BOUNDARY CONFIGURATIONS SPANNING
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Dedicated to Herbert Beckert on occasion of his sixty-fifth birthday.

New examples are constructed of one-parameter families of stationary solutions
to the Plateau problem with three coaxial circles as boundary, and of non-
congruent area-minimizing solutions to certain free and partially-free boundary

problems. A similar phenomenon is exhibited for the partition probiem.

1. Introduction

It is well known that a closed smooth Jordan curve can bound a large number
of minimal surfaces, even of those that are of given topoiogica] type. This
phenomenon is illustrated by the theorem of B&hme £4], p. 8, who has proved that,
for each positive integer N and for each e>0, there exists a real-analytic
Jordan curve in R® of total curvature less than 4w + € which bounds at least
N minimal surfaces of the type of the disc. On the other hand, Nitsche [18]
has shown that a real-analytic Jordan curve in lRS of total curvature less than
4m  bounds exactly one disc-type minimal surface, and Sauvigny [22] proved uni-
queness for extreme polygons in R?® of total curvature less than 4n . The only
other known uniqueness theorem for boundaries consisting of a single Jordan
curve is due to Radg (cf. [17], pp. 358-359). It states that a Jordan curve
will bound exactly one minimal surface if it has a one-to-one (parallel or
central} projection onto a planar convex curve. Finally, Meeks and Yau [15],
pp. 160-161, have linked uniqueness with the nonexistence of two distinct stable
embedded minimal discs.

Bohme's theorem is based on the Bohme-Tromba index theorem [5] which, on
the other hand, implies generic finiteness, as has been shown in {5] (generic
uniqueness results for area minimizing discs had earlier been found by Morgan

and Tromba). The central question for the Plateau problem presently is to
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decide whether a single smooth (or real-analytic) closed Jordan curve in JR3

can bound only finitely many minimal surfaces (of general type, or of the type

of the disc). Tomi [26] has proved that a real anaiytic curve in JR3 bounds

only finitely many minimal surfaces which are absolutely area minimizing among
disc-type surfaces and Hardt-Simon [137] have established that each Ca’a-curve

in lR3 can hold only finitely many oriented area minimizing surfaces. Further
finiteness results are due to Tomi [27], Nitsche [197, and Reesan [27. A generali-
zation of Tomi's result to minimal surfaces in Riemannian manifolds has been

given by Quien [21].

On the other hand, boundary configurations consisting of several smooth
closed curves can cértain]y bound infinitely many minimal surfaces. Morgan [16]
has constructed a rotationally symmetric configuration of four circles holding
continua of congruent but nonsymmetric winimal surfaces of arbitrarily high
genus. We shall show that the same phenomenon can be found with configurations
consisting of three coaxial circles in parallel planes, but not with two
circles, by virtue of a result due to Schoen. It is unknown if there are con-
figurations of several smooth curves which bound infinitely many noncongruent
minimal surfaces or fixed topological type, or of continua of those,

It is fairly easy to find free boundary problems which have families of
congruent minimal surfaces as solutions. We shall, however, exhibit free as
well as partially free boundary configurations which have l-parameter families
of noncongruent area minimizing minimal surfaces (of fixed topological type) as
solutions. This might be of some interest because of the following recent
results:

1. If a compact analytie H-eomvex body M in 5R3 has the properties that
there 15 a olosed Jordan curve in M whieh cannot be contracted in M , and,
seecondly, that the free boundary problem for M admits infinitely many mini-

mizing solutions of disc~-type, them M must be homeomorphic to a solid

torus (Tomi [28]).
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2. If the torus M is foliated by a smooth Sl-family of plane, dise-type
minimal surfaces, being orthogonal to M, then all surfaces in the family are
eongruent {Tomi [28]).

3. Let S be a compact, embedded, real-analytic surface in]R3 ,and T
be a homotopically mon-trivial Jordan eurve in the umbounded component of [R3—S.
Then there are only finitely many geometnrically different surfaces of the type
of the dise and with in lR3 - I noneontractible boundary which minimize area
within the configuration <r,S> (Alt-Tomi [11).

In particular, our examples provide an answer to two questions raised by

Tomi {28]:

There exist (topological) tori admitting families of non-flat dige-type
minimal eurfaces which intersect the the tori at a right angle, and secondly,
the surfaces in sych a family need not be congruent (nor isometric).

The authors would like to thank A. Kuster for preparing figures
4,6,7,8,9; 0. MWohlrab for providing figure 2; and F. Tomi for making his paper
[28] available (March 1985). The second author gratefully acknowledges the
hospitality and the support by the Institute for Mathematics and its

Applications of the University of Minnesota at Minneapolis during September

1984.




2. The Plateau problem with three boundary components

The Plateau problem in the general form as stated by Jesse NDouglas asks for
a minimal surface in Euclidean space of given topological type and with a
prescribed configuration T of one or several Jordan curves as its boundary
{(cf. [8], [17]1, and [297 for references to the literature).

Frank Morgan [16] has given an example of a boundary configuration T ,
consisting of four coaxial circles in parallel planes, and a sequence of minimal
surfaces Mn spanning T , of genus greater than or equal to n, which are not
rotationally symmetric. Therefore each surface Mn is a member of a one-
parameter family of congruent minimal surfaces, having the same houndary, that
are obtained by rotation from Mn .

If, on the other hand, T consists of only one circle, then the maximum
principle implies that any minimal surface bounded hy T has to be a disc.
Similarly each immersed minimal surface M bounded by two coaxial circles that
1ie in parallel planes must be rotationally symmetric, that is, M has either
to be a catenoid or a pair of plane discs (see Schoen [?237, Corollary 3, p.
796).

This leaves the question whether a rotatfonally symmetric configuration of

three closed curves can only bound rotationally symmetric minimal surfaces.

We shall construet a rotationally nonsymmetric minimal surface of genus zero,

bounded by three coaxial eireles which lie in parallel planes.

To this end, we consider a configuration T consisting of three circles

TO, Fl’ F-l » described by the equations x2 + y2 = 1

and z =0, Xx, and -}
respectively, x>0, and a second configuration r* which consists of the circle

T and another closed curve vy that lies in the same plane as Tq s and is

1
formed by the semicircle T' = ryfy {x > 0} and by the interval I = {x =0,

z =0, -1 <y <1} on the y-axis. For small enough A there is a minimal sur-

face M* of the type of an annulus bounded by r* . By Schwarz's reflection
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principle, we can extend M* as a minimal surface across the straight segment

I[. For this purpose, we rotate M by 180° about the y-axis to form a second
minimal surface M** . Their union M = M*U M** s a minimal surface with
boundary T and has genus zero. The segment I has become part of the interior of
M, and the surface M can be described by a harmonic mapping x : B » R3 .

given in conformal coordinates of a triply connected planar domain B (cf. [87,

p. 119). Since M* is not symmetric under rotations about the z-axis, also M

ANz
S

has to be rotationally nonsymmetric.

It remains to find a connected minimal surface M* bounded by the con-
figuration T* . By virtue of J. Douglias' theorem ([971; cf. also the remarks of
Tromba [29]), there exists an area minimizing minimal surface M* which is
defined on an annulus and has 1~ as boundary, provided that X 1is small

enough. In fact, the existence of Douglas' solution is ascertained under the

hypothesis that

(2.1) n(r*) < m(v) +m(r)
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where m(I*) is the greatest lower bound of area for surfaces of the type of the

annulus with boundary ¥ = y U Ty » and where m(y) and m(r,) are the

1
corresponding lower bounds for disc-type surfaces bounded by vy and rl ’
respectively. Clearly,

m(y) =m/2 , w(r) =% ,

and m{r*) is smaller than the area A(S) of the surface $ that consists of

the cylinder surface between T, and T and of the half-disc {x2 + y2 <1,

0 1°

X €0, z = 0}; that is

m(r*) < 2nh + 0/7 .

Thus Douglas' condition {2.1) is satisfied for A < 1/2. A somewhat more
complicated comparison surface S, consisting of half of a catenoid, half of a
cone and two triangles shows that even the condition d € 0.7 suffices to
ensure the existence of a Douglas solution M* within the frame 1. Moreover,
the hypothesis (2.1) implies that the surface M* is an immersion {[127, Theorem
10.5). By the maximum princip1e,'the interior of M* 1lies between the planes
z=0 and z = A . Therefore the interior of M”* does not meet the interior of
M** where M*™ is the refiection of M* at the y-axis. Thus also M =
M* U M** is immersed. Since M is rotationally nonsymmetric, we have shown:

The configuration consisting of three coaxial unit eirecles in parallel
planes at distance ) g 0.7 bounda a eontinuum of congruent immersed minimal
surfaces of genue zero.

We note that M cannot have boundary branch points because its boundary
1ies on a strictly convex set, a cylinder (see [17], p. 331). F. Tomi has kindly

1)

pointed out to us that, by virtue of a result of Almgren and Simon , there is
an embedded minimal surface M* spanning ©* , and therefore also M = M* ) M¥*

is embedded.

1) Ann. Scuola Norm. Sup. Pisa 6, 447-495 (1979)
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We finally would like to emphasize that for boundary configurations con-
sisting of one or several closed Jordan curves, the only currently known examples
of continua of stationary solutions to Plateau's problem are families of
congruent surfaces. 1t appears rather improbable that all such continua are of
this form, although no other examples have yet been found. Of particular
interest is the question of a continuum or at least denumerably many minimal sur-
faces, whether congruent or not, within a single Jordan curve {cf. [81, p. 122).
If the proof of the general bridge theorem, stated in (15], p. 167, could be
supplied, the existence of closed rectifiable but non-smooth Jordan curves
bounding an uncountable set of stable minimal surfaces would be ensured. It is,
however, not at all clear whether closed Jordan curves can bound continuous
1-parameter families of minimal surfaces. We, moreover, do not know if real-

analytic or smooth Jordan curves can bound infinitely many minimal surfaces.

3. Free boundary problems

We now consider boundary configurations <r,5> in IR3 consisting of a system
r of Jordan curves [‘1 seves Ty and of a system S of surfaces Sl""’ Sn'
Each of the curves r; either is a closed curve, or else a Jordan arc with end
points on S. We shall call S the free part of the configuration <r,s> .

A minimal surface M is said to be stationary within the eonfiguration
<r,5> if the boundary of M Ties on ru s and, moreover, if M meets $
orthogonally at the part § = aM(S of its boundary.

We shall call } the free trace of M on S.

This definition requires a certain degree of smoothness for S, but it is
not difficult to define stationary minimal surfaces for fairly general supporting

surfaces S.

In the following we shall assume that S contains at least one surface

whereas T may be empty.




The free. boundary problem of a configuration <r,S> asks for a minimal surface
that is stationary within <rI,S>. Such a problem is said to be partially free
if T is nonvoid, otherwise completely free or simply free.

It is trivial to find supporting surfaces S which bound continua of sta-
tionary minimal surfaces. For instance, the sphere, the cylinder, or the torus
furnish simple examples. In these cases, however, all minimal surfaces belonging
to the same continuum are congruent to each other. Therefore it might be of
interest to see that there are free or even partially free boundary problems
which possess denumerably many noncongruent solutions, or even continua of non-
congruent solutions.

We first mention that, in 1872, H.A. Schwarz has described two boundary con-
figurations <r,5> that bound denumerably many noncongruent stationary minimal
surfaces (see [25], pp. 126-148}. His first configuration <P1,r2,S> consists of

a cylinder surface $ and two straight arcs which are perpendicular to each other

Figure 2: Three of infinitely many noncongruent minimal surfaces that are sta-

tionary within <Ty,T,,5>

as well as to the cylinder axis and pass through the axis at different heights.

This configuration bounds denumerably many left and right winding helicoids which




meet the cylinder S at a right angle (Figure 2). Only two of these helicoids
are area minimizing, the others are but stationary.
The other boundary frame considered by Schwarz consists of two parallel

faces S1 and 52 of some cube which are connected by two perpendicular diago-

nals lying on opposite faces (Figure 3).

52

Figure 3: Gergonne's surface

This configuration <F1,F2,Sl,82> bounds one area minimizing surface, depicted in

Figure 3, and denumerably many other, noncongruent stationary minimal surfaces.
It might be interesting to learn of a configuration <r,S$», consisting of a
circle T and of a supporting surface, which bounds a continuum of noncongruent
and area minimizing (hence stationary) minimal surfaces. Yet such an example can
easily be derived from classical results on minimal surfaces of revolution; see

Rolza [6] (Beispiel I), Bliss [3}, pp. 86-127, and Carathéodory [71. §§273,
340-341, 360-367.
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Let x{t), y(t), t1 £t < t2 » be the parameter representation of a curve
contained in the upper half plane {y>0}. The surface area of its surface of
revolution about the x-axis is given by the integral 2= j:f y./dx2 + dy2 . Thus
the minimal surfaces of revolution are described by the extremals of the func-

tional | y/dx2 + dy2 > ¥ > 0, which are the parallels to the positive y-axis,

(3.1) X=Xy ,¥>0

and the catenaries

X-XU

(3.2) y = a cosh ( ) , - @< X < w

a

- e ¢ ¥ < @

which form a 2-parameter family of nonparametric curves, a > 0 , 0

The point (xo,a) 1s the vertex of the catenary (3.2).

Let us consider all catenaries passing through some fixed point P = (0,b) ,
X

b>Q , on the y-axis. They must satisfy b = a cosh 59- or b =acosh x, if we
X
introduce the new parameter X = - 39 . Then there is a 1-1 correspondence

between all real values of the parameter A and all catenaries passing through

(0,b) which is given by
y = 9(x,2) : = a(x) cosh(a +ﬁ7)) , XER,
(3.3)

a(1) := —Wg ,AER .

We can also write

] - X . . b
(3,3 } g(x,x} = b cosh 0T + sinh X s1nh§113—- .

and sinn A = #/b? - a%(a) .

We now consider the branches y = g(x,A) , x > 0 1lying in the upper

quadrant of the x,y-plane. There exists exactly one conjugate point
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Q(A) = {&(2), n(A)) with respect to P on each catenary (3.3) with x < 0. The
points Q(A), *€R , form a real-analytic curve E that resembles a branch of a
parabala extending from the origin to infinity. The curve E is given by the

condition

3

=5 90,2) =0

and describes the envelope of the catenary arcs
C, = {x,9(x,2)) : 0 <x < g(x)}, r&ER.

The domain @ = {{x,y): 0 < x < &£(2), y > n()) for some 3} is simply covered

by the open arcs C, =C, - {P,Q(})} .
Consider the mavefronﬁg wc , >0, emanating from P. The curves wc are
real-analytic level lines {S{x,y) = c} of the wave function S(x,y) that satis-

fies the Hamilton-Jacobi equation
2 2 _ 2
Sx + Sy =y
and js given by
S(x,9(x,2)) = J(x,2) , 0 <x < &) ,

where the right hand side is defined by

J(x,1) = Jgg(u,x) 149" (u, 2} du

and  g'{u,}) =%g(u,m .

The two families of curves CA , \E IR, and W. , ¢>0, form the complete

figure (in sense of Carathéodory) associated with the varational problem
|y Ydx? + dy2 > Extr. , y(0) =b ,

in x »0, vy >0, see Figure 4.
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Figure 4a Figure 4b
(a) The catenaries passing through P, and their wavefronts.
(b) A complete figure: the stable catenary arcs passing through P and ter-

minating at their envelope E , together with their wavefronts.

By Adolf Kneser's tranversality theorem, the curves NC intersect the cate-

naries C, orthogonally. Two curves We and W. , ¢y <c, , cut out of each

1 2

curve CA a piece CA(CI’CZ) such that
JC;\(cl,cz)y'dx%’dyz ¢

and ¢y - Cy is the infimum of the integral jy/dxz + dy2 along all paths joining

2% >

Wcl and wc2 within @ . In particular, if CA,c = {(x,9{x,A)): 0 < x < xO(

denotes the subarc of the catenary that connects P with W. , then J(xo(x,c),x)

is the infimum of the integral [y/dx2 + dy? taken along all curves joining P

X,c)}

and NC within @ .
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If we now rotate the whole configuration

drawn in Figure 5 about the x-axis, the
wave front W. generates a surface of

revolution S_ | and each catenary C
o} A,C

produces a minimal catenoid KA c Wwith
3

the area 2nc. The catenoid K is

1
H
1]
]
t
L]
1
t
i
1
! A,C
(]
[)
4
1
t
L

bounded by two parallel coaxial circles

e ' Fig. 5 I and zx,c centered at the x-axis; T
is generated by the rotation of P, and ZA’C by the rotation of the intersec-
tion point of C, with W. . Each catenoid Ky,c intersects S . orthogonally
and, therefore, is a stationary minimal surface within the configuration <F,Sc>.
All catenoids K)\’C » ¢ fixed, have the same area and minimize area among all
surfaces of revolution bounded by <r,S> which lie in the open set H generated
by rotating 2 Ua* |J {x = 0, y > 0} about the x-axis. Here &* is the mirror
image of o at the y-axis in the X,y-plane.

In fact, it turns out that the catenoids KA,C even minimize area among all
~orientable surfaces F bounded by <F,SC> that are contained in H. A well
known projection argument shows that it suffices to prove Area(KA’C) < Area(F)
for all oriented surfaces F with boundary on T U Sc that are contained in
H = HN x » 0},

Let now F be such a surface with y = aFf\Sc « Then there is a region T
in the surface Sc with integer multiplicities, the boundary of which equals
Y - Ex,c + Therefore K)\’C -F+T 1is a cycle, and it follows that there is a

three-dimensional region R with integer multiplicities such that the boundary

of R is KA ¢ - F+ 1 . Gauss' theorem yields
>

(3.4) [ div X dvol = [ X . Nop dA
R aR
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where NaR is the orjented unit normal vector to 3R. We infer from the mini-

mal surface equation that the unit normal vectors to the catenoids KA c form a

divergence-free vector field X = X(x,y,z) on H+ which is tangent to SC s

i.e., X-NT = 0 , and can be chosen in such a way that X - NK = 1. Hence we
XsC
obtain from (3.4) that
Area(Kl’c) = | X-NK dA = | X-NFdA .
KA c X,C F

and the term on the right-hand side is estimated from above by Area(F) , because
X-NF <1,
Thus we have proved:

There exists a configuration <T, Sc> eonsisting of a eirele and a real-

analytie surface of revolution SC that bounde a family {Kk c} of
.

Figure 6
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stationary and even area-minimizing minimal surfaces of annulue-type that are
really distinet in the sense that, for two different values ?\1 s )\2' s the sur-
faces K and K are not eongruent.
A1 C rp2C
A simple modification of the previous example leads to houndary
configurations as showm in Figure 7 that bound continua € of noncongruent sta-
tionary surfaces of annulus type whieh have a completely free boundary onm S.

T T ¢ 7 *
The surfaces of & are even area minimiaing within the class & of armulue

type surfaces whose free boundaries are homologous to those of the surfaces of

c.

For this purpose, we take two wavefront curves wc and HC , cl,c
1 ?
are chosen less than B/?

27 9

contained in x>0 , y > 0 . If < and <,

both curves terminate at the positive y-axis and meet this axis orthogonally.

Reflecting both arcs at the y-axis, we obtain two closed real analytic curves

N
z
Ly,
Figure 7a: The family of Figure 7b: Exterior view of the
curves T. . configuration <Sl’52> .
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Figure 7c: Part of configuration Figure 7d: Another part of

<S1,5,% 51,5,

Ca L,

Figure 7e: Three surfaces Figure 7f: Three surfaces of Cz

of the family Cﬂ within <S >

1252
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Tcl and FCZ » and their rotation about the x-axis leads to two closed torus-type
surfaces 51 and S, that are orthogonally met by a family of catenoids,
generated by the catenary arcs CA(Cl’Cz)' These catenoids are stationary
annulus-type minimal surfaces within the configuration <51’SZ> , and a reasoning
similar to the previous one shows that they even minimize area within E? (cf.
Figure 7).

A somewhat different example, which is not rotationally symmetric, leads to
a free-boundary problem for minimal surfaces of the type of the disc, with boun-
dary lying on a given torusiike surface. Let KA » A ER, be the catenoids
obtained by rotating the arc CA about the x-axis, and let KK be the surface

obtained from K py reflection at the y,z-plane. Let, moreover, K. be the

disc interior to the circle T in the y,z-plane, and let K, be the plane
domain exterior to T . We may think of Kiw aS degenerate catenoids obtained
for A » %=, Then the surfaces K, , K; , =@ & A < », describe a minimal
foliation, singular at T , of the rotationaily symmetric domain H.

We now introduce cylindrical coordinates (x,r,8) , where y = r cos6 ,
z =r sine . For each rg(0,b) , there exists exactly one value c(r) > 0
such that the closed real-analytic curve rc(r) in the plane 9 = 0 , obtained
from the wavefront wc(r) as described before, passes through (0,r,0).

Denote by Lr 0 the closed curve that is obtained by rotating Pc(r) about
3

the angle @8 around the x-axis. The curves Lr g » 0 <r<b, 0<0<2r -

meet the plane x = 0 orthogonally at the points (0,r,8) and sweep an open sub-
domain H0 of H .

Let Yy be a real-analytic Jordan curve in the plane x = 0 , say, a
circle, which is contained in the open disc K__ (the interior of T) and does
not wind about the origin. As the point (0,r,8) traverses the curve Yy s the
curves Lr g Sweep out a toruslike surface S which bounds a tube G. This

>

tube is foliated by a family MA . M§ s =@ £ % < o, of minimal surfaces that
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are cut by S out of the catenoids KA . KK . The surfaces MA . M; are of

the type of the disc and meet § perpendicularily; hence they are stationary

within S . Moreover, the unit normal vectors to MA . M; form a divergence

free vector field on the set H - T containing & which is tangent to S.

Then, by an argument parallel to the previous reasoning, all surfaces M _ ,.M*

A A

L.

Figure 8: Three views of the surface S which also show the traces of the

M*

minimal surfaces MA > My

on S.
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have equal area, and each oriented surface F contained in H-r and with a

boundary Yy homologous in S to Y o has area larger than the leaves MA s M;

unless it coincides with one of these surfaces. Thus we have shown:

There existe a real-analytie, embedded surface S of the type of the
torus, and a homology class [Yb] in Hl(S;Z), so that S bounds a family of
noneongruent etationary minimal surfaces of the type of the dise whieh have

smallest area among all oriented surfacee in H-T having boundary lying on §

and homolgous in S to Yo *

e

Figure 9: A part of surface S with various samples of surfaces M, s M; (two

different views).
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4. Isoperimetric problems

Let us consider the partition or relative isoperimetric problem . In the
simplest case, this is the following question:

Given a convex body B with smooth boundary S, find an embedded surface M
of given topological type, contained in B and with boundary on S, that divi-
des. B into two regions of prescribed volume and has smallest or at least sta-
tionary area among surfaces satisfying these conditions.

A surface M of admissible type will be stationary for this problem if and
only if M has constant mean curvature and meets § orthogonally {(cf. [11],
[20]). 1If, for instance, B is the Euclidean ball Bl(O) ian3 » the spheri-
cal caps M = BN a&zmo are solutions for any center Xy at distance /E:EE
from the origin. These surfaces are the only stationary surfaces of the type of
the disc, as Nitsche [20] has recently shown.

‘One might observe that, for each prescribed volume V < gf-, there is a
two-parameter family of congruent solutions With radius R = R(V}), depending on
the parameter Xy s and this family is obtained through the action of 0{3}, the
group of rotations of R3 , which leaves B invariant.

A more interesting example for the partition problem leads to a
one ~parameter family of noncongruent solutions (for a fixed value of the ratio

of the dividing volumina). For this purpose, we consider a rotationally sym-

metric body in euclidean space,
B = {{x,y,z) : x% + yz < f(z)2 » 2y €z <2, } .

Then through each point (x,y,z) of S = 3B thgre passes a surface M(z) in
the form of a spherical cap, the center of which is the intersection with the z-
axis of the tangent plane to S at the point (x,y,z). The sphere therefore
has radius r{z) = f(z)w(z)/f'(z), where w(z) = /1+(f'(z))2. Then the cap

M{z) is stationary for the partition with the value V = v(z) for the volume

parameter. Here v(z) is the volume of the subregion inside B which is
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bounded above (i.e., on the side of increasing z) by M(z) . Since

vy = ﬂii (gﬂi

= - 1) +n jfzdz + const
3f! w+l

it follows that v(z) will be constant on any interval in which
(4.1) ff* + 2wi(w+l) = 0 .

Suppose now that zZ; < 0« z, , and let any initial values rg > a., Po be

given. We consider the solution of (4.1) which satisfies

f(0) = Fg » F1(0) =p4 .

The solution may be continued as long as f'(z) remains bounded, which may be

the case for &y €Z <, ,where g; <0< gy « Then {4.1) implies that
fi(z) <0 in fg,z,]1,

T.e., f s strictly concave, and the mean curvature H(z) of the cap M(z) is

strictly decreasing, since
v f!
H - (ﬁ' ) <0 an [C].’CZ] .

Hence the caps are noncongruent.

For suitably chosen 21 and z, with z; < 5 <8y €2y, let f(z) be
extended in such a way that f > 0: B is a smooth convex, and rotationally sym-
metric body; and so that the spherical caps M(z) 1ie inside B for Zy €z ¢
L+ Then the partition problem in B with prescribed volume V = v{(0) has a
one - parameter family of noncongruent stationary solutions M(z)}, 81 < Z < g

We note that this discussion could be made more precise since the equation
(4.1) for r = f(z) could be expiicitly integrated for the inverse function zZ =

g(r). 1In fact, we obtain that fzw/(w+1) is a constant, say 32/2 whence



and

g(r) =v - %— log %{%-) +b , v= fa’r? |,

Allowing v to assume both signs, we obtain a complete curve in the z,r-plane.

The resulting surface of revolution S is a real-analytic, complete,

a,b
immersed surface which intersects itself along a circle in its plane of symmetry
z = b, and approaches the z-axis as 2z + = . We leave details to the reader.
In the previous cases, the explicit knowledge of the solution greatly
simplified the construction of special boundaries S Tleading to "blocks" of
noncongruent solutions. Related and equally interesting variational problems
would require significantly more extensive analysis. For example, the ecapillary
problem (in the presence of a constant gravitational field) asks for a surface
bounding a given volume of 1iquid in a body B, and, in equilibrium, the liquid
surface meets S = 3B at a given constant angle and has prescribed mean cur-

vature

H{x,y,z} = «z + 1,

where « 1is a given constant and A 1is a lLagrange parameter.

In analogy with the partition probiem, we might try to find a special body
B; so that the capillary problem has a one-parameter family of solutions
bounding the same liquid volume.

Similar questions should be asked for the classical isoperimetric problem
in a Riemannian manifold (see [10] for applications). It is fairly easy to
construct interesting examples of families of noncongruent solutions if we admit
Lipschitz-continuous metrics. This can, in fact, be carried out by piecing
together two copies of suitably chosen hodfes B which appeared in the par-
tition problem and by defining the Riemann metric via the Euclidean metric,
employing normal coordfnates on the boundary of the two copies of B. The case

of smooth metrics seems to be more complicated.
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