 we have
\[
G(u) + \int_D f u dx = \min_{v \in H^1_0(D)} [G(v) + \int_D f v dx],
\]
\[
G_n(u_n) + \int_D f u_n dx = \min_{v \in H^1_0(D)} [G_n(v) + \int_D f v dx].
\]

Therefore by (2.34) we have
\[
(2.38) \quad \lim_{n \to \infty} [G_n(u_n) + \int_D f u_n dx] = G(u) + \int_D f u dx < \infty.
\]

Since
\[
G_n(u_n) + \int_D f u_n dx \geq \int_D |\nabla u_n|^2 dx + (\lambda/2) \int_D u_n^2 dx - (1/2 \lambda) \int_D f^2 dx,
\]
the sequence \((u_n) \) is bounded in \(H^1_0(D) \), hence it contains a
subsequence, which by relabelling we may still denote by \((u_n)\), which converges weakly in \(H^1_0(D)\) to a function \(w \in H^1_0(D)\). By the inequality \(F \leq F^-\) and Lemma 2.2 we have
\[
F(w) \leq \lim_{n \to \infty} F_n(u_n).
\]

Since
\[
\int_D w^2 \, dx \leq \lim_{n \to \infty} \int_D u_n^2 \, dx,
\]
we have
\[
G(w) * \int_D f \, dx \leq \lim_{n \to \infty} \left[G_n(u_n) * \int_D f \, dx \right] = G(u) * \int_D f \, dx = \min_{v \in H^1_0(D)} [G_n(v) * \int_D f \, dx].
\]

By the uniqueness of the minimum point we have \(w = u\), hence \((u_n)\) converges to \(u\) weakly in \(H^1_0(D)\). By (2.38), (2.39), (2.40) we have
\[
\int_D u^2 \, dx = \lim_{n \to \infty} \int_D u_n^2 \, dx,
\]
and hence \((u_n)\) converges to \(u\) strongly in \(L^2(D)\). It follows from this argument that the entire original sequence \((u_n)\) must converge strongly to \(u\) in \(L^2(D)\) and we obtain easily from (2.38) that
\[
F_+(u) \leq F(u)
\]
for every \(u \in H^1_0(D) \cap L^2(D, \mu)\) of the form \(u = R^D \lambda (\mu) f\) with \(f \in L^2(D)\).

Since the range of \(R^D \lambda (\mu)\) is dense in \(H^1_0(D) \cap L^2(D, \mu)\), for every \(u \in H^1_0(D) \cap L^2(D, \mu)\) there exists a sequence \((f_n)\) in \(L^2(D)\) such that the functions \(v_n = R^D \lambda (\mu) f_n\) converge to \(u\) in \(H^1_0(D)\) and in \(L^2(D)\). By the lower semicontinuity of \(F_+\), we obtain
\[
F_+(u) \leq \lim_{n \to \infty} F_+(v_n) \leq \lim_{n \to \infty} F(v_n) = F(u)
\]
and inequality (2.36) is proved.

Condition (a) follows now from (2.35) and (2.36), and Proposition 2.9 is proved.

We conclude the present section by stating the following theorem which follows immediately from Propositions 2.8 and 2.9.

Theorem 2.1 Let \((\mu_n)\) be a sequence in \(\mathcal{M}_0\), let \(\mu \in \mathcal{M}_0\), and let \(\lambda > 0\). The following conditions are equivalent:
(a) $(\mu_n)_{n=1}^\infty$ γ-converges to μ;
(b) the resolvent operators $R_\lambda(\mu_n)$ converge to $R_\lambda(\mu)$ strongly in $L^2(\mathbb{R}^d)$ as $n \to \infty$;
(c) the resolvent operators $R^D_\lambda(\mu_n)$ converge to $R^D_\lambda(\mu)$ strongly in $L^2(D)$ as $n \to \infty$ for every open set D in \mathbb{R}^d;
(d) the resolvent operators $R^D_\lambda(\mu_n)$ converge to $R^D_\lambda(\mu)$ strongly in $L^2(D)$ as $n \to \infty$ for every bounded open set D in \mathbb{R}^d.

This result will be convenient for connecting γ-convergence with the probabilistic notion of stable convergence to be defined in the next section.
3. We shall use the concept of a randomized stopping time for Brownian motion. Some notations and results will be taken from [4], section 2.

Let \(C = C ([0, \infty), \mathbb{R}^d) \), the space of continuous \(\mathbb{R}^d \)-valued functions of nonnegative time, endowed with the topology of uniform convergence on compact time sets. \(C \) is the sample space for standard Brownian motion \((B_t) \), where \(B_t : C \to \mathbb{R}^d \) is the projection map defined by \(B_t(\omega) = \omega(t) \), \(\omega \) denoting a typical point or "sample path" in \(C \). The relevant \(\sigma \)-algebras on \(C \) are \(\mathbf{F}_t = \sigma(B_s : 0 \leq s \leq t) \), and \(\mathbf{A}_t = \mathbf{F}_{t+} \). We let \(\mathbf{A} = \mathbf{A}_\infty = \mathbf{F}_\infty = \sigma(B_s : 0 \leq s < \infty) \).

A stopping time \(\tau \) with respect to the fields \((\mathbf{A}_t) \) is defined as usual to be a map \(\tau : C \to [0, \infty) \), such that \(\{ \tau \leq t \} \) is in \(\mathbf{A}_t \) for all \(t \), \(0 \leq t < \infty \). A randomized stopping time \(T \) is defined to be a map \(T : C \times [0,1] \to [0, \infty] \), such that \(T \) is a stopping time with respect to the \(\sigma \)-algebras \((\mathbf{A}_t \times \mathbf{B}_1) \), where \(\mathbf{B}_1 \) denotes the Borel sets on \([0,1] \). We shall require \(T(\omega, \cdot) \) to be nondecreasing and left continuous on \([0,1] \), with \(T(\omega,0) = 0 \), for every \(\omega \) in \(C \). When convenient we shall regard an ordinary stopping time \(\tau \) also as a randomized one, by setting \(\tau(\omega, t) = \tau(t) \) for all \(t \) in \([0,1] \). If \(T \) is a randomized stopping time, then \(T(\cdot, a) \) is an ordinary stopping time, for each \(a \) in \([0,1] \).

A randomized stopping time \(T \) can be expressed by an equivalent object, the stopping time measure \(F \) induced by \(T \). \(F \) is the map \(F : C \times \mathbf{B} \to [0,1] \), where \(\mathbf{B} = \) the Borel sets of \([0,\infty] \), defined by

\[
F(\omega, [0,t]) = \sup \{ a : T(\omega, a) \leq t \}
\]

and the condition that \(F(\omega, \cdot) \) be a measure on \(\mathbf{B} \).

We shall often write \(F(\cdot, (t,\infty)) \) as \(F((t,\infty)) \) or as \(F_t \). If \(P \) denotes a probability measure on \((C, \mathbf{A}) \), and \(m_1 \) denotes Lebesgue measure on \([0,1] \), then \(F_t \) is a version of the conditional expectation of \(\chi_{\{T > t\}} \) using the probability \(P \times m_1 \), with respect to the \(\sigma \)-algebra \(\mathbf{A} \times \{ \emptyset, [0,1] \} \). \(F(\omega, \cdot) \) is thus a version of the conditional distribution of \(T \) given the entire path \(\omega \).

We can recover \(T \) from \(F \) by

\[
T(\omega, a) = \inf \{ t : F(\omega, [0,t]) \geq a \}.
\]

Furthermore, given any map \(F : C \times \mathbf{B} \to [0,1] \) such that

\[
F(\omega, \cdot) \text{ is a probability for each } \omega \text{ in } C,
\]

we can define \(T \) by (3.2). \(T \) will be a randomized stopping time, provided
that

\[(3.4) \quad F(\cdot;[0,1]) \text{ is } \mathcal{G}_t \text{-measurable for each } t.\]

Any \(F : C \times \mathcal{B} \to [0,1] \) such that (3.3) and (3.4) hold will be called a stopping time measure. We see that there is a complete correspondence between the notions of stopping time measure and randomized stopping time.

There is another useful representation for a randomized stopping time \(T \). Let \(P \) be a probability on \((C,\mathcal{A})\). Consider the map \((\omega,a) \mapsto (\omega,T(\omega,a))\) from \(C \times [0,1] \) to \(C \times [0,\infty] \). The distribution of this map on \((C \times [0,\infty], \mathcal{A} \times \mathcal{B})\) with respect to \(P \times m_1 \) on \((C \times [0,1], \mathcal{A} \times \mathcal{B}_1)\) will be called the stopped process corresponding to \(T \) and \(P \). If \(F \) denotes the stopping time measure corresponding to \(T \), and \(Q \) denotes the stopped process corresponding to \(T \) and \(P \), we see easily that for any bounded \(\mathcal{A} \times \mathcal{B} \) measurable function \(Z \) on \(C \times [0,\infty],\)

\[(3.5) \quad \int ZdQ = \int \left[\int Z(\omega,t)F(\omega,dt) \right] P(d\omega).\]

We shall often denote the stopped process \(Q \) by \(P \times F \).

It can be shown ([(3),[4]]) that any probability \(Q \) on \((C \times [0,\infty], \mathcal{A} \times \mathcal{B})\) is a stopped process \(P \times F \) for some \(P \) and some \(F \), if and only if: for every function \(f : [0,\infty] \to \mathbb{R} \) continuous and having support in \([0,t]\), and every \(Y : C \to \mathbb{R} \) of form \(Y(\omega) = g_1(\omega(t_1))...g_k(\omega(t_k)) \), where \(g_i \) is continuous and has compact support on \(\mathbb{R}^d \), \(0 \leq t_i < \infty \), \(i = 1,...,k \), the following holds:

\[(3.6) \quad \int YfdQ = \int E(Y \mid \mathcal{A}_t)fdQ.\]

Here \(E(Y \mid \mathcal{A}_t) \) means the conditional expectation using the marginal of \(Q \) on \((C,\mathcal{A})\), and we regard \(Y \) and \(E(Y \mid \mathcal{A}_t) \) as functions both on \(C \) and on \(C \times [0,\infty] \) in the obvious way, and regard \(f \) similarly as a function on \([0,\infty]\) and on \(C \times [0,\infty] \).

It is easy to show, by a monotone class argument, that if (3.6) holds for the choices of \(Y \) and \(f \) just described, then it also holds for any \(Y \) in \(L^1(C,\mathcal{A},P) \) and any \(f \) bounded measurable on \([0,\infty]\) with \(f=0 \) on \((t,\infty]\).

Till now we have discussed arbitrary probabilities \(P \) on \((C,\mathcal{A})\). Since our interest is in Brownian motion, we now consider \(P^\nu \), the usual Wiener measure on \((C,\mathcal{A})\) with initial probability distribution \(\nu \) on \(\mathbb{R}^d \), that is

\[(3.7) \quad P^\nu(B_0 \epsilon A) = \nu(A) \]

for any Borel set \(A \) in \(\mathbb{R}^d \). We will refer to such a probability measure \(P=P^\nu \) as a Brownian probability on \(C \).

The usefulness of characterizing a stopped process by (3.6) with the
original limited choices of Y and f, is that, for Brownian probabilities,
this relation is preserved under weak limits. Hence we have the fact that

Lemma 3.1 A weak limit of stopped processes $P^n \times F_n$ is again a stopped
process if (i) $P^n = P$ for all n, or if (ii) P_n is Brownian for all n.

Since $[0, \infty]$ is compact, a sequence $Q_n = P^n \times F_n$ will be tight if and
only if the sequence P_n is tight. Here by tight we mean as usual that for
any $\epsilon > 0$ there exists a compact set A in the sample space such that $Q_n(A^C) < \epsilon$ for all n. From a tight sequence of measures a weakly
convergent subsequence can be selected. Thus we have a convenient compactness principle available for stopped Brownian processes, and hence for randomized stopping times.

We denote the usual heat semigroup by P_t, where P_t acts both on
measures and functions as a Markov operator, so that the distribution of
B_t under P^n is nP_t, and $P_t h(x) = E^x[h \circ B_t]$ for any bounded Borel h on \mathbb{R}^d.

Definition 3.1 A sequence T_n of randomized stopping times will be said
to converge **stably** to a limit T, with respect to a probability
measure P on (C, \mathcal{A}), if T_n has stopping measure F_n, T has stopping
measure F, and $P \times F_n$ converges weakly to $P \times F$. If $P^n \times F_n$ converges weakly
to $P^n \times F$, for one (and hence for all) probability measures ν such that $\nu \ll m$, $m \ll \nu$, where m denotes Lebesgue measure on \mathbb{R}^d, then we will simply say that T_n converges **stably** to T. Since the stopping time
measures F_n, F, characterize T_n, T, we will also speak of F_n as converging stably to F.

The fact that $P^n \times F_n \rightarrow P^n \times F$ weakly for one ν with $\nu \ll m, m \ll \nu$
implies that $P^\lambda \times F_n \rightarrow P^\lambda \times F$ for every λ with $\lambda \ll m$ is clear from the
following lemma, and the fact that $P^\lambda \ll P^n$.

Lemma 3.2 Let F_n, F be stopping time measures, and let P be a
probability measure on (C, \mathcal{A}) such that $P \times F_n$ converges to $P \times F$ weakly. Then
for every Y in $L^1(C, \mathcal{A}, P)$, and every continuous f on $[0, \infty]$,

$$(3.8) \quad \int Y(\omega) \int f(t) F_n(\omega, dt) P(d\omega) \rightarrow \int Y(\omega) \int f(t) F(\omega, dt) P(d\omega).$$

Lemma 3.2 follows at once from the triangle inequality on L^1, and is
a special case of Lemma 3.3 below.

A statement will be said to hold almost surely (a.s.) on C if it
holds P^X-a.e. for every x in R^d. If $T_n \to T$ stably, as defined above, we see easily that although T is not uniquely determined by T_n, $T \ast \theta_t$ is uniquely determined almost surely for every $t > 0$, where θ_t denotes the usual shift operator.

We now prove some convergence facts for later use.

Lemma 3.3 Let F_n, F be stopping time measures, and let P be a probability measure on (C, \mathcal{A}) such that $P \times F_n \to P \times F$ weakly. Let L denote the space of all functions $Z: C \times [0, \infty] \to R$, such that $Z(\omega, \cdot)$ is continuous on $[0, \infty]$ for P-a.e. ω in C, such that $Z_t = Z(\cdot, t)$ is \mathcal{A}-measurable for all t, and such that

$$\int \sup \{ |Z_t| : 0 \leq t \leq \infty \} dP < \infty.$$

Then for every Z in L, as $n \to \infty$,

$$\int Zd(P \times F_n) \to \int Zd(P \times F).$$

Proof When Z is of the form $Z(\omega, t) = Y(\omega)f(t)$, where Y is bounded and continuous on C and f is continuous on $[0, \infty]$, (3.10) is true by the definition of weak convergence. Continuous functions Y on C are dense in $L^1(C, \mathcal{A}, P)$, so, as noted in Lemma 3.2, (3.10) remains true for $Z(\omega, t) = Y(\omega)f(t)$, where Y is in $L^1(C, \mathcal{A}, P)$ and f is continuous on $[0, \infty]$. Hence (3.10) is true when Z is a finite linear combination of functions of this type.

For any Z in L, define $\|Z\| = \int \sup \{ |Z_t| : 0 \leq t \leq \infty \} dP$.

It is easy to see that the collection H of Z in L for which (3.10) is true is closed with respect to the semi-norm just defined.

Let Z be in L, Z bounded. Let $\varepsilon > 0$ be given. We can choose an integer $k > 0$ and a partition $0 = t_0 < t_1 < \ldots < t_k = \infty$ such that if $W: C \times [0, \infty] \to R$ is defined by $W(\omega, t) = \{Z(\omega, t)\}/k$ for all $t = t_0, t_1, \ldots, t_{k-1}$, $W(\omega, \cdot)$ linear on each interval $[t_{j-1}, t_j]$, $j = 1, \ldots, k-1$, $W(\omega, \cdot)$ constant on $[t_{k-1}, t_k]$, then $\|W - Z\| < \varepsilon$.

$W(\omega, \cdot)$ is determined by the values $W(\omega, t_j)$, $j = 0, \ldots, k-1$, and, since Z is bounded, there are only finitely many possible choices for these values. W is thus a finite linear combination of product functions of the sort described earlier. Thus W is in H, and hence we have shown that any bounded function Z in L is in H.

Any Z in L can be approximated in the semi-norm sense by its bounded truncations, so $H = L$, and Lemma 3.3 is proved.
We may write equation (3.10) more conveniently as
\[(3.10)^{\prime} \quad E[Z_{T_n}] \to [Z_T].\]
Here we follow a convention which we will at times use later, of employing the same letter E for expectation on the randomized space $C[0,1]$, that is, with respect to $P \times m_t$, as we employ for expectation on C with respect to P.

Corollary to Lemma 3.3 Let T_n, T be randomized stopping times, P a probability measure on (C,\mathcal{A}).

(i) Let σ be a \mathbb{A}_t-stopping time. If $T_n \to T$ stably with respect to P then $T_n \land \sigma \to T \land \sigma$ stably with respect to P.

(ii) If there exists τ_j a sequence of \mathbb{A}_t-stopping times such that $\tau_j \uparrow \infty$ and $T_n \land \tau_j \to T \land \tau_j$ stably with respect to P for each j, then $T_n \to T$ stably with respect to P for each j.

Proof (i) Given $f \in C([0,\infty])$, Y bounded measurable, let $Z_T(\omega) = f(T \land \sigma(\omega))Y(\omega)$. Since $Z_{T_n} = f(T_n \land \sigma(\omega))Y(\omega)$, and $Z_T = f(T \land \sigma(\omega))Y(\omega)$, the result follows at once from (3.10)$^{\prime}$.

(ii) Given $f \in C([0,\infty])$, Y bounded measurable, for every $\varepsilon > 0$ there exists j such that $E[\sup_{t \geq \tau_j} |f(t) - f(\tau_j)|] \leq \varepsilon$. Then
\[|E[f(T_n)Y] - E[f(T_n \land \tau_j)Y]| \leq \varepsilon \|Y\|_{\infty} \quad \text{and} \quad |E[f(T)Y] - E[f(T \land \tau_j)Y]| \leq \varepsilon \|Y\|_{\infty}.\]
Since $E[f(T_n \land \tau_j)Y] \to E[f(T \land \tau_j)Y]$, the corollary follows.

Lemma 3.4 Let F_n, F be stopping time measures, and let P be a probability measure on (C,\mathcal{A}) such that $P \times F_n \to P \times F$ weakly. Let $Z: C \times [0,\infty] \to R$ be given. We will write $Z(\cdot, t) = Z_t$ where convenient. Suppose Z is measurable from $\mathbb{A} \times \mathbb{B}$ to \mathbb{B}', where \mathbb{B} denotes the Borel sets of $[0,\infty]$ and \mathbb{B}' denotes the Borel sets of R.

(i) Let $W: C \times [0,\infty] \to R$ be defined by
\[(3.12) \quad W(\omega, t) = \sup \left\{ \inf \{Z(\omega, s) : s \text{ in } U \} \right\},\]
where the supremum is over all open subsets U of $[0,\infty]$ containing t. That is, $W(\omega, t) = \lim \inf_{s \to t} Z(\omega, s)$. (One sees easily that $W(\omega, \cdot)$ is lower semicontinuous. $W(\omega, \cdot)$ is the lower semicontinuous regularization of $Z(\omega, \cdot)$.)

Let
\[(3.13) \quad D(\omega) = \{ t : W(\omega, t) < Z(\omega, t) \}.
Suppose that for P-a.e. ω, $F(\omega, D(\omega)) = 0$. Suppose also that Z is
bounded below. Then

\[
\lim_{n \to \infty} \inf_{n} \int \mathbb{Z}(P \times F_n) \geq \int \mathbb{Z}(P \times F).
\]

(ii) Let

\[
L(\omega) = \{ t : Z(\omega, t) \text{ is discontinuous at } t \}.
\]

Suppose that for P-a.e. \(\omega, F(\omega, L(\omega)) = 0 \). Suppose also that \(Z \) is bounded. Then

\[
\lim_{n \to \infty} \inf_{n} \int \mathbb{Z}(P \times F_n) = \int \mathbb{Z}(P \times F).
\]

Proof Let \(a \) be in \(\mathbb{R} \). Let \(H = Z^{-1}((a, \infty)) \). That is, \(H = \{ (\omega, t) : Z(\omega, t) > a \} \).

Let \(f_j \) be a sequence of functions in \(\mathcal{C}([0, \infty), \mathbb{R}) \), \(0 \leq f_j \leq 1 \), such that for any open set \(U \) contained in \([0, \infty)\), \(\chi_U = \sup \{ f_j : \text{support } f_j \subseteq U \} \).

For any set \(K \subseteq [0, \infty) \), let \(K = \{ t : (\omega, t) \in K \} \). If \(K \in \mathcal{A} \times \mathcal{B} \), and \(G \) is any stopping time measure, \(G(\omega, K(\omega)) \) is a \(\mathcal{A} \)-measurable function of \(\omega \), by the monotone class theorem.

Let \(G = \sum_{n=1}^{\infty} F_n / 2^n \). Let \(V_j = \{ \omega : G(\omega, \text{support } f_j - H_{\omega}) = 0 \} \). \(V_j \) is \(\mathcal{A} \)-measurable, by the previous remark.

Let \(J_\omega = \{ j : \omega \in V_j \} \). Let \(Y_k(\omega, t) = \sup \{ f_j(t) : j \in J_\omega \} \). \(Y_k(\omega, t) \) is the supremum of \(\chi_{V_j}(\omega)f_j(t) \), \(1 \leq j \leq k \), so \(Y_k \) is \(\mathcal{A} \times \mathcal{B} \)-measurable.

For each \(k \), by Lemma 3.2,

\[
\lim_{n \to \infty} \inf_{n} \int Y_k d(P \times F_n) = \int Y_k d(P \times F).
\]

For each \(k \),

\[
\{(\omega, t) : Y_k(\omega, t) > \chi_H(\omega, t) \} \subseteq \{(\omega, t) : \exists j \in J_\omega \text{ with } f_j(t) > 0, \chi_H(\omega, t) = 0 \} \subseteq \{(\omega, t) : \exists j \in J_\omega \text{ with } \omega \in V_j \text{ and } t \in \text{support } f_j - H_{\omega} \}.
\]

Let \(N_k = \{(\omega, t) : Y_k(\omega, t) > \chi_H(\omega, t), M_j = \{(\omega, t) : \omega \in V_j \text{ and } t \in \text{support } f_j - H_{\omega} \} \} \).

We have shown that \(N_k \subseteq \bigcup_j M_j \). Thus \(P \times F_n(N_k) \leq \sum_{j=1}^{\infty} P \times F_n(M_j) \).

\[
P \times F_n(M_j) = \int F_n(\omega, (M_j)_{\omega})P(d\omega) = \int V_j F_n(\omega, \text{support } f_j - H_{\omega})P(d\omega) = 0.
\]

Thus \(P \times F_n(N_k) = 0 \) for every \(k \) and every \(n \). Hence \(Y_k \leq \chi_H \), \(P \times F_n \)-a.e., for every \(n, k \). Thus, by (3.17), for every \(k \),

\[
\lim_{n \to \infty} \inf_{n} P \times F_n(H) \geq \int Y_k d(P \times F).
\]

\(Y_k \) increases to a limit \(Y \), where \(Y(\omega, t) = \sup \{ f_j(t) : j \in J_\omega \} \). Clearly

\[
\lim_{n \to \infty} \inf_{n} P \times F_n(H) \geq \int Y d(P \times F).
\]
For fixed ω in C, let t be in $D^C(\omega) \cap H_\omega$. Then $W(\omega,t) \geq Z(\omega,t) > a$. Hence there exists an open set U in $[0,\infty)$ with t in U such that $Z(\omega,s) > a$ for all s in U. Thus $U \cap H_\omega$. For any j such that support $f_j \subset U$, clearly $j \in J_\omega$. Hence $Y(\omega,t) \geq \sup \{ f_j(t) : \text{support} f_j \subset U \}$, so $Y(\omega,t) = 1$.

Let $S = \{(\omega,t) : Y(\omega,t) < \chi_H(\omega,t)\}$. We have shown that $S_\omega \subset D(\omega)$. Hence $P\times F(S) = \int F(\omega,S_\omega)P(d\omega) = 0$, since $F(\omega,D(\omega)) = 0$ except on a P-null set. Thus $Y \geq \chi_H$, $P\times F$-a.e., and so

$$\lim \inf_{n \to \infty} P\times F_n(H) \geq P\times F(H).$$

(3.20)

Let ψ_n, ψ denote the distributions of Z with respect to $P\times F_n$ and $P\times F$, respectively. Assume Z is bounded below by b. Then

$$\lim \inf_{n \to \infty} \int Zd(P\times F_n) = \lim \inf_{n \to \infty} \left(b + \int_{(0,\infty)} \psi_n((a,\infty))da \right) \geq b + \int_{(0,\infty)} \psi((a,\infty))da = \int Zd(P\times F).$$

This proves part (i) of Lemma 3.4. Part (ii) follows from part (i) applied to Z and to $-Z$, so Lemma 3.4 is proved.

Corollary When the function Z of Lemma 3.4 is such that Z is bounded below (above) and $Z(\omega,\cdot)$ is l.s.c. (u.s.c.) P-a.e., then

$$\lim \inf_{n \to \infty} (\lim \sup_{n \to \infty} \int Zd(P\times F_n)) \geq \int Zd(P\times F).$$

(3.21)

Theorem 3.1 Let T_n and T be randomized stopping times, with corresponding stopping time measures F_n and F, respectively. Let v be a probability measure on R^d, and $P = P^v$, the Wiener measure with initial distribution v. Suppose $P\times F_n \Rightarrow P\times F$ weakly. Let K be a closed set in R^d, and let τ denote the first entrance time of K. Suppose that $P\times m_1 (T = \tau) = 0$.

that is, that $\int F(\omega,\{\tau(\omega)\})P(d\omega) = 0$. Let $Y \in L^1(C,\mathcal{A},P)$ with $Y = 0$ on $\{\tau = \infty\}$. Define signed measures ψ_n and ψ by the equations

$$\int h \psi_n = \int h \circ B_{\tau_\infty} F_n((\tau,\infty))YdP, \quad \int h \psi = \int h \circ B_{\tau_\infty} F((\tau,\infty))YdP,$$

for every bounded Borel function h on R^d.

Then $\psi_n \Rightarrow \psi$ in total variation norm as $n \to \infty$.

Proof Clearly $\| \psi_n \| \leq \| Y \|_1$, $\| \psi \| \leq \| Y \|_1$. Thus the collection of Y's for which the theorem is true is closed in $L^1(C,\mathcal{A},P)$. Hence it is enough to prove the theorem when $Y = 0$ on $\{\tau > \zeta\}$, where ζ is the first entrance time of
the complement of some large ball. Thus we may assume that \(K \) contains the complement of some ball, and hence that \(\tau < \infty \) almost surely.

Since

\[
\int_{\{\tau = 0\}} F((0))dP = 0,
\]

by the corollary to lemma 3.4 we have

\[
\sup_{n\to\infty} \int F_n((0))dP = 0.
\]

Clearly \(\| \psi_n - \psi \| \leq \int |F_n((\tau,\infty)) - F((\tau,\infty))| \left| Y \right| dP, \)

so if \(Y = 0 \) on \(\{\tau > 0\} \) we see easily that Theorem 3.1 holds. Thus we may, by decomposing \(Y \) into two parts, assume that \(Y = 0 \) on \(\{\tau = 0\} \). Then, discarding part of \(Y \), we may assume \(P^Y(\tau = 0) = 0 \) also. Thus we assume \(\tau > 0, P\text{-a.e.} \).

Let \(W_k \) be open sets in \(R^d \), \(W_k \downarrow K \). Let \(\tau_k \) denote the first entrance time of \(W_k \). Then \(\tau_k < \tau \) on \(\{\tau > 0\} \), and \(\tau_k \uparrow \tau \) everywhere. Standard arguments show that \(\mathcal{A} \) is generated by the two \(\sigma \)-algebras \(\mathcal{Y}_\tau \) and

\[
\theta_\tau^{-1}(\mathcal{A}),
\]

where \(\mathcal{Y}_\tau = \sigma(\mathcal{B}_t \wedge \tau: 0 \leq t < \infty) \). Using again the fact that the set of \(Y \)'s for which the theorem is true is closed in \(L^1 \)-norm, we see that it is enough to prove Theorem 3.1 when \(Y \) is of the form \(U(V \circ \theta_\tau) \), where \(U \) is bounded and \(\mathcal{A}_{< k} \)-measurable for some \(k \), and \(V \) is bounded and \(\mathcal{A} \)-measurable. We assume \(|U| \leq 1, |V| \leq 1 \) without loss of generality, and consider fixed \(U, V, k \). Let \(M \) denote the collection of bounded Borel functions \(h \) on \(R^d \), having \(\sup \) norms \(\leq 1 \), and having support in a fixed compact subset \(S \) of \(R^d \). In order to prove Theorem 3.1 it is clearly sufficient to prove that

\[
(3.21) \quad \int h \circ B_{\tau} F_n((\tau,\infty))YdP \to \int h \circ B_{\tau} F((\tau,\infty))YdP
\]

as \(n \to \infty \), uniformly over all \(h \) in \(M \).

Suppose not. We will show a contradiction. There exists some \(\delta > 0 \), and a sequence \(h_n \in M \), such that

\[
(3.22) \quad \left| \int h_n \circ B_{\tau} F_n((\tau,\infty))YdP - \int h_n \circ B_{\tau} F((\tau,\infty))YdP \right| > \delta \quad \text{for all } i.
\]

Passing to a subsequence and relabelling, we may assume that \(h_n \) converges to a limit \(h \) in the weak*-topology on \(L^\infty(R^d, \mathcal{B}, \lambda) \), where \(\mathcal{B} \) denotes the Borel sets in \(R^d \), and \(\lambda \) denotes the distribution of \(B_\tau \) with respect to \(P^H \), where \(\mu \) is chosen so that \(m \ll \mu \). We note that if \(\lambda^x \) denotes the distribution of \(B_\tau \) with respect to \(P^x \), then \(\lambda^x \ll \lambda \) for every \(x \) in \(K^C \).

Let \(\epsilon > 0 \) be given. Choose \(j \geq k \) such that \(P^x m_1(\tau_j \leq T \leq \tau) < \epsilon/2 \), that is,
\[
\int F((\tau_j, \tau_l))dP < \varepsilon/2. \text{ By the Corollary to Lemma 3.4, there exists } n_0 \text{ such that for every } n \geq n_0,
\]
(3.23) \[
\int F((\tau_j, \tau_l))dP < \varepsilon/2.
\]

Then, for \(n \geq n_0, \)
(3.24) \[
\int h_n \circ B_{\tau} F_n((\tau, \infty))YdP - \int h_n \circ B_{\tau} F_n((\tau_j, \infty))YdP < \varepsilon/2.
\]
\[
= \int h_n \circ B_{\tau} F_n((\tau_j, \infty))YdP - \int h \circ B_{\tau} F_n((\tau_j, \infty))YdP
\]
\[
= \int (h_n-h) \circ B_{\tau} F_n((\tau_j, \infty))U(V \circ \Theta_{\tau})dP
\]
\[
= \int E[(h_n-h) \circ B_{\tau} F_n((\tau_j, \infty))U(V \circ \Theta_{\tau})]A_{\tau_j}dP
\]
\[
= \int UF_n((\tau_j, \infty))((h_n-h)g)^{B_{\tau}}dP, \text{ where } g(x) = E^x[V], \text{ so that } g \text{ is Borel on } R^d \text{ and } |g| \leq 1 \text{ everywhere on } R^d. \text{ Thus}
\]
\[
\int h_n \circ B_{\tau} F_n((\tau_j, \infty))YdP - \int h \circ B_{\tau} F_n((\tau_j, \infty))YdP
\]
\[
= \int E[UF_n((\tau_j, \infty))((h_n-h)g)^B_{\tau_j}A_{\tau_j}]dP
\]
\[
\int UF_n((\tau_j, \infty))E^B_{\tau_j}((h_n-h)g)^B_{\tau_j}dP \leq \int |E^B_{\tau_j}((h_n-h)g)^B_{\tau_j}|dP.
\]

For each \(x \) in \(K^C, h_n \rightarrow 0 \) in the weak* topology on \(L^1(R^d, 2^{-\nu}, \lambda^x) \).

Thus \(E^B_{\tau_j}((h_n-h)g)^B_{\tau_j} \rightarrow 0, \) P-a.e.. This shows that
(3.25) \[
\int h_n \circ B_{\tau} F_n((\tau_j, \infty))YdP - \int h \circ B_{\tau} F_n((\tau_j, \infty))YdP \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

By (3.23), for every \(n \geq n_0, \)
(3.26) \[
\int h \circ B_{\tau} F_n((\tau_j, \infty))YdP - \int h \circ B_{\tau} F_n((\tau, \infty))YdP < \varepsilon/2.
\]

By (3.24),(3.25), and (3.26),
(3.27) \[
\int h_n \circ B_{\tau} F_n((\tau, \infty))YdP - \int h \circ B_{\tau} F_n((\tau, \infty))YdP \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

By the same argument (applied to the constant sequence \((F)\)),
(3.28) \[
\int h_n \circ B_{\tau} F((\tau, \infty))YdP - \int h \circ B_{\tau} F((\tau, \infty))YdP \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

By lemma 3.4(ii), with \(Z(\omega, t) = h \circ B_{\tau}(\omega)Y(\omega)X(\tau(\omega), \infty)(t) \), we have
(3.29) \[
\int h \circ B_{\tau} F_n((\tau, \infty))YdP - \int h \circ B_{\tau} F((\tau, \infty))YdP \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

(3.27), (3.28), and (3.29) contradict (3.22), so theorem 3.1 is proved.
Remark 3.1 The conclusion of Theorem 3.1 is also true if \(\tau \) is any stopping time of form \(\sigma + u \), where \(\sigma \) is any stopping time and \(u \geq 0 \). This result was proved in [4] for the case \(\sigma = 0 \). The proof is a simpler version of the one just given. It seems possible that this result could be proved in a more general form.

Now that we have obtained some properties of weak convergence of general randomized stopping times, we turn to the more restricted class of randomized stopping times that we shall actually work with, namely the multiplicative functionals.

Definition 3.2 A stopping time measure \(M \) will be called a multiplicative functional if for every \(s \geq 0 \), \(t \geq 0 \),
\[
M_{t+s} = M_t(M_s \circ \theta_t) \quad \text{almost surely.}
\]

We recall that almost surely means \(P^x \)-a.e. for every \(x \) in \(R^d \), and that \(\theta_t \) is the usual shift operator, so that \((\theta_t \omega)(s) = \omega(s+t) \).

We shall assume, unless otherwise stated, that any multiplicative functional \(M \) also has the following continuity property: for every \(t > 0 \), and every sequence \(\varepsilon_k \) of positive real numbers with \(\varepsilon_k \downarrow 0 \),
\[
\lim_{k \to \infty} M_{t-\varepsilon_k} \circ \theta_{\varepsilon_k} = M_t \quad \text{almost surely.}
\]

If \(\tau \) is a first hitting time or a first entrance time, and \(M \) is the associated multiplicative functional, then \(M_t = \chi_{(t, \infty)} \circ \tau \) gives the stopping time measure associated with \(\tau \), and \(M \) satisfies (3.30). \(M \) also satisfies (3.31) if \(\tau \) is a first hitting time but not if \(\tau \) is a first entrance time. For a general treatment of multiplicative functionals see [6].

Associated with any multiplicative functional \(M \) there is a sub-Markov semigroup \(Q_t(M) \), defined by
\[
(Q_t(M)h)(x) = E^x[h \circ B_t \circ M_t], \quad \text{for every bounded Borel function } h.
\]

As usual, we also define \(\nu Q_t(M) \) for any finite measure \(\nu \) by the equation
\[
\int h d(\nu Q_t(M)) = \int Q_t(M)h d\nu.
\]

Although we will refer to \(Q_t(M) \) as a semigroup, it should be stressed that \(Q_0(M) \) will not in general be the identity operator.

If \(P_t \) is the usual heat semigroup associated with Brownian motion, clearly \(P_t = Q_t(I) \). Also, one shows easily from 3.31 that
\[
Q_t(M) h = \lim_{\varepsilon \downarrow 0} P_{\varepsilon} Q_t(M \circ \varepsilon) h
\]

Furthermore, if \(h \geq 0 \), the limit in (3.33) is decreasing. It follows that for any \(h \geq 0 \) the function \(Q_t(M) h \) is upper semicontinuous.
The following fact is sometimes useful:

Lemma 3.5 Let M be a stopping time measure having the multiplicative property (3.30). For any $t > 0$, $M(\{t\}) = 0$ almost surely.

Proof Let λ be a probability on \mathbb{R}^d, $m \ll \lambda$. There exists s, $0 < s < t$, such that $\int M(s) dP^\lambda = 0$. Then $M(s) = 0$, P^λ-a.e., and hence $M(s) = 0$, P^λ-a.e., for any probability $\nu \ll m$. For any x in \mathbb{R}^d, $M(\{t\}) = M_{t-s}(M(s)) \cdot \theta_{t-s}$, P^x-a.e. Since $P^x \theta_{t-s}^{-1} = P^x$, where $\lambda^x \ll m$, we see that $(M(s)) \cdot \theta_{t-s} = 0$, P^x-a.e., proving Lemma 3.5.

The semigroup $Q_t(M)$ characterizes M uniquely. More generally:

Lemma 3.6 Let M and N be any two stopping time measures having the multiplicative property (3.30). Define the sub-Markov semigroups $Q_t(M)$ and $Q_t(N)$ as in (3.32). If $Q_t(M) = Q_t(N)$ for all t then $M = N$ almost surely.

Proof. Fix $t > 0$. Let $s = t/k$ for some $k > 0$, and let $j = js$, $j = 0, 1, \ldots, k$.

$M_t = \prod_{j=0}^{k-1} (M_s \circ \theta_{t_j})$, almost surely. Let f_0, \ldots, f_k be bounded Borel functions on \mathbb{R}^d. A straightforward induction shows that for any x in \mathbb{R}^d,

$E^x[M_t f_0 B_{t_0} \cdots f_k B_{t_k}] = f_0 Q_s(M)(f_1 Q_s(M)(\ldots (Q_s(M) f_k) \ldots))(x)$

Thus $E^x[M_t \mid B_{t_0}, \ldots, B_{t_k}] = E^x[N_t \mid B_{t_0}, \ldots, B_{t_k}]$. It follows that $M_t = N_t$, P^x-a.e. By right continuity, $M_t = N_t$ for all t, P^x-a.e., so Lemma 3.6 is proved.

We now wish to consider in what sense a limit of multiplicative functionals is again a multiplicative functional. The definition of convergence we wish to use is that given in Definition 3.1, stable convergence of stopping time measures. As noted after Definition 3.1, this definition of convergence does not specify the limit uniquely. However, we now show:

Theorem 3.2 Let F^N, F be stopping time measures such that $F^N \rightarrow F$ stably and such that for every n and every $s \geq 0, t \geq 0$

(3.34) $F^N_{t+s} = F^N_t (F^N_s \circ \theta_t)$, P^λ-a.e., where λ is a fixed probability measure with $m \ll \lambda$, $\lambda \ll m$. There exists a multiplicative functional M (satisfying (3.30) and (3.31)) such that $F^N \rightarrow M$ stably. M is unique a.s.

Proof We wish to prove first that for every $s \geq 0, t > 0$,

(3.35) $F_{t+s} = F_t (F_s \circ \theta_t)$, P^λ-a.e.

By right continuity it is enough to prove (3.35) when s is such that
\[
\int F((t+s))d\mu = 0 \quad \text{and} \quad \int F((s))d\mu = 0 \quad \text{(3.35)}
\]
is true if for every \(Y \) in
\(L^1(C,\mathcal{B},\mu) \),
\[
\int YF_{t+s}d\mu = \int YF_t(F_s \circ \theta_t)d\mu, \quad \text{or by the usual density}
\]
argument, if this equality holds for every \(Y = W(V \circ \theta_t) \), where \(W \) is bounded and \(\mathcal{F}_t \)-measurable, and \(V \) is bounded and \(\mathcal{F}_t \)-measurable.

We have, using Lemma 3.4(ii),
\[
\lim_{n \to \infty} \int YF_{t+s}d\mu = \lim_{n \to \infty} \int YF_t(F_s \circ \theta_t)d\mu = \int W(\theta_t) F_t(F_s \circ \theta_t)d\mu = \lim_{n \to \infty} \int W(F^n_t) E_t[B_t[V(F^n_s)]d\mu = \int E[X[V(F^n_s)]Y^n(dx), \quad \text{where} \ Y^n \text{is the}
\]
signed measure on \(\mathbb{R}^d \) defined by
\[
(3.36) \quad \int h d\psi^n = E[\lambda[h \circ B_t W(F^n_t)] \quad \text{for any} \ h \text{bounded Borel on} \mathbb{R}^d.
\]

Let \(\psi \) be the signed measure on \(\mathbb{R}^d \) defined by \(\int h d\psi = E[\lambda[h \circ B_t W_t]] \). By
Remark 3.1 (the case proved in [4]),
\[
(3.37) \quad \|\psi^n - \psi\| \to 0 \quad \text{as} \ n \to \infty.
\]
Clearly we may assume \(\lambda \) is such that we can write \(\psi = gd\lambda \), where \(g \) is
a bounded Borel function on \(\mathbb{R}^d \). Thus \(\int E[X[V(F^n_s)]Y(dx) = E[\lambda[g \circ B_t W(F^n_s)] \). It
then follows from Lemma 3.4(ii) that
\[
(3.38) \quad \int E[X[V(F^n_s)]Y(dx) \to \int E[X[V(F_s)]Y(dx) \quad \text{as} \ n \to \infty.
\]
\[
\int E[X[V(F_s)]Y(dx) = E[\lambda[W(F_t E_t[B_t[V(F_s)] = E[\lambda[YF_t(F_s \circ \theta_t)]]]. \quad \text{Thus, by (3.37) and}
\]
(3.38),
\[
(3.39) \quad \int YF_{t+s}d\mu = \int YF_t(F_s \circ \theta_t)d\mu \quad \text{and (3.35) is proved.}
\]

Having established (3.35), we finish the proof of Theorem 4.2 by showing that for any stopping time measure \(F \), such that (3.35) holds for a
fixed probability \(\lambda \) with \(m \ll \lambda \), we can find a multiplicative functional \(M \)
such that (3.30) and (3.31) hold, and such that \(M = F, P^\nu \)-a.e., for any \(\nu \ll m \).

For any \(\nu \ll m \), and any \(t > 0 \),
\[
(3.39) \quad \int F((t))dP^\nu = 0.
\]
This is proved in the same way as Lemma 3.5, using (3.35) instead of
(3.30).

As another consequence of (3.35), we see easily that for any \(t > 0 \), and
any sequence of positive real numbers \(\varepsilon_k \) with \(\varepsilon_k \downarrow 0 \), we have
(3.40) \(F_{t-\epsilon_k} \circ \theta_{\epsilon_k} \) is almost surely decreasing in \(k \).

In particular \(F_{t-\epsilon_k} \circ \theta_{\epsilon_k} \) has a limit as \(k \to \infty \), almost surely.

Let \(Y \) denote the limit of \(F_{t-\epsilon_k} \circ \theta_{\epsilon_k} \) as \(k \to \infty \). By (3.35), \(Y \geq F_t \), \(P^\lambda \)-a.e..

On the other hand, if \(\nu << m \), we have
\[
\int YdP^\nu = \lim_{k \to \infty} E^\nu [F_{t-\epsilon_k} \circ \theta_{\epsilon_k}] =
\]
\[
\lim_{k \to \infty} E^\nu [F_{t-\epsilon_k}] = \int F_t dP^\nu \text{ by (3.39)}. \]
This proves that if \(\nu << m \), \(t > 0 \),
\[
(3.41) \quad \lim_{k \to \infty} F_{t-\epsilon_k} \circ \theta_{\epsilon_k} = F_t, \quad P^\nu \text{-a.e.}
\]

We now define \(N_t(\omega) \), for \(t > 0 \) and \(\omega \) in \(C \), by
\[
(3.42) \quad N_t(\omega) = \inf \{ F_{t-r} \circ \theta_r : r \text{ rational, } 0 < r < t \}.
\]
It follows easily that for every \(t > 0 \), for every \(s \geq 0 \),
\[
(3.43) \quad N_{t+s} \leq N_t \text{ everywhere}.
\]

For any \(\epsilon_k \) real positive, \(\epsilon_k \downarrow 0 \), we find from (3.40) that for \(t > 0 \),
\[
(3.44) \quad N_t = \lim_{k \to \infty} F_{t-\epsilon_k} \circ \theta_{\epsilon_k} \text{ almost surely, and hence that for any } \nu << m,
\]
\[
(3.45) \quad N_t = F_t, \quad P^\nu \text{-a.e.}
\]

From (3.44) and (3.35), for \(t > 0 \), \(s \geq 0 \),
\[
(3.46) \quad N_{t+s} = N_t F_S \circ \theta_t, \quad \text{almost surely.}
\]

We define \(M_t \), a stopping time measure, by
\[
(3.47) \quad M_t = N_{t+} \text{ for } 0 \leq t < \infty, \quad M_\infty = 1.
\]

For \(t > 0 \), \(N_{t+s+1/k} = N_t F_{S+1/k} \circ \theta_t \) almost surely, by (3.46). Thus \(M_{t+s} = N_t F_S \circ \theta_t \) almost surely, using the right continuity of \(M \) and \(F \). Hence \(M_{t+s} = N_{t+s} \) almost surely, by (3.46) again. This shows that for \(0 < t < \infty \),
\[
(3.48) \quad M_t = N_t \text{ almost surely.}
\]

Fix \(u > 0 \), consider \(t, 0 < t < u \), and let \(s = u - t \). Applying (3.46),
\(N_u = N_t F_{u-t} \circ \theta_t \), almost surely. Letting \(t \uparrow 0 \) through a sequence gives
\(N_u = M_0 N_u \) almost surely, by (3.47) and (3.44). Hence, by (3.47), \(M_r = M_0 M_r \) almost surely for all \(r \geq 0 \). This proves that (3.30) holds for our \(M \), when \(t = 0 \).

When \(t > 0 \), \(M_{t+s} = N_{t+s} = N_t F_S \circ \theta_t \) almost surely by (3.48) and (3.46), and
\(F_S \circ \theta_t = N_S \circ \theta_t = M_S \circ \theta_t \) by (3.45) and (3.48), so (3.30) holds in all cases.
\[M_{t-\varepsilon_k}^\bullet \theta_{\varepsilon_k} = N_{t-\varepsilon_k}^\bullet \theta_{\varepsilon_k} = F_{t-\varepsilon_k}^\bullet \theta_{\varepsilon_k} \] almost surely by (3.48) and (3.45), so (3.31) holds by (3.44) and (3.48). This proves Theorem 4.2.

Although we will not need this fact in the present paper, we note that a multiplicative functional satisfying (3.30) and (3.31) has the strong Markov property:

Lemma 3.7 Let \(M \) satisfy (3.30) and (3.31), and let \(\tau \) be any \(\mathcal{A}_t \)-stopping time. For any \(s \geq 0 \),
\[
M_{\tau+s} = M_\tau (M_s \circ \theta_\tau) \]
almost surely on \(\{ \tau < \infty \} \).

The proof is omitted.

Definition 3.3 Let \(M \) be a multiplicative functional, \(Q_t(M) \) the corresponding sub-Markov semigroup. The resolvent \(R_\alpha(M) \), \(\alpha > 0 \), associated with \(M \) is defined by
\[
R_\alpha(M) = \int_0^\infty e^{-\alpha t} Q_t(M) dt, \quad \text{i.e. } R_\alpha(M) h(x) = \mathbb{E}^x \left[\int_0^\infty e^{-\alpha t} M_t h \circ B_t dt \right].
\]

We note that the usual resolvent equation argument shows that if \(M \) and \(N \) are multiplicative functionals and \(R_\alpha(M) = R_\alpha(N) \) for one \(\alpha > 0 \) then \(R_\beta(M) = R_\beta(N) \) for every \(\beta > 0 \).

We may consider \(Q_t(M) \) and \(R_t(M) \) as defined initially for \(h \) bounded Borel, and then extend to \(h \) in \(L^p(\mathbb{R}^d, m) \), since \(Q_t(M) \) is a contraction for \(1 \leq p \leq \infty \).

Lemma 3.8 Let \(M_n \) and \(M \) be multiplicative functionals. The following statements are equivalent:
(i) \(M_n \to M \) stably as \(n \to \infty \);
(ii) \(R_\alpha(M_n) \to R_\alpha(M) \) weakly on \(L^2(\mathbb{R}^d, m) \) for each \(\alpha > 0 \) as \(n \to \infty \).

Proof Assume (i). Let \(\lambda \) be a probability measure with \(m \ll \lambda, \lambda \ll m \). By lemma 3.5 and Remark 3.1, for any \(t > 0 \),
\[
\| \lambda Q_t(M_n) - \lambda Q_t(M) \| \to 0 \quad \text{as } n \to \infty,
\]
where \(Q_t(M) \) is defined by (3.32).

Hence for any bounded Borel functions \(h \) and \(g \) with compact support,
\[
\int h(Q_t(M_n) - Q_t(M)) g dm \to 0 \quad \text{as } n \to \infty.
\]

Since \(Q_t(M_n) \) and \(Q_t(M) \) are contractions on \(L^2(\mathbb{R}^d, m) \) for all \(t \), (ii) follows.

Conversely, assume (ii). Let \(N \) be a stable limit point of \(M_n \). Then \(R_\alpha(N) = R_\alpha(M) \) on \(L^2(\mathbb{R}^d, m) \). \(Q_t(N) \) and \(Q_t(M) \) are clearly strongly right continuous on \(L^2(\mathbb{R}^d, m) \) as functions of \(t \). \(Q_t(N) = Q_t(M) \) on \(L^2(\mathbb{R}^d, m) \) for all
a.e. t and hence for all t since as functions of t they have the same
Laplace transforms. Hence, by (3.33), $Q_t(N)=Q_t(M)$ for all t, as sub-Markov
operators. Thus $N=M$ by Lemma 3.6, so (i) holds, and Lemma 3.8 is proved.

Definition 3.4 A multiplicative functional M will be called **symmetric**
if the corresponding operators $Q_t(M)$ are symmetric on $L^2(R^d,m)$.

Lemma 3.9 Let M_n be a sequence of symmetric multiplicative
functionals, and let M be a multiplicative functional such that $M_n \to M$
stably. Then M is symmetric.

Proof Let h and g be bounded Borel functions on R^d with compact
support. As noted in (3.52), if $t>0$ then
\[\int hQ_t(M_n)gdm \to \int hQ_t(M)gdm \]
and
\[\int gQ_t(M_n)hdm \to \int gQ_t(M)hdm. \]
It follows at once that $Q_t(M)$ is symmetric
on $L^2(R^d,m)$, so Lemma 3.9 is proved.

It seems to be open whether nonsymmetric multiplicative
functionals (satisfying (3.30) and (3.31)) exist. In any case we have:

Theorem 3.3 Let M_n and M be symmetric multiplicative functionals. The
following statements are equivalent:

(i) $M_n \to M$ stably as $n \to \infty$;

(ii) $R_\alpha(M_n) \to R_\alpha(M)$ strongly on $L^2(R^d,m)$ for each $\alpha>0$ as $n \to \infty$.

Proof If (i) holds, we know by the proof of Lemma 3.8 that for $t>0$
$Q_{2t}(M_n) \to Q_{2t}(M)$ weakly, hence $Q_t(M_n) \to Q_t(M)$ strongly, and (ii) holds. The
converse follows from Lemma 3.8, so Theorem 3.3 is proved.

4. Let μ be a measure on R^d, $d \geq 2$, $\mu \geq 0$, not necessarily finite. Define the
operators $\text{Pot}^+, \text{Pot}^-$ as in section 2 by

\[\text{Pot}^+ \mu(x) = \int k^+(|x-y|)\mu(dy), \quad \text{Pot}^- \mu(x) = \int k^-(|x-y|)\mu(dy), \]

where $k(r) = c_d r^{d-2}$ if $d \geq 2$, and $k(r) = -c_d \log r$ if $d=2$. Let a_d denote the area
of the unit sphere in R^d. Then $c_d = 2/(d-2)a_d$ for $d \geq 3$ and $c_d = 2/a_d$ for $d=2$.

As in section 2, M_2 will denote the space of finite measures μ on R^d
such that $\text{Pot}^+ \mu$ is bounded and continuous on R^d and $\text{Pot}^- \mu$ is finite on R^d.

For any measure μ with $\text{Pot}^+ \mu$ bounded, in particular for μ in M_2,
there exists a continuous additive functional $J(\mu) \geq 0$ such that
$\text{Pot} \mu \circ B_t + J_t$ is a martingale, a particular case of the Doob-Meyer
decomposition theorem for supermartingales (cf. [6], [14]). J_t is
\mathcal{A}_t-measurable for each t, is continuous as a function of t, and is additive in the sense that $J_{t+s} = J_t + J_s \cdot \Theta_t$ a.s. for all $t,s \geq 0$. By [6], 5.2.1, we may in fact take $J(\mu)$ to be perfect, meaning that almost surely, $J_{t+s}(\mu) = J_t(\mu) + J_s(\mu) \cdot \Theta_t$ for all t and all s. For $d \geq 3$, J_t has a finite limit J_∞ such that $E^x[J_\infty(\mu)] = \text{Pot } \mu(x)$ for all x in \mathbb{R}^d. For all d, using the symmetry of Pot, we see from the fact that Pot $\mu + B_t + J_t$ is a martingale that for any probability measure λ with compact support, and any finite stopping times $\tau_1 \leq \tau_2$ P-a.e., if λ_{τ_1} denotes the distribution of B_{τ_1} with respect to P^λ, and $\text{Pot } \lambda_{\tau_1} \geq \text{Pot } \lambda_{\tau_2}$ on \mathbb{R}^d, then

$$\int (\text{Pot } \lambda_{\tau_1} - \text{Pot } \lambda_{\tau_2}) d\mu = E^\lambda[J_{\tau_2}(\mu) - J_{\tau_1}(\mu)].$$

(4.2)

We note that the condition $\text{Pot } \lambda_{\tau_2} \leq \text{Pot } \lambda_{\tau_1}$ is automatically true when $d \geq 3$, so that τ_1, τ_2 can be any finite stopping times in this case. In the $d=2$ case we will have $\text{Pot } \lambda_{\tau_2} \leq \text{Pot } \lambda_{\tau_1}$ when τ_2 is bounded, or when $\tau_2 \leq$ the first exit time of a bounded region. Also, by Fubini's theorem we can extend (4.2) to randomized stopping times.

By [6], 6.3.1 and 4.2.13, for any measure μ in \mathcal{M}_2, and any bounded Borel function q, if we let $\nu = q d\mu$, then

$$J_t(\nu) = \int_{[0,t]} q \circ B_t dJ_s(\mu).$$

(4.3)

Lemma 4.1 Let $K_t(i) : C \to [0,\infty)$ be such that $K_t(i)$ is \mathcal{A}_t-measurable for each t and $i=1,2$. Suppose that for every x in \mathbb{R}^d and $i=1,2$ the following conditions hold P^x-a.e.:

1. $K_t(i)$ is nondecreasing and left continuous,
2. $K_t(i)$ is continuous on the interval where $K_t(i)$ is finite,
3. $K_0(i) = 0$.

Finally, suppose that for every finite stopping time τ, for every x in \mathbb{R}^d

$$E^x[K_{\tau}(1)] = E^x[K_{\tau}(2)].$$

(4.4)

Then for every x in \mathbb{R}^d, P^x-a.e. $K_t(1) = K_t(2)$.

Proof Fix a, $0 \leq a < \infty$. Let $\tau_a = \inf(t: K_t(i) \geq a)$. $\{\tau_a < s\}$ is the union of $\{K_r(i) \geq a\}$ over all r rational, $r < s$, so τ_a is a \mathcal{A}_t-stopping time.

If $t < \tau_a$, clearly $K_t(i) < a$. Hence, if $0 < \tau_a < \infty$ then for every x, P^x-a.e. $K_{\tau_a}(1) \leq a$ by left continuity. If $\tau_a = 0$ the same is clearly true. Thus for
every \(x, P^x \)-a.e. \(K_t(1) \leq a \) for all finite \(t \leq \tau_a \).

Fix \(x \) in \(\mathbb{R}^d \) and a positive number \(n \). Let \(\tau = \tau_\alpha \wedge n \). Then \(K_\tau(1) \leq a \), \(P^x \)-a.e.. Hence \(E^x[K_\tau(1)] < \infty \), so \(E^x[K_\tau(2)] < \infty \).

Let \(Y_t = K_t \wedge \tau(1) - K_t \wedge \tau(2) \). For any \(\mathcal{A}_t \)-stopping time \(\sigma \),
\[
E^x[Y_\sigma] = E^x[K_\sigma \wedge \tau(1)] - E^x[K_\sigma \wedge \tau(2)] = 0 = E^x[Y_0].
\]
It follows easily that \((Y_t, \mathcal{A}_t)\) is a martingale.

Since \(Y_t \) is continuous and has bounded variation, \(Y_t \) must be constant, \(P^x \)-a.e.. Hence \(Y_t = 0 \) for all \(t \), \(P^x \)-a.e.. That is, \(K_t \wedge \tau(1) = K_t \wedge \tau(2) \) for all \(t \), \(P^x \)-a.e.. Thus for every \(n \), \(P^x \)-a.e., if \(t \leq n \) and \(K_t(1) < a \), then \(K_t(1) = K_t(2) \). Since this is true for all finite \(a \), we have \(P^x \)-a.e. that \(K_t(1) \geq K_t(2) \) for every \(t \). Lemma 4.1 then follows by symmetry.

We recall the space \(\mathcal{M}_1 \) defined in section 2: \(\mathcal{M}_1 \) is the space of measures \(\mu \) which can be expressed in the form \(\mu = \nu \gamma \), where \(\nu \) is in \(\mathcal{M}_2 \) and \(\gamma : \mathbb{R}^d \to [0, \infty] \) is Borel. \(\mathcal{M}_1 \subset \mathcal{M}_0 \). As noted in section 2, for every \(\mu \in \mathcal{M}_0 \) there exists \(\mu' \in \mathcal{M}_1 \) with \(\mu \sim \mu' \), in the sense of Definition 2.4.

Lemma 4.2 Let \(D \) be an open set. Let \(\mu_1 \) and \(\mu_2 \) be in \(\mathcal{M}_0 \). The following statements are equivalent:

(i) \(\mu_1 \sim \mu_2(D) \);

(ii) For every bounded open set \(G \subset D \), every stopping time \(\tau \leq \) the first exit time of \(G \), and every probability measure \(\lambda \) on \(G \),

\[
\int (\text{Pot} \lambda - \text{Pot} \lambda_\tau) d\mu = \int (\text{Pot} \lambda - \text{Pot} \lambda_\tau) d\mu_2;
\]

(iii) For every bounded open set \(G \subset D \), every probability measure \(\lambda \) on \(G \) with \(\lambda \ll m \), if \(V \) is a finely open subset of \(G \), and \(h \) is the reduction of \(\text{Pot} \lambda \) onto \(V \) then

\[
\int (\text{Pot} \lambda - h) d\mu = \int (\text{Pot} \lambda - h) d\mu_2;
\]

(iv) \(\mu_1(V) = \mu_2(V) \) for all finely open subsets \(V \) of \(D \).

Proof

(i) \(\Rightarrow \) (ii): \((\text{Pot} \lambda - \text{Pot} \lambda_\tau) \Lambda k = \text{Pot} \lambda \wedge (\text{Pot} \lambda_\tau + k) - \text{Pot} \lambda_\tau \) is nonnegative and bounded, and so is easily seen to be in \(H_0^1(G) \). Thus

\[
\int (\text{Pot} \lambda - \text{Pot} \lambda_\tau) \Lambda k d\mu = \int (\text{Pot} \lambda - \text{Pot} \lambda_\tau) \Lambda k d\mu_2 \text{ for all } k, \text{ and we may let } k \to \infty \text{ to prove (ii)}.
\]

(ii) \(\Rightarrow \) (iii): \(h = \text{Pot} \lambda_\tau \), where \(\tau \) is the first exit time of \(V \).

(iii) \(\Rightarrow \) (iv): Let \(G \) be a bounded open subset of \(D \), \(\lambda \) a probability measure on
\mathbb{R}^d, with $\lambda \ll m$, $\text{Pot } \lambda$ bounded on G, and $\lambda(G^c) = 0$. Let V be a finely open subset of G. Let h be the reduced function of $\text{Pot } \lambda$ on V^c. Let $\alpha > 0$ be fixed. Let $W = \{ \text{Pot } \lambda > \alpha + h \}$. Let g be the reduced function of $\text{Pot } \lambda$ on W^c. W is finely open, so $\int (\text{Pot } \lambda - g) d\mu_1 = \int (\text{Pot } \lambda - g) d\mu_2$. If $\int (\text{Pot } \lambda - g) d\mu_1 = \int W^{\alpha} d\mu_1 = \infty$, then $\mu_1(W) = \mu_2(W) = \infty$, so $\int (g - h) d\mu_1 = \int W^{\alpha} d\mu_1 = \infty$, and

$\int (g - h) d\mu_1 = \int (g - h) d\mu_2$. If $\int (\text{Pot } \lambda - g) d\mu_1 < \infty$, then, subtracting from (4.6), we obtain $\int (g - h) d\mu_1 = \int (g - h) d\mu_2$ again. Since $g = \text{Pot } \lambda \Lambda(\alpha + h)$, we have shown that $\int (\text{Pot } \lambda \Lambda(\alpha + h) - h) d\mu_1 = \int (\text{Pot } \lambda \Lambda(\alpha + h) - h) d\mu_2$, or

$\int (\text{Pot } \lambda - h) \Lambda \alpha d\mu_1 = \int (\text{Pot } \lambda - h) \Lambda \alpha d\mu_2$. By the proof of 1.XI.10 in [12] we can choose our probability λ (with $\text{Pot } \lambda$ even continuous), such that for any finely open subset A of G, if f is the reduced function of $\text{Pot } \lambda$ on A^c then $A = \{ \text{Pot } \lambda > h \}$, up to a polar set. Let $U = \{ \text{Pot } \lambda > h \}, U = V$ up to a polar set. $k((\text{Pot } \lambda - h) \Lambda(1/k)) = (k(\text{Pot } \lambda - h)) \Lambda 1^+ \chi_{U}$, so $\mu_1(U) = \mu_2(U)$. This proves (iv).

(iv)\Rightarrow(i): As mentioned earlier, if G is a bounded open set, any function f in $H^1(G)$ has the property that for any $\epsilon > 0$ there is a set B_ϵ of capacity (relative to G, say) less than ϵ, such that the restriction of f to B_ϵ^c is continuous. We may enlarge B_ϵ to make it fine closed without changing its capacity, f is finely continuous at each point of the complement of the closure of B_ϵ^c, a finely open set. It follows that f on G is fine continuous at each point of a finely open set in G whose complement is polar. It then follows that the inverse image under f of any open set differs from a finely open set by a polar set. Thus

$\int f^2 d\mu_1 = \int_{[0,\infty)} \mu_1(\{f^2 > t\}) dt = \int_{[0,\infty)} \mu_2(\{f^2 > t\}) dt = \int f^2 d\mu_2$. This proves Lemma 4.2.

Remark 4.1 The proof that (iii)\Rightarrow(iv) shows that following fact: let $\mu_1, \mu_2 \in \mathcal{M}_0$ and let U be a finely open set, such that for any probability λ on \mathbb{R}^d with $\lambda \ll m$ and $\text{Pot } \lambda$ bounded, and any finely open subset V of U, we have $\int (\text{Pot } \lambda - h) d\mu_1 = \int (\text{Pot } \lambda - h) d\mu_2$, where h denotes the reduction of $\text{Pot } \lambda$ onto V^c. Then $\mu_1 = \mu_2$ on all finely open subsets of U.

We shall now show how to associate an additive functional with any measure in \mathcal{M}_1. Given $\mu \in \mathcal{M}_1$, let μ be expressed as $q d\nu$, where ν is in \mathcal{M}_2 and
q: \(R^d \to [0, \infty)\) is Borel. Let \(K(\mu)\) be defined by

\[
K_t(\mu) = \int_{[0,t]} q_0 B_s dJ_s(\nu).
\] (4.7)

We see that \(K_t(\mu): \mathcal{B} \to [0, \infty)\) is \(\mathcal{B}_t\)-measurable for each \(t\), and for every \(x \in R^d\), \(P^x\)-a.e.: \(K_1(\mu)\) is nondecreasing and left continuous, \(K_0(\mu)\) is continuous on the interval where \(K_0(\mu)\) is finite, and \(K_0(\mu)=0\). Furthermore, \(K_0(\mu)\) is additive, and also: for every \(t>0\), for any sequence \(t_k \to 0\) of real numbers such that \(t_k \to 0\), we have for every \(x \in R^d\), \(P^x\)-a.e. that

\[
k_t(\mu) = \lim_{k \to \infty} K_{t-t_k}(\mu) \circ \theta_{t_k}.
\] (4.8)

We will regard two functionals as being the same if for every \(x \in R^d\), \(P^x\)-a.e. the functionals agree for all time. In this sense we have the following lemma:

Lemma 4.3 The functional \(K(\mu)\) defined by (4.7) is independent of the representation \(\mu = q d\nu\) chosen for \(\mu\). Furthermore, if \(\mu_1 \sim \mu_2\) then \(K(\mu_1) = K(\mu_2)\). Conversely, if \(K(\mu_1) = K(\mu_2)\) then \(\mu_1 \sim \mu_2\).

Proof Let \(\mu = q d\nu_1 = q d\nu_2\). Let \(\lambda\) be any probability measure on \(R^d\), \(\tau\) any finite stopping time such that \(\text{Pot } \lambda \leq \text{Pot } \lambda\). For all \(n\), by (4.2) and (4.3)

\[
\int (\text{Pot } \lambda - \text{Pot } \lambda \OD \lambda_n) d\nu = E^\lambda \left[\int_{[0, \tau]} \{q_i \lambda_n\} B_s dJ_s(\nu_i) \right].
\] (4.9)

Letting \(n \to \infty\), we see that

\[
\int (\text{Pot } \lambda - \text{Pot } \lambda \OD \lambda) d\mu = E^\lambda \left[\int_{[0, \tau]} q_0 B_s dJ_s(\nu_i) \right].
\] (4.10)

For any finite stopping time \(\tau\) whatsoever, it then follows that

\[
E^\lambda \left[\int_{[0, \tau]} q_0 B_s dJ_s(\nu_i) \right] = E^\lambda \left[\int_{[0, \tau]} q_2 B_s dJ_s(\nu_2) \right].
\] By Lemma 4.1,

\[
\int_{[0, \tau]} q_i B_s dJ_s(\nu_i), i=1,2 \text{ defines the same functional, which is now unambiguously denoted by } K(\mu). \text{ By } (4.10)
\]

\[
\int (\text{Pot } \lambda - \text{Pot } \lambda \OD \lambda) d\mu = E^\lambda \left[K_\tau(\mu) \right] \text{ for any stopping time } \tau \text{ such that } \text{Pot } \lambda \leq \text{Pot } \lambda.
\] (4.11)

Suppose now \(\mu_1 \sim \mu_2\). Let \(x \in R^d\) and let \(\lambda\) be any finite stopping time. Let \(G\) be any bounded open set, and let \(\sigma\) be the first exit time of \(G\). Then by (4.11) and Lemma 4.2

\[
\int (\text{Pot } \lambda - \text{Pot } \lambda \OD \lambda \OD \sigma) d\mu_i = E^\lambda \left[K_\tau(\lambda \OD \sigma)(\mu_i) \right] \text{ for } i=1,2, \text{ where } \lambda = \delta_x.
\] (4.12)
Letting G expand to ∞, we see that $E^X[K_{\tau}(\mu_1)]=E^X[K_{\tau}(\mu_2)]$. Thus Lemma 4.1 applies again to show that $K(\mu_1)=K(\mu_2)$.

Finally, let μ_1,μ_2 be in \mathcal{M}_1, such that $K(\mu_1)=K(\mu_2)$. Let G be a bounded open set, λ a probability on G, and τ a stopping time the first exit time of G. By (4.11), $\int (\operatorname{Pot} \lambda - \operatorname{Pot} \lambda_{\tau}) d\mu_1 = \int (\operatorname{Pot} \lambda - \operatorname{Pot} \lambda_{\tau}) d\mu_2$ and thus $\mu_1 \sim \mu_2$ by Lemma 4.2. This proves Lemma 4.3.

Lemma 4.4 For every $\mu \in \mathcal{M}_1$, $K_{t+}(\mu)$ defines an additive functional.

Proof For every $s>0$, $t \geq 0$, for every ε, $0 < \varepsilon < s$, for every $x \in \mathbb{R}^d$,

\begin{equation}
K_{t+s}(\mu) = K_{t+}(\mu) + K_{s-}(\mu) \cdot \theta_\varepsilon \cdot \theta_t, \; P^X - \text{a.e.}
\end{equation}

Letting $\varepsilon = \varepsilon_k \downarrow 0$, by (4.8),

\begin{equation}
K_{t+s}(\mu) = K_{t+}(\mu) + K_s(\mu) \cdot \theta_t, \; P^X - \text{a.e.}
\end{equation}

Letting $s \downarrow 0$ proves Lemma 4.4.

Remarks:

(a) Clearly, for every $x \in \mathbb{R}^d$, since $K_{0+}(\mu) = K_{0+}(\mu) + K_{0+}(\mu)$, $P^X - \text{a.e.}$, either $K_{0+}(\mu) = \infty$, $P^X - \text{a.e.}$, or $K_{0+}(\mu) = 0$, $P^X - \text{a.e.}$ (We recall that \mathcal{G}_0 is trivial a.s.)

(b) Let $t > 0$, $t_k > 0$, $t_k \downarrow 0$. For large k

\begin{equation}
K_{t}(\mu) = K_{t_k}(\mu) + K\left(t - t_k\right), \mu \cdot \theta_{t_k}, P^X - \text{a.e.}
\end{equation}

As $k \to \infty$, clearly $K\left(t - t_k\right), \mu \cdot \theta_{t_k}$ increases to a limit, $P^X - \text{a.e.}$ Thus we have

\begin{equation}
K_{t+}(\mu) = K_{0+}(\mu) + \lim_{k \to \infty} K\left(t - t_k\right), \mu \cdot \theta_{t_k}, P^X - \text{a.e.}
\end{equation}

But $\lim_{k \to \infty} K\left(t - t_k\right), \mu \cdot \theta_{t_k} \geq \lim_{k \to \infty} K\left(t - t_k\right), \mu \cdot \theta_{t_k} = K_t(\mu) \geq K_{0+}(\mu)$. So whether $K_{0+}(\mu) = 0$ or $K_{0+}(\mu) = \infty$, we have

\begin{equation}
K_{t+}(\mu) = \lim_{k \to \infty} K\left(t - t_k\right), \mu \cdot \theta_{t_k}, P^X - \text{a.e.}
\end{equation}

Now we can define the multiplicative functional $M(\mu)$ associated with $\mu \in \mathcal{M}_1$ by

\begin{equation}
M_t(\mu) = \exp(-K_{t+}(\mu)).
\end{equation}

Clearly (3.30) and (3.31) hold, because of Lemma 4.4 and equation (4.17).

Lemma 4.3 gives at once:

Theorem 4.1 Let μ_1 and μ_2 be in \mathcal{M}_1. Then $\mu_1 \sim \mu_2$ if and only if $M(\mu_1) = M(\mu_2)$.

Because of Theorem 4.1, we can define $M(\mu)$ for $\mu \in \mathcal{M}_0$ by $M(\mu) = M(\nu)$,
where \(\nu \in \mathcal{M}_1 \) and \(\nu \sim \mu \).

We note that \(M(\mu) \) has been defined in terms of \(\mu \) by a probabilistic construction. As in section 3, we can then define the resolvent \(R_\lambda(M(\mu)) \) corresponding to the semigroup associated with \(M(\mu) \). At the same time, we can consider the resolvent \(R_\lambda(\mu) \) defined by the variational problem discussed in section 2. We now prove:

Theorem 4.2 Let \(\mu \) be in \(\mathcal{M}_2 \). Let \(T \) be the randomized stopping time corresponding to \(M(\mu) \). Then for any \(\lambda > 0 \), \(R_\lambda(\mu) = R_\lambda(M(\mu)) \).

Proof As usual we may take \(\mu \in \mathcal{M}_1 \). Let \(\mu \) be expressed as \(\mu = q \nu \), where \(\nu \in \mathcal{M}_2 \) and \(q : \mathbb{R}^d \to [0, \infty] \) is Borel. Let \(\nu_n = (q \wedge n) \nu \). Then \(\nu_n \uparrow \mu \), so

\[
R_\lambda(\mu_n) \to R_\lambda(\mu) \text{ strongly, by Theorem 2.1.}
\]

Also \(M_t(\mu_n) = \text{exp}(-K_t(\mu_n)) \) decreases pointwise to \(\text{exp}(-K_t(\mu)) = M_{t^-}(\mu) \), so as a random measure \(M(\mu_n) \) converges weakly to \(M(\mu) \) on \([0, \infty]\), pointwise for each \(\omega \). Thus

\[
P^\nu \times M(\mu_n) \to P^\nu \times M(\mu) \text{ weakly for any probability measure } \nu, \text{ so in particular } M(\mu_n) \to M(\mu).\]

Thus \(R(M(\mu_n)) \to R(M(\mu)) \) strongly, by Theorem 3.3. Hence it is enough to show \(R_\lambda(\mu) = R_\lambda(M(\mu)) \) for \(\mu \in \mathcal{M}_2 \).

Accordingly, let \(\mu \) be a measure in \(\mathcal{M}_2 \). We must show that

\[
R_\lambda(\mu) = R_\lambda(M(\mu)).
\]

Let \(\nu_k = \mu P_{1/k} \), where \(P_t \) is the usual Brownian motion semigroup. The usual arguments concerning energy show that for any \(x \in \mathbb{R}^d \),

\[
E^\nu \left[(J_t(\nu_k) - J_t(\mu))^2 \right] \to 0 \text{ as } k \to \infty.
\]

Let \(\tilde{k}_j \) be any subsequence. We can find a subsequence \(k_i \) of \(\tilde{k}_j \), such that

\[
J_t(\nu_{k_i}) \to J_t(\mu) \text{ pointwise } P^\nu \text{-a.e., for all rational } t.
\]

Thus as a measure \(M(\nu_{k_i}) \) converges weakly to \(M(\mu) \) on \([0, \infty]\), for \(P^\nu \)-a.e. \(\omega \).

Hence \(P^\nu \times M(\nu_{k_i}) \) converges weakly to \(M(\mu) \). Since \(\tilde{k}_j \) was any subsequence of the original sequence, we see that

\[
P^\nu \times M(\nu_k) \to P^\nu \times M(\mu) \text{ weakly, for all } x \in \mathbb{R}^d.
\]

In particular we have shown that \(M(\nu_k) \to M(\mu) \), so \(R_\lambda(M(\nu_k)) \to R_\lambda(M(\mu)) \) strongly. By [8], Proposition 4.12, \(\nu_k \) \(\sigma \)-converges to \(\mu \), so by theorem 2.1, \(R_\lambda(\nu_k) \to R_\lambda(\mu) \) strongly. Thus it is sufficient to consider \(\mu \) in \(\mathcal{M}_2 \) such that \(\mu \) has a \(C^\infty \) density with respect to Lebesgue measure. In this case both \(R_\lambda(\mu) \) and \(R_\lambda(M(\mu)) \) are defined by the same classical differential equation, so Theorem 4.2 is proved.

Corollary For any open set \(D \), let \(\sigma \) be the last exit time of \(D \). Let \(M^D(\mu) \)
be the multiplicative functional corresponding to \(T(\mu) \Lambda \sigma \). Then for any \(\lambda > 0, R^D_\lambda (\mu) = R_\lambda (M^D(\mu)) \).

Proof The same argument used in the proof of Theorem 4.2 can be used again. Or by Proposition 2.2 and the method of example 4.1 below we can just apply Theorem 4.2 to the measure \(\mu^\infty_E \), where \(E = D^C \).

Theorem 4.3 A sequence \(\mu_n \in M_0 \) \(\gamma \)-converges if and only if the corresponding sequence \(M(\mu_n) \) converges stably.

Proof By Theorem 2.1, \(\mu_n \) \(\gamma \)-converges if and only if the resolvents \(R_\lambda (\mu_n) \) converge strongly. \(M(\mu_n) \) converges if and only if \(R_\lambda (M(\mu_n)) \) converges strongly by Theorem 3.3. Since \(R_\lambda (\mu_n) = R_\lambda (M(\mu_n)) \) by Theorem 4.2, the result is proved.

Remark 4.2 Since \(\gamma \)-convergence and stable convergence are now linked, we see that the Corollary to Lemma 3.3 gives a probabilistic proof of Theorem 2.1.

Example 4.1 Let \(K \) be any Borel set in \(R^d \), \(d \geq 3 \). Let \(\lambda \) be a probability, \(\lambda \ll m, m \ll \lambda \). Let \(\tau \) be the first hitting time of \(K \), and let \(\nu \) denote the distribution of \(B_\tau \) on \(\{ \tau < \infty \} \) with respect to \(P^\lambda \), i.e. \(\nu \) is the swept measure of \(\lambda \) on \(K \).

Then \(\infty \nu = \infty_K \), and \(M(\infty \nu) \) is the stopping time measure for \(\tau \), where \(\infty_K \) is given by Definition 2.2, and \(\infty \nu (A) = \infty \) if \(\nu (A) > 0 \), \(\infty \nu (A) = 0 \) otherwise.

Proof Clearly it does not change \(\infty \nu \) if we replace \(\lambda \) by any probability which is mutually absolutely continuous with respect to \(\lambda \). Thus without loss of generality we assume that \(\lambda \) has a bounded density with respect to \(m \). Then \(\nu \leq \text{Pot } \lambda \) is bounded. Let \(\sigma = \text{inf}(t: J_t (\nu) > 0) \). We claim:

(a) \(\sigma = \tau \), \(p^\lambda \)-a.e., for every \(x \in R^d \), and
(b) \(\nu (V) > 0 \) for any finely open set \(V \) such that \(V \cap K \) is not polar.

Proof of (a). \(\text{Pot } \lambda = \text{Pot } \lambda \tau \Lambda_t \), quasi-everywhere on \(K \), for all \(t \). Thus, by (4.2),

\[
(4.22) \quad E^\lambda [J_{\tau \Lambda_t} (\nu)] = 0 \quad \text{for all } t, \text{ so }
\]

\[
(4.23) \quad E^\lambda [J_\tau (\nu)] = 0.
\]

Hence \(J_\tau (\nu) = 0, p^\lambda \)-a.e., so \(\tau \leq \sigma, p^\lambda \)-a.e..

Let \(\psi \) denote the distribution of \(B_\sigma \) on \(\{ \sigma < \infty \} \) with respect to \(P^\lambda \).

Then \(\text{Pot } \nu \geq \text{Pot } \psi \). By (4.2),

\[
\int (\text{Pot } \lambda - \text{Pot } \lambda \tau \Lambda_\sigma) d\nu = E^\lambda [J_{\tau \Lambda_\sigma} (\nu)] = 0 \quad \text{for all } t, \text{ so } \int (\text{Pot } \lambda - \text{Pot } \psi) d\nu = 0.
\]
Thus \(\text{Pot} \psi = \text{Pot} \lambda \geq \text{Pot} \nu \), \(\nu \)-a.e. Hence by the domination principle, \(\text{Pot} \psi \geq \text{Pot} \nu \). Thus \(\text{Pot} \psi = \text{Pot} \nu \). Since \(E^\lambda [(\sigma - \tau) \chi_{\{\tau < \infty\}}] = \int (\text{Pot} \nu - \text{Pot} \psi) \, dm = 0 \), this proves \(\tau = \sigma \), \(P^\lambda \)-a.e.. Since \(\tau = \lim_{t \downarrow 0} (t + \tau \circ \theta_t) \) and \(\sigma = \lim_{t \downarrow 0} (t + \sigma \circ \theta_t) \), and \(\tau \circ \theta_t = \sigma \circ \theta_t \), \(P^\lambda \)-a.e., for every \(x \in \mathbb{R}^d \), (a) is proved.

Proof of (b). Let \(V \) be finely open. As noted in the proof of Lemma 4.2, we can find measures \(\rho_1, \rho_2 \) such that \(\text{Pot} \rho_1 \) is bounded and continuous, \(\text{Pot} \rho_1 \geq \text{Pot} \rho_2 \), and \(U = \{ \text{Pot} \rho_1 > \text{Pot} \rho_2 \} \) differs from \(V \) by a polar set. Let \(\Phi_i \) be the swept measure of \(\rho_i \) on \(K \). Then \(\text{Pot} \Phi_1 \geq \text{Pot} \Phi_2 \). Let

\[
W = \{ \text{Pot} \Phi_1 > \text{Pot} \Phi_2 \}. \text{ Then } W \cap K = V \cap K \text{ up to a polar set. } \int (\text{Pot} \Phi_1 - \text{Pot} \Phi_2) \, d\nu = \int (\text{Pot} \Phi_1 - \text{Pot} \Phi_2) \, d\lambda. \text{ } W \text{ is finely open, so } \lambda(W) > 0. \text{ Thus } \nu(W \cap K) > 0. \text{ This proves (b). (a) and (b) clearly imply the result.}

A similar construction in \(\mathbb{R}^2 \) shows that \(M(\infty_K) \) is the first hitting time of \(K \) in this case also.

5. In this section we shall illustrate the earlier results by proving some facts relating to Theorem 5.10 of [8].

Lemma 5.1 Let \(\mu_n \) and \(\nu_n \) be two sequences in \(\mathcal{M}_0 \) such that \(\mu_n \) \(\mathcal{Y} \)-converges to \(\mu \) and \(\nu_n \) \(\mathcal{Y} \)-converges to \(\nu \). Let \(U \) be a finely open set in \(\mathbb{R}^d \), \(U \) bounded if \(d = 2 \). Suppose that \(\mu_n = \nu_n \) on all finely open subsets of \(U \). Then \(\mu = \nu \) on all finely open subsets of \(U \).

Proof We may rephrase the lemma as follows: let \(\mu_n, \mu \in \mathcal{M}_0 \), such that \(\mu_n \mathcal{Y} \)-converges to \(\mu \). Let \(U \) be a finely open set in \(\mathbb{R}^d \), \(U \) bounded if \(d = 2 \). Let \(\nu_n = \chi_U \, d\mu_n \), and let \(\psi \) be any \(\mathcal{Y} \)-limit point of \(\nu_n \). Then \(\psi = \mu \) on finely open subsets of \(U \).

Replacing \(\mu_n \) and \(\mu \) by equivalent measures, we may assume that \(\mu_n, \mu \in \mathcal{M}_1 \). Let \(M(n) = M(\mu_n), \text{ } M = M(\mu), \text{ } N(n) = M(\nu_n), \text{ } N = M(\psi) \). By relabelling, assume \(N(n) \rightarrow N \) stably. Let \(\tau \) be the first exit time of \(U \). Fix \(t > 0 \), and let \(Y = \chi_{\{\tau > t\}} \). Let \(\lambda \) be any probability measure with \(\lambda \ll m \). By Lemma 3.5, for \(s > 0 \), \(M(s) = 0 \) and \(N(s) = 0 \), \(P^\lambda \)-a.e., and hence, by Lemma 3.4(ii), for any \(\lambda \in L^1(\mathbb{R}^d \times \mathbb{R}^d) \),

\[
\int YH_X\{0,s\} \, d(P^\lambda \times M(n)) \rightarrow \int YH_X\{0,s\} \, d(P^\lambda \times M), \text{ and } \int YH_X\{0,s\} \, d(P^\lambda \times N(n)) \rightarrow \int YH_X\{0,s\} \, d(P^\lambda \times N).
\]
Since $M_u(n)=N_u(n)$ for $u<\tau$, we have, for $0<s\leq t$,

$$\int YHX_{[0,s]}d(\mu) = \int YHX_{[0,s]}d(\lambda).$$

It follows that $M_s=N_s$, $P\lambda.a.e.$, on $\{\tau>t\}$, for $0<s\leq t$. Hence $M_s=N_s$, $P\lambda.a.e.$, on $\{\tau>s\}$. Thus $K_s(\mu)=K_s(\lambda)$ for $0<s<\tau$, in the notation of section 3. Hence $K_s(\mu)=K_s(\lambda)$ for $0\leq s\leq \tau$. It follows from (4.11) that for every stopping time $\sigma\leq \tau$, such that

$$\text{Pot } \lambda_\sigma \leq \text{Pot } \lambda, \int (\text{Pot } \lambda - \text{Pot } \lambda_\sigma) \, d\mu = \int (\text{Pot } \lambda - \text{Pot } \lambda_\sigma) \, d\lambda.$$

Hence, by lemma 4.2, $\mu=\lambda$ on any finely open subset of U, so Lemma 5.1 is proved.

Definition 5.1 For any measure $\mu \in \mathcal{M}_0$, the set of finiteness $W(\mu)$ for μ is the union of all finely open sets V such that $\mu(V)<\infty$.

Lemma 5.2 Let μ_n, μ be in \mathcal{M}_0, such that $\mu_n \gamma$-converges to μ. Let $W=W(\mu)$. Let A be a Borel set in \mathbb{R}^d such that $\mu(fine-A)=0$. Let U be the fine-interior of A. Suppose that $(fine-A \cap W)$ and $(fine-A - (fine-A \cap W)) \cap W^C$ are polar. Let $\nu_n=\chi_A d\mu_n$, $\nu=\chi_A d\mu$. Then $\nu_n \gamma$-converges to ν.

Proof Let $G=fine-interior of A^C$. Let $\psi_n=\chi_A d\mu_n$, $\psi=\chi_A d\mu$. Let ψ, λ be any γ-limit points of ν_n, ψ_n, respectively. By Lemma 5.1, $\nu \leq \psi$ and $\Phi \leq \lambda$ on all finely open sets. Also, by Lemma 5.1, since $\chi_G d\psi$ is the limit of $\chi_G d\nu_n$ on finely open subsets of G, $\psi(G)=0$. Similarly $\lambda(U)=0$.

Since $\psi_n + \psi_n - \mu_n \gamma$-converges to μ, we must have $\psi + \lambda = \mu$ on all finely open sets. It follows that $\psi=\nu$ and $\lambda=\Phi$ on all finely open subsets of W.

Now let S be any finely open set. Let $Z=S-((fine-A) \cap (fine-W) \cup (fine-A - fine-A \cap W) \cap W^C)$. Let $x \in Z$. We consider four cases. Case (i): $x \in U$. Then $\nu(ZU)=\psi(ZU)$ by Lemma 5.1. Case (ii): $x \in G$. Then $\nu(ZG)=\psi(ZG)=0$. Case (iii): $x \in W$. Then $\nu(ZW)=\psi(ZW)$. The remaining possible case is $x \not\in fine-A$, not in fine-closure W. Let D be a finely open set, $D \subseteq Z$, $x \in D$, such that $DN=W=\emptyset$. $DN=\emptyset$, so $\nu(D)=\mu(DN)=0=\psi(DN)$. We have shown that in every case, x is contained in a finely open subset D of Z with $\nu(D)=\psi(D)$. Since the fine topology has the quasi-Lindelof property, and ν and ψ are in \mathcal{M}_0, $\nu(Z)=\psi(Z)$, so $\nu(S)=\psi(S)$. Thus $\nu=\psi$, and Lemma 5.2 is proved.

As a corollary, we see that if μ is Radon, so that $W^C=\emptyset$, then $\nu_n \gamma$-converges to ν whenever $\mu(fine-A)=0$, in particular when $\mu(A)=0$. This is a special case of a more general criterion obtained in [6], section 5.
For a general $\mu \in M_0$, we note that the condition that
$(\text{fine-}\partial A - \text{fine-}\partial U) \cap W^C$ be polar is trivially satisfied when A is the fine
closure of its fine interior, for example when A is an open or closed ball.

If μ happens to be radially symmetric, then W is a union of open
annuli, and ∂W is a countable union of spheres. The hypothesis of Lemma
5.2 is then especially easy to check.

6. In this section we give some results relating to the probabilistic
solution of the μ-Dirichlet problem.

Let $\mu \in M_2$. Let M denote $M(\mu)$, and let T denote the randomized
stopping time corresponding to M. For brevity we will often write
$M(\omega, dt)=-dM_t$. (The measure $-dM_t$ thus has some mass at $t=\infty$.) Let τ be a
stopping time, $\tau \leq$ the first exit time of some bounded set. Let ν be any
probability measure on \mathbb{R}^d, and let λ denote $\nu_{\tau \wedge T}$, the distribution of
$B_{\tau \wedge T}$ with respect to $P^{\nu \times m_1}$. Thus λ is that probability measure such that
for any bounded Borel function h on \mathbb{R}^d,

$$
(6.1) \quad \int h d\lambda = \int h \circ B_{\tau \wedge T} d(P^{\nu \times m_1}) = E^{\nu}\left[- \int_{[0, \infty]} h \circ B_{\tau \wedge t} dM_t \right]
$$

Let ψ denote the distribution of B_{τ} on $\{T > \tau\}$ with respect to $P^{\nu \times m_1}$.
That is, for any bounded Borel function h on \mathbb{R}^d,

$$
(6.2) \quad \int h d\psi = \int_{\{T > \tau\}} h \circ B_{\tau} d(P^{\nu \times m_1}) = E^{\nu}\left[h \circ B_{\tau} m_\tau \right].
$$

Clearly

$$
(6.3) \quad \int h d\lambda = E^{\nu}\left[- \int_{[0, \tau]} h \circ B_{\tau} dM_t \right] + \int h d\psi.
$$

Lemma 6.1 Under the preceding assumptions,

$$
(6.4) \quad \lambda = \text{Pot}(\nu - \lambda) d\mu + \psi.
$$

Proof Let $J_t = J_t(\mu)$, so that $M_t = \exp(-J_t)$. Then $dM_t = -\exp(-J_t)dJ_t = -M_t dJ_t$.

For any bounded Borel function h on \mathbb{R}^d,

$$
E^{\nu}\left[- \int_{[0, \tau]} h \circ B_t dM_t \right] =
$$

$$
E^{\nu}\left[\int_{[0, \tau]} h \circ B_t M_t dJ_t \right] = E^{\nu}\left[\int_{[0, \tau]} M_t dL_t \right], \text{ where } L_t = J_t(\rho), \rho = h d\mu.
$$

$$
E^{\nu}\left[\int_{[0, \tau]} M_t dL_t \right] = E^{\nu}\left[\int_{[0, \infty]} M_t dL_{\tau \wedge t} \right] = E^{\nu}\left[- \int_{[0, \infty]} L_{\tau \wedge t} dM_t \right] =
$$

$$
\int L_{\tau \wedge T} d(P^{\nu \times m_1}) = \int \text{Pot}(\nu - \lambda) dp.
$$

Equation (6.4) follows at once, so Lemma 6.1 is proved.

Lemma 6.2 Let $\mu \in M_2$. Let D be open in \mathbb{R}^d, $u \in H^1_{1, \text{loc}}(D)$, u μ-harmonic on D.
Let τ be a stopping time, $\tau \leq$ the first exit time of some compact subset of D. Then for quasi every $x \in D$,

$$u(x) = E^x[u \cdot B_{\tau} M_{\tau}]$$

(6.5)

Proof By Proposition 2.6, u can be made continuous on D by changing the values of u on a polar set. Thus we assume that u is continuous.

For any v which is C^∞ with compact support in D, since u is μ-harmonic we have

$$\int u(-\Delta v) dm = -\int uv d\mu$$

(6.6)

Let ν and λ be probability measures with compact support in D, such that $\text{Pot} \nu = \text{Pot} \lambda$ outside a compact subset of D. Let ϕ be C^∞ with compact support on R^d, ϕ nonnegative and radially symmetric, $\int \phi dm = 1$.

Define ϕ_δ for $\delta > 0$ by $\phi_\delta(x) = \phi(x/\delta)/\delta^d$. Then for δ small, $\nu_\delta \equiv \phi_\delta^* v$ and $\lambda_\delta \equiv \phi_\delta^* \lambda$ have compact support in D, and $\text{Pot} \nu_\delta = \text{Pot} \lambda_\delta$ outside a compact subset of D. Letting $v = \text{Pot}(\nu_\delta - \lambda_\delta)$ in (6.6),

$$\int uv_\delta - \int ud\lambda_\delta = -\int u \text{Pot}(\nu_\delta - \lambda_\delta) d\mu$$

(6.7)

Letting $\delta \to 0$, since $\nu_\delta \to v$, $\lambda_\delta \to \lambda$ weakly, we have $\int uv - \int ud\lambda$ as the limit of the left side of (6.7).

$\text{Pot} \nu_\delta \uparrow \text{Pot} v$, $\text{Pot} \lambda_\delta \uparrow \text{Pot} \lambda$ pointwise, and $\int \text{Pot} v d\mu < \infty$,

$$\int \text{Pot} v d\mu < \infty$$

since $\text{Pot} \mu$ is bounded. Since $|u|$ is bounded, we have

$$-\int u \text{Pot}(v - \lambda) d\mu$$

as the limit of the right side of (6.7), by the dominated convergence theorem. Thus

$$\int uv - \int ud\lambda = -\int u \text{Pot}(v - \lambda) d\mu$$

(6.8)

In particular, when $v = \delta_x$, and λ is defined by (6.1), for a given τ, (6.8) holds. By Lemma 6.1 we then have $\int uv = \int u\psi$, where ψ is defined by (6.2), and thus (6.5) holds, proving Lemma 6.2.

Lemma 6.3 Let $\mu \in M_2$. Let $M = M(\mu)$. Let D be open in R^d, $v \in H^1_{\text{loc}}(D) \cap L^2_{\text{loc}}(D,\mu)$. Suppose that for any open ball K with compact closure in D,

$$u(x) = E^x[u \cdot B_{\tau} M_{\tau}]$$

(6.10) for m-a.e. $x \in K$, where $\tau = \tau_K$ denotes the first
exit time of K.

Then u is μ-harmonic on D.

Proof Let K be fixed. Let w be the solution to the μ-Dirichlet problem on K with data u on ∂K. Let K_n be a sequence of balls with the same center as K such that $K_n \subset K$ and $K_n \uparrow K$. Let τ_n be the first exit time of K_n. Then

$$\tau_n \uparrow \tau.$$ Define $\psi_{x,n}(n) = \int h d\psi_x = E^X[\mu \circ B_{\tau, M_{\tau}}}].$

It is easy to see that for each $x \in K$, $\int w d\psi_{x,n}(n) \to \int w d\psi_x$ as $n \to \infty$. Indeed, we see that $\psi_{x,n}(n)$ converges to ψ_x in energy norm, and so $\psi_{x,n}(n) \to \psi_x$ in $H^{-1}(R^d)$. But

$$\int w d\psi_{x,n}(n) = w(x) \text{ for q.e. } x, \text{ by Lemma 6.2, while } \int w d\psi_x = u(x) \text{ for } m-a.e. x$$

by (6.10). Thus $w = u$, $m-a.e.$ Thus $w = u$ q.e., and Lemma 6.3 is proved.

Theorem 6.1 Let $\mu \in M_0$, $M = M(\mu)$. Let D be open in R^d. Let u be in $H^1_{\text{loc}}(D) \cap L^2_{\text{loc}}(D, \mu)$. The following statements are equivalent:

(i) u is locally μ-harmonic on D;

(ii) if τ is a stopping time, $\tau \leq \text{the first exit time of a compact subset } W \text{ of } D$, then for quasi every $x \in D$, if Pot $\lambda \in H^1_{\text{loc}}(D)$, where λ is the distribution of B_{τ} with respect to P^X, then

$$\int w d\psi_{x,n}(n) = w(x) \text{ for q.e. } x, \text{ by Lemma 6.2, while } \int w d\psi_x = u(x) \text{ for } m-a.e. x$$

by (6.10). Thus $w = u$, $m-a.e.$ Thus $w = u$ q.e., and Lemma 6.3 is proved.

(ii) for every $\nu \in M_2$ with $\nu(D^c) = 0$, and every open ball K with compact closure in D,

$$\int ud\psi = E^\nu[\mu \circ B_{\tau, M_{\tau}}}].$$

where $\tau = \tau_K$, the first exit time of K.

Proof (i)\Rightarrow(ii): Let W, τ be given. Let U be a finite union of open balls with compact closure in D, such that $W \subset U$. We may assume $\mu \in M_1$. There exist measures $\mu_n \in M_2$ with $\mu_n \uparrow \mu$.

Let u_n^\pm, $n = 1, 2, 3$, be the solutions to the μ_n-Dirichlet problem on U with fixed data u and $\partial \Omega$. By Lemma 6.2, if $M(n) = M(\mu_n)$, for quasi every x in U we have

$$u_n^\pm(x) = E^\nu[\mu \circ B_{\tau, M_{\tau}}}].$$

By Proposition 2.7, $u_n^+ - u_n^-$ converges to u q.e. on U. Consider $x \in U$ such that $u_n^+(x) - u_n^-(x) \to u(x)$ and such that (6.20) holds for all n. Suppose $\text{Pot } \lambda$ is in $H^1_{\text{loc}}(D)$, where λ is the distribution of B_{τ} with respect to
\(P^x \). Then \(E^x \left[u^\pm \circ B_{\tau} M_{\tau}(1) \right] < \infty \). Since \(M_{\tau}(n) \uparrow M_{\tau} \) as \(n \to \infty \), the dominated convergence theorem gives \(\lim_{n \to \infty} E^x \left[u^\pm \circ B_{\tau} M_{\tau}(n) \right] = E^x \left[u^\pm \circ B_{\tau} M_{\tau} \right] \). Thus (ii) holds.

(iii) \(\Rightarrow \) (i): Given \(K, \tau = \tau_K \), define \(w(x) = E^x \left[u \circ B_{\tau} M_{\tau} \right] \) for every \(x \in \mathbb{D} \). Let \(A = (w > u) \). If \(A \) is not polar, we can find \(\nu \geq M_2 \) with compact support in \(K \) and \(\nu(A^c) = 0 \). Then \(\int w \nu \geq \int u \nu \). But \(\int w \nu = E^x \left[u \circ B_{\tau} M_{\tau} \right] = \int u \nu \) by (6.19), contradiction. Thus \(A \) is polar. Similarly \((w < u) \) is polar. Hence \(w = u \) quasi everywhere. Thus, for every choice of \(K \), letting \(\tau = \tau_K \), for quasi every \(x \in \mathbb{D} \),

\[(6.21) \quad u(x) = E^x \left[u \circ B_{\tau} M_{\tau} \right].\]

Now let \(K \) be fixed, \(\tau = \tau_K \). Let \(\mu_n \geq M_2, \mu_n \uparrow \mu \). Let \(u_n^\pm \) solve the \(\mu_n \)-Dirichlet problem on \(K \) with data \(u^\pm \) on \(\partial K \). Again \(u_n^+ - u_n^- \to f \) quasi everywhere, where \(f \) is the solution of the \(\mu \)-Dirichlet problem on \(K \) with data \(u \) on \(\partial K \). As in the earlier argument, for every \(x \) in \(K \), the dominated convergence theorem shows \(\lim_{n \to \infty} E^x \left[u^\pm \circ B_{\tau} M_{\tau}(n) \right] = E^x \left[u^\pm \circ B_{\tau} M_{\tau} \right] \).

By (6.21) we then have \(u = f \) quasi everywhere on \(K \). Thus \(u \) is \(\mu \)-harmonic locally on \(D \). This proves Theorem 6.1.

Let \(D \) be a bounded open set. Consider the \(\mu \)-Dirichlet problem for \(u \) on \(D \) with data \(g \) on \(\partial D \). As usual we assume \(g \in H^1_{loc}(R^d) \) and \(u-g \in H^1_0(D) \).

Let \(D_n \) be open, \(\overline{D_n} \subset D_{n+1}, D_n \uparrow D \). Let \(\tau_n, \tau \) be the first exit times of \(D_n, D \) respectively. Then \(\tau_n \uparrow \tau \). Fix \(x \in \mathbb{D} \). Let \(\psi_x(n), \psi_x \) be defined by \(\int h \psi_x = E^x \left[h \circ B_{\tau} M_{\tau} \right], \int h \psi_x(n) = E^x \left[h \circ B_{\tau_n} M_{\tau_n} \right], \) for any \(h \) bounded Borel on \(R^d \).

Since \(M_{\tau_n} \downarrow M_{\tau} \), it is easy to see that \(\psi_x(n) \to \psi_x \) in \(H^{-1}(R^d) \), so that \(\int u d \psi_x(n) \to \int gd \psi_x \) as \(n \to \infty \). For q.e. \(x, u(x) = \int u d \psi_x(n) \) for all \(n \). Thus \(u(x) = \int gd \psi_x = E^x \left[g \circ B_{\tau} M_{\tau} \right] \), so we have shown:

Remark 6.1 The solution \(u \) of the \(\mu \)-Dirichlet problem on \(D \) with data \(g \) is given, for quasi every \(x \in \mathbb{D} \), by

\[(6.22) \quad u(x) = E^x \left[g \circ B_{\tau} M_{\tau} \right], \text{ where } \tau \text{ is the first exit time of } D.\]
We recall that a point \(x \in \mathbb{R}^d \) is called a regular Dirichlet point for \(\mu \) if every \(u \) which is \(\mu \)-harmonic near \(x \) is continuous at \(x \) and vanishes there.

Theorem 6.2 A point \(x \) is regular for \(\mu \) if and only if \(M_0(\mu) = 0, P^x\text{-a.e.} \).

Proof (i) Suppose \(x \) is regular. Let \(K \) be a small ball centered at \(x \). Let \(u \) be the solution of the \(\mu \)-Dirichlet problem with \(\text{data} = 1 \) on \(\partial K \). For quasi every \(y \) in \(K \),

\[
(6.22) \quad u(y) = E^y[M_{\tau-}], \text{ where } \tau \text{ denotes the first exit time of } K.
\]

For any \(t > 0 \), and any \(z \in K \), \(E^z[\chi_{\{\tau > t\}} \circ B_t] = E^z[\chi_{\{\tau > t\}} E^{B_t}[M_{\tau-}]] = E^z[\chi_{\{\tau > t\}} E[M_{\tau-} \circ \theta_t | A_t]] = E^z[\chi_{\{\tau > t\}} \circ M_{t+\theta_t} \circ \theta_t | A_t] = E^z[\chi_{\{\tau > t\}} \circ E[M_{\tau-} | A_t]] = E^z[\chi_{\{\tau > t\}} \circ E[M_{\tau-} \circ \theta_t | A_t]] - E^z[\chi_{\{\tau > t\}} \circ E[M_{\tau-} | A_t]]. \text{ Thus for } z \in K, t > 0,
\]

\[
(6.23) \quad E^z[\chi_{\{\tau > t\}} \circ B_t] \geq E^z[M_{\tau-}] - P^z(\tau \leq t).
\]

Since \(u \) is continuous and \(u(y) \to 0 \) as \(y \to x \), for q.e. \(y \), and \(0 \leq u \leq 1 \), we see that \(E^x[\chi_{\{\tau > t\}} \circ B_t] \to 0 \) as \(t \to 0 \). Since \(P^x(\tau \leq t) \to 0 \) as \(t \to 0 \), taking \(z = x \) in (6.23) we have \(E^x[M_{\tau-}] = 0 \), so \(M_{\tau-} = 0 \), \(P^x\text{-a.e.} \). Since this is true for all \(K \), we must \(M_0 = 0, P^x\text{-a.e.} \).

(ii) Suppose that \(M_0 = 0, P^x\text{-a.e.} \). Let \(K \) be a fixed open ball centered at \(x \), \(\tau = \tau_K \). Let \(\psi_y \) be defined by \(\int h d\psi_y = E^y[h \circ B_{\tau_K} \circ \theta], \) for \(h \) bounded Borel on \(\mathbb{R}^d \), \(y \in K \). Let \(u(y) \) be defined for all \(y \in \mathbb{R}^d \) by (6.22). For any \(z \in K \), \(u(z) \leq P^x(\tau \leq t) + E^z[\chi_{\{\tau > t\}} \circ M_{\tau-}] \leq E^z[\chi_{\{\tau > t\}} \circ M_{\tau-} \circ (\theta_t \circ \theta_t)] = E^z[M_t \circ M_{\tau-} \circ \theta_t] \leq E^z[(M_{\tau-}) \circ \theta_t]. \) Thus

\[
\limsup_{z \to x} u(z) \leq P^x(\tau \leq t) + E^x[(M_{\tau-}) \circ \theta_t], \text{ for every } t > 0, \tau > 0, P^x\text{-a.e.} \). Let \(\sigma \) be a positive, measurable function taking rational values such that \(\sigma < \tau \), \(P^x\text{-a.e.} \). Then \(M_{\tau-} \circ \theta_t \leq M_{\sigma} \circ \theta_t \). By (3.31), \(M_0 \circ \theta_t \to M_0, P^x\text{-a.e.} \). Thus

\[
\limsup_{t \to 0} E^x[(M_{\tau-}) \circ \theta_t] \leq E^x[M_{\sigma}] \leq E^x[M_0] = 0. \text{ Thus } \limsup_{z \to x} u(z) = 0, \text{ so } \psi_z \to 0 \text{ in total variation norm as } z \to x. \text{ The measures } \psi_z \text{ are dominated by a finite uniform measure on } \partial K, \text{ so } \psi_z \to 0 \text{ in } H^{-1}(\mathbb{R}^d), \text{ so that for any } v \text{ in } H^1 \text{ near } \partial K, \int v d\psi_z \to 0 \text{ as } z \to x. \text{ Now let } u \text{ be an arbitrary } \mu\text{-harmonic function}
near \(x \). For \(K \) small, and quasi every \(z \) near \(x \), \(u(z) = \int ud\psi_z \). Thus for these \(z \), \(u(z) \to 0 \) as \(z \to x \). This proves Lemma 6.4.

We now give one more criterion for regularity at a point. To avoid trivial details, we assume \(d \geq 3 \).

Lemma 6.4. Let \(d \geq 3 \), \(\mu \in \mathcal{M}_0 \), \(x \in \mathbb{R}^d \). Then \(x \) is regular for \(\mu \) if and only if for every finely open set \(V \) containing \(x \), \(\text{Pot } \rho(x) = \infty \), where \(\rho = \chi_V d\mu \).

Proof. We may take \(\mu \in \mathcal{M}_1 \). Suppose \(\text{Pot } \rho(x) < \infty \) for some \(V \). Let \(\tau \) be the first hitting time of \(V^c \). By (4.10), \(E^x \left[K_t(\mu) \right] < \infty \). Thus \(K_{0+}(\mu) < \infty \), \(P^x \)-a.e., so \(M_0(\mu) > 0 \), \(P^x \)-a.e., and so \(x \) is not regular.

Conversely, suppose \(M_0(\mu) > 0 \), \(P^x \)-a.e.. Let \(\tau \) be the first time \(K_t(\mu) \geq 1 \). \(\tau > 0 \), \(P^x \)-a.e.. Since Brownian motion has predictable \(\sigma \)-fields, we can find a stopping time \(\sigma < \tau \), \(P^x \)-a.e., and \(P^x(\sigma > 0) = \alpha > 0 \).

\[E^x \left[K_{\sigma}(\mu) \right] < \infty, \] so by (4.10), \(\int (\text{Pot } \lambda - \text{Pot } \lambda_{\sigma}) d\mu < \infty \), where \(\lambda = \delta_x \). By [12], I.XII.4, \(\lim_{y \to x} (\text{Pot } \lambda - \text{Pot } \lambda_{\sigma})(y)/(\text{Pot } \lambda)(y) = 1 - \alpha \), so we can find a finely open set \(V \) containing \(x \) such that on \(V \), \(\text{Pot } (\lambda - \text{Pot } \lambda_{\sigma}) \geq \beta \text{Pot } \lambda \), where \(\beta > 0 \). Thus \(\int_V \text{Pot } \lambda d\mu < \infty \), or \(\text{Pot } \rho(x) < \infty \), for \(\rho = \chi_V d\mu \). This proves Lemma 6.4.
References