KILLED DIFFUSIONS AND ITS CONDITIONING

BY

GUANGLU GONG,

MINPING QIAN

AND

ZHONGXIN ZHAO

IMA Preprint Series # 213

January 1986

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

514 Vincent Hall

206 Church Street S.E.

Minneapolis, Minnesota 55455
KILLED DIFFUSIONS AND ITS CONDITIONING

Guanglu Gong* Minping Qian** Zhongxin Zhao***

Abstract

Let $X = (X_t)_{t \geq 0}$ be a diffusion determined by an elliptic differential operator L in \mathbb{R}^n $(n > 1)$. For any bounded $C^{1,1}$ domain D, we define the conditional killed diffusion X^ϕ on D by the semigroup:

$$T^\phi_t(x) = \phi_0(x)^{-1}E_x[f(X_t)\phi_0(X_t), \tau_D > t]e^{\lambda_0 t} \quad (t > 0)$$

where λ_0 and ϕ_0 is the principle eigenvalue and eigenfunction of L on D. In this paper, we prove that X^ϕ is a strong Feller process on D and $\{T^\phi_t\}$ has the strong continuity on $C(\bar{D})$. For any $T > 0$ we consider the conditioned process X^T, i.e. the process X in D conditioned on $\{\tau_D > T\}$, and prove that X^T weakly converges to X^ϕ as $T \to \infty$ without any additional hypotheses.

* Department of Probability and Statistics, Peking University, Beijing.

** IMA, University of Minnesota, Department of Probability and Statistics, Peking University.

*** IMA, University of Minnesota, Institute of Systems Science, Academia Sinica, Beijing.
1. INTRODUCTION

We consider the second order differential operator on \mathbb{R}^n:

$$Lu = \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} a_{ij}(x) \frac{\partial u}{\partial x_i} + \sum b_j(x) \frac{\partial u}{\partial x_j}$$

where $a_{ij}(x), b_j(x) \in C_{1,\alpha}^1(\mathbb{R}^n), i,j = 1, \ldots, n, \alpha > 0$, and for all $N > 0$, there exist $\beta_{i,N} > 0 (i = 1,2)$ such that $a = (a_{ij}(x))$ satisfies

$$0 < \beta_{1,N} |x| < a(x) < \beta_{2,N} |x| (|x| < N)$$ \hspace{1cm} (1)

L generates a diffusion process $X = (X_t)_{t \geq 0}$ on \mathbb{R}^n with L as the infinitesimal generator of the corresponding Markov semigroup. Let us deal with L and X locally, i.e. we confine $\{X_s: 0 < s < T\}$ on the pre-exit event $\{\tau_D > T\}$ (where $T > 0$, $\tau_D = \inf\{t > 0: X_t \in \mathbb{D}\}$), and then obtain the killed diffusion X^D. The corresponding killed semigroup is

$$T^D_t f(x) = E^x[f(X^D_t): t < \tau_D].$$

In this paper, it is given that for a bounded open $C^1,1$ domain D and all $t_0 > 0$, there exists a constant $C = C(L,D,t_0) > 0$, such that

$$\frac{1}{C} d(x) e^{-\lambda_0 t} < P_x(\tau_D > t) < C d(x) e^{-\lambda_0 t}$$ \hspace{1cm} (3)

for all $(t,x) \in [t_0,\infty) \times D$, where λ_0 is the principle eigenvalue of L,

$$d(x) \triangleq \text{dis}(x,\partial D),$$

And a uniform estimate is given

$$\sup_{x \in D} \frac{e^{\lambda_0 t} P_x(\tau_D > t)}{\phi_0(x)} - \int_\mathbb{D} \psi_0(x) dx | < 0$$ \hspace{1cm} (4)

for time-space parameters, where ϕ_0, ψ_0 are principle eigenfunctions of L and its formal adjoint L^\ast respectively.
However, the killed diffusion disappears gradually as $t \to \infty$. It is natural to consider the diffusion $\{X_t: 0 < t < T\}$ under the conditional probability measure $P^T_{s,x} = P_x(\cdot | \tau_D > T - s)$ (for each fixed $T > 0$) and its weak limit as $T \to \infty$. In the case of Markov chain, this was done by [2], [14]. For diffusions Ross Pinsky proved [12] that the conditioned diffusion x^T up to time T is inhomogeneous with the generator L^T depending on T, and under three hypotheses (which seem hard to check) the coefficients of L^T converge locally uniformly to those of the operator $L + a(V \ln \phi) V$ (therefore the weak convergence of the processes follows). But even in the case of L being symmetric those three hypotheses have not been justified rigorously there. In this paper we approach this conditioning problem in a different way. We define directly a Markov process X^ϕ in D given by the semigroup

$$T^\phi_t f(x) = \phi_0(x)^{-1} E_x[f(X_t)\phi_0(X_t): \tau_D > t] e^{\lambda_0 t} \tag{5}$$

Since ϕ_0 is a positive "harmonic" function on D with respect to $-(L + \lambda_0)$, this definition is a natural generalization of the concept of conditional Brownian motion given by Doob [3]. We call X^ϕ the conditional killed diffusion, which has been considered by Zhao [18] in a different situation. Moreover, we prove that T^ϕ_t has the strong Feller property. A more delicate property is the strong continuity of T^ϕ_t on $C_U(D)$ (the Banach space of uniformly continuous functions on D), or equivalently, for any given $\delta > 0$

$$\sup_{x \in D} |\phi_0(x)^{-1} E_x(\phi(X_t), |X_t - x| > \delta, \tau_D > t)| \to 0 \quad (t \to 0) \tag{6}$$

The strong continuity of T^ϕ_t is not only an analytical property of the semigroup, but also is the key step to get the tightness of the measures $P^T_{s,x}$. On the other hand, with the help of (5) and (4) we have the convergence of the transition functions of x^T. Thus, it turns out that x^T weakly converges to X^ϕ without any additional assumptions.
2. SOME RESULTS IN ANALYSIS

Let \(a = (a_{ij}(x)), b = (b_1(x), ..., b_n(x)) \) be \(C^{1, \alpha} \) functions on \(D \), where \(i, j = 1, 2, ..., n \), and

\[
0 < \gamma_1 I < a < \gamma_2 I \quad (x \in D)
\]

(7)

Denote

\[
L = \frac{1}{2} \nabla a \nabla + b \nabla - c(x) \quad (c(x) > 0, c(x) \in C^{0, \alpha}(D))
\]

(8)

\[
L_a = \frac{1}{2} \nabla a
\]

and \(G_L, G_{L_a}, G_\Delta \) are Green functions of \(L, L_a, \frac{1}{2} \Delta \) respectively. Some analytic facts which we need are listed below.

Theorem (A) (Widman [17])

\[
G_L(x, y) \leq C \frac{1}{|x - y|^{n-1}} (|x - y| \wedge d(x))
\]

\[
\left| \nabla G_L(x, y) \right| \leq K \frac{1}{|x - y|^{n-1}} \quad (n > 3)
\]

Theorem (B) (Hueber and Sieveking [7])

\[
\frac{1}{c} G_\Delta < G_L < cG_\Delta \quad (c > 0)
\]

Now we have

Lemma 1

\[
\sup_{x \in D} \int_{D} \frac{dy}{|x - y|^{n-1}} < \infty
\]

and measures \(\int \frac{dy}{A |x - y|^{n-1}} \) are absolutely continuous with respect to \(dy \) and uniformly for \(x \in D \).
Proof: Taking the n-dimensional spherical polar coordinate centered at x, we get

$$\sup_{x \in D} \int_{A \mid |x - y| < \delta} \frac{dy}{|x - y|^{n-1}} \leq \sup_{x \in D} \left(\int_{|x - y| < \delta} \frac{dy}{|x - y|^{n-1}} + \int_{|x - y| > \delta} \frac{dy}{|x - y|^{n-1}} \right)$$

$$\leq \frac{\delta}{\int_0^\infty \frac{r^{n-1}drd\alpha}{r^{n-1}}} + \frac{1}{\delta^{n-1}} m(A) = \delta \sigma + \frac{1}{\delta^{n-1}} m(A)$$

where $m(\cdot)$ is the Lebesgue measure and σ is the area of the unit sphere in \mathbb{R}^n. Then the proof is complete.

Lemma 2 If $f \in M_b(D)$ (bounded measurable function on D) $f > 0$ and $f > 0$ at least on a small ball, then there are $c_1 > 0$, c_2 such that

$$c_1 \leq \int_D \frac{G_L(x,y)f(y)dy}{d(x)} \leq c_2 \quad (x \in D).$$

Proof. Since Theorem (B), (A) and Lemma 1, the upper bound follows and for the lower bound we only need to investigate when $L = \Delta$ and x satisfies $d(X) < \delta$ with small $\delta > 0$. If, on the contrary, this lemma fails, then there are $x_m \in D$ such that

$$\int_D G(x_m,y)f(y)dy = 0 \quad (m \to \infty)$$

Without loss of generality, we can assume $x_m + x_0 \in \partial D$. Denote the inward normal of ∂D at x_m to be n_m and pick up $x^*_m \in \partial D$ such that $|x_m - x^*_m| = d(x_m)$. Because $\nabla x \Delta(x,y)$ can be extended continuously to $\overline{D \setminus \{y\}}$ [5],[6], with the help of the mean value theorem we obtain

$$G_\Delta(x_m,y) = G_\Delta(x_m,y) - G_\Delta(x^*_m,y)$$

$$= \frac{\partial G_\Delta}{\partial n_m} (\xi_m(y),y)d(x_m) \quad (\xi_m(y) \in x_m^{*m}).$$
Thus

$$\int_{D} \frac{G(x_m, y)}{d(x_m)} f(y) dy = \int_{D} \frac{a G(x_m, y)}{an_m} (\xi_m(y), y) f(y) dy$$

Now the estimate in Theorem (A) and Lemma 1 allows us to pass the limit under the integral and then get

$$\int_{D} \frac{G(x_m, y)}{d(x_m)} f(y) dy + \int_{D} \frac{a G(x_m, y)}{an} (x_0, y) f(y) dy \quad (m = \infty)$$

with $\frac{a G}{an} \mid_{\partial D} \geq \text{const} > 0$ [5], [6]. Hence it should be positive. This contradiction fulfills the validity of our lemma.

From now on, we assume a, b satisfying conditions in Section 1 and $c(x) \in C^{0, \alpha}_{loc}(\mathbb{R}^n)$.

Proposition 1. Let

$$L(\lambda) \triangleq (L - \lambda), \quad G(\lambda) \triangleq G(\lambda) \quad (\lambda > 0)$$

Then there are $\alpha > 0$ and $C > 0$ such that

$$G(x, y) < C e^{-\alpha \sqrt{\lambda}} \frac{|x - y|}{|x - y|^{n-2}} \quad (n > 3) \quad (9)$$

where

$$G(x, y) = \int_{0}^{\infty} e^{-\lambda t} p^D(t, x, y) dt \quad (10)$$

and $p^D(t, x, y)$ is the transition density of the killed diffusion X^D of X at ∂D.

Proof. It is well known that $p^D(t, x, y)$ is the Green function of $\frac{\partial u}{\partial t} = Lu$ on D and $p^D(t, x, y) |_{x \in \partial D} = 0$. Meanwhile estimation

$$p(t, x, y) < C_{\varepsilon, T} \frac{1}{\varepsilon^{n/2}} e^{-\varepsilon \frac{(\gamma_1 - \varepsilon)|x - y|^2}{4t}} \quad (11)$$

$$0 < t < T, \quad x, y \in \mathbb{R}^n, \quad 0 < \varepsilon < \gamma_1$$
holds for the transition density $p(t,x,y)$ of X with a constant $C_{\varepsilon,T}$ (γ_1 is defined in (7)). [10] And the existence of $p^D(t,x,y)$ and its property can be established in a purely probabilistic way without the help of PDE just like what is done in the killed brownian motion case [13]. Now the estimate (11) reduces our case to the classical brownian one. Combinind (11) and

$$p^D(t,x,y) \leq p(t,x,y),$$

we have for small $\eta > 0$ that

$$\int_0^\delta e^{-\lambda t} p^D(t,x,y) dy \leq C_{\varepsilon,\delta,1} \frac{e^{-\sqrt{\gamma_1-\varepsilon}/(1+\eta)\sqrt{\lambda}|x-y|}}{\frac{\delta \cdot d(D)^2}{(1+\eta)^{n/2}} \cdot \frac{1}{u^{n/2}}} du$$

($d(D) =$ diameter of D)

$$\leq C_{\varepsilon,\delta,\eta} \frac{e^{-\sqrt{\gamma_1-\varepsilon}/(1+\eta)\sqrt{\lambda}|x-y|}}{|x-y|^{n-2}}$$

On the other hand

$$\int_\delta^\infty e^{-\lambda t} p^D(t,x,y) dt$$

$$\leq e^{1+\eta} \frac{d(D)}{4\delta} e^{-\sqrt{\gamma_1-\varepsilon}/(1+\eta)\sqrt{\lambda}|x-y|} \int_\delta^\infty p^D(y,x,y) dt,$$

And by Theorem (B) and (A)

$$\int_\delta^\infty p^D(t,x,y) dt \leq \int_0^\infty p^D(t,x,y) dt = G_L(x,y)$$

$$< cG_\Delta(x,y) < \frac{\tilde{C}}{|x-y|^{n-2}}$$
Thus (9) holds for $\alpha = \sqrt{\frac{\gamma_1 - \varepsilon}{1 + \eta}}, C = C_{\varepsilon, \delta, \eta} V(Ce^{1+\eta}) \frac{d(D)}{4\delta}$.

Remark Let

$$\hat{L} = \frac{1}{2} \nabla \nabla - \nabla(b \cdot)$$

to be the formal adjoint of L, and $\lambda > - \inf \{(\div b(x))\}$, then proposition 1 keeps valid for $G_{\lambda} = G_{L(\lambda)}$ where $L(\lambda) = \hat{L} - \lambda$.

Proposition 2 There exists $\beta > 0$ such that

$$G_{\lambda}(x,y) \leq \frac{C_{d(x)} e^{-\beta\sqrt{\lambda}|x-y|}}{|x-y|^{n-1}} \quad (n > 3) \quad (12)$$

Proof Inequality (12) follows by modifying Widman's arguments in [17]. For the specified annular domain A (which is denoted as D in [17]), $G_{\lambda}(z,y)$ is majorized by $\frac{C_{e^{-B\sqrt{\lambda}|x-y|}}}{|x-y|^{n-2}}$ and zero on $\partial A \cap D$ and ∂D respectively by Proposition 1. Then by the maximum principle and Theorem (B) $G_{\lambda}(z,y)$ (λ sufficiently large) in A can be majorized by the harmonic function with the boundary value $\frac{C_{e^{-B\sqrt{\lambda}|x-y|}}}{|x-y|^{n-2}}$ and zero on $\partial A \cap D$ and ∂D respectively. Thus the same arguments as [17] lead to the inequality (12).

From now on we always assume $c(x) \equiv 0$.

We need a version of Frobenius theorem of the elliptic PDE. A familiar fact is that this kind of counterpart can be proven by Krein-Rutman's theorem [9] and the strong maximum principle [5]. We state it as follows

Theorem (C)

$-L$ and $-\hat{L}$ with the Dirichlet boundary condition on ∂D have a common simple positive eigenvalue λ_0 at the left of their spectrum. The corresponding eigenfunctions, ϕ_0 and ψ_0, can be chosen positive on D and vanish on ∂D.
For this we have to do a little bit explanation both for the sketch of its proof and convenience of its application.

Let us introduce two Banach spaces:

\[B(D) \triangleq \{ f: f(x) = d(x)\tilde{f}(x), \tilde{f} \in C_b(D), \| f \|_{B(D)} \triangleq \| \tilde{f} \|_{C_b(D)} \} \]

\[B_0(D) \triangleq \{ f: f(x) = d(x)\tilde{f}(x), \tilde{f} \in C_U(D), \| f \|_{B_0(D)} \triangleq \| \tilde{f} \|_{C_U(D)} \} \]

where \(C_b(D) \) = space of bounded continuous functions and \(C_U(D) \) is equivalent to \(c(\overline{D}) \). \(B_0(D) \) is a closed subspace of \(B(D) \). \(B_0(D) \) is included in \(C_0(D) \) (\(C_b(D) \) functions vanishing at \(\partial D \)) but equipped with a stronger topology.

Lemma 3

1° Let \(G_\lambda \) be the operator with the kernel \(G_\lambda(x,y) \). Then we have

\[G_\lambda M_b(D) \subset B_0(D). \]

And \(G_\lambda \) is compact on \(B_0(D) \).

The semigroup \(T_t^D \) \((t \geq 0)\) in (2) maps \(M_b(D) \) into \(B_0(D) \). Besides, \(T_t^D \)
is compact on \(B_0(D) \) and on \(C_0(D) \) and strongly continuous on \(C_0(D) \).

Proof:

1°. We have \(G_\lambda f \in C_b(D) \) and

\[
\left| \frac{G_\lambda f(x')}{d(x')} - \frac{G_\lambda f(x)}{d(x)} \right| < \int_D \left| \frac{G_\lambda(x,y)}{d(x)} - \frac{G_\lambda(x',y)}{d(x')} \right| |f(y)|dy
\]

for any \(f \in M_b(D) \). The left hand side goes to zero when \(x' + x \in D \). In the case of \(x' + x \in \partial D \), \(\nabla G(x,y) \) can be extended continuously to \(\overline{D} \setminus \{ y \} \) [5], [6] which ensures that the left hand side turns also to zero. That means \(\frac{G_\lambda f}{d(x)} \) can be taken as a function in \(C(\overline{D}) \), i.e. \(G_\lambda f \in B_0(D) \). A very similar
argument shows that $\frac{G_x f}{d(x)}$ is equivalently continuous on \overline{D} for all $f = \tilde{f}_{t}$ with $\tilde{f}_{t} < 1$ which leads to the compactness of G_x on $B_0(D)$.

2°. First we point out that for any $f \in M_b(D)$

$$\frac{1}{d(x)} \int_D p^D(t,x,y) f(y) dy \in C^b(D)$$

holds, which says $T^D_{t} \subseteq B(D)$. In fact, $\int_D p^D(t,x,y) f(y) dy$ is continuous [10]. Combining Theorem (B), (A) and Lemma 1, we get

$$\sup_{x \in D} \frac{1}{d(x)} \left| \int_D p^D(t,x,y) f(y) dy \right|$$

$$< \sup_{x \in D} \frac{1}{d(x)} \int_D E^D(t) \int_D \frac{G_L(x,y)}{d(x)} dy \leq C \sup_{x \in D} \int_D \frac{G_A(x,y)}{d(x)} dy$$

$$< C \sup_{x \in D} \int_D \frac{dy}{|x-y|^{n-1}} < \infty.$$

Next we show that $\frac{1}{d(x)} \int_D p^D(t,x,y) f(y) dy$ is uniformly continuous on D. This can be done as Lemma 2 with the well-known fact that $\int_D p^D(t,x,y)$ can be extended continuously to D with respect to (x,y) ([10], Th 16.3). From these two steps we get $T^D_{t} f \in B_0(D)$. The compactness of $T^D_{t} (t > 0)$ on $B_0(D)$ or $C_0(D)$ can be proven just as we did in 1° with G_x. Finally, let us prove that $T^D_{t} f$ is strongly continuous on $C_0(D)$. For this we pick up

$$\bar{a}_{ij}(x), \bar{b}_i(x) \in C_b(R^n) \cap C^1_{loc}(R^n)$$

such that

$$\bar{a}_{ij}(x) = a_{ij}(x), \quad \bar{b}_i(x) = b_i(x) \quad (x \in D, i,j = 1,\ldots,n)$$
The Markov process \mathcal{X} generated by \mathcal{L} with coefficients $a_{i,j}$, b_i is a strong Feller process with strongly continuous semigroup on $C_0(D)$. However \mathcal{X}^D and χ^D have the same (killed) semigroup on D. By a fact in [1], T^D_t is strongly continuous on $C_0(D)$. That accomplishes the lemma.

Late on, let G_λ be the operator with the kernel $G_\lambda(x,y)$: the Green function of $-\mathcal{L} - \lambda$.

We have $\int_D \frac{G_\lambda(x,y)}{d(x)} f(y) dy > \epsilon_\lambda > 0$ (for some ϵ_λ and $\forall f \in B^+_0(D)$ i.e. $f \in B_0(D)$ and $f > 0$) as in Lemma 2 (Similar inequality holds for G_λ with λ large enough). It implies that G_λ is strictly positive on $B^+_0(D)$ in the sense of Krein-Rutman [9]. Now their famous theorem works: The first eigenvalue $\gamma(\lambda)$ of G_λ is positive and simple with a positive eigenfunction $\phi_0^\lambda(x)$. And the resolvent identity $G_\mu - G_\lambda = (\lambda - u)G_\mu G_\lambda$ assures that $\phi_0(x)$ is independent of λ, i.e. $\phi_0^\lambda(x) = \phi_0(x)$, and $\gamma(\lambda) = \frac{1}{\lambda + \lambda_0}$. Similarly G_λ has a positive eigenfunction $\psi_0(x)$ with positive simple first eigenvalue $\frac{1}{\lambda + \lambda_0}$ when λ is large enough. Since we have $\langle G_\lambda f, g \rangle_{L^2(D)} = \langle f, G_\lambda g \rangle_{L^2(D)}$ for $f, g \in L^2(D)$ and G_λ, \hat{G}_λ are compact both on $B_0(D)$ and $L^2(D)$, we should have $\lambda_0 = \lambda_0$, and the other generalized eigenspace M_j, \hat{M}_j of G_λ, \hat{G}_λ are finite dimensional and can be chosen that the corresponding point spectrum are $\frac{1}{\lambda + \lambda_j}$ and $\frac{1}{\lambda + \overline{\lambda}_j}$, and $M_j \perp \hat{M}_k$ in $L^2(D)$ when $j \neq k$. Meanwhile ϕ_0, ψ_0 are determined uniquely by

$$
\begin{align*}
-L\phi &= \lambda_0\phi \\
\phi|_{\partial D} &= 0 \\
-L\psi &= \lambda_0\psi \\
\psi|_{\partial D} &= 0 \\
\phi &> 0 \text{ on } D \\
\psi &> 0 \text{ on } D.
\end{align*}
$$

Surely, we can assume that $\int \phi_0(x)\psi_0(x) dx = 1$. Moreover $\{\phi_0, \phi_j^\lambda : j, \lambda \text{ varies}\} \cup \{\psi_j^\lambda : j, \lambda \text{ varies}\}$ generates $L^2(D)$, where $\phi_j^\lambda \in M_j$, $\psi_j^\lambda \in \hat{M}_j$ are given by
\[(\lambda_j + L)^{m_{jL}} \phi_{jL} = 0 \quad \text{and} \quad (\lambda_j + L)^{\hat{m}_{jL}} \psi_{jL} = 0\]
\[\phi_{jL} \mid_{\partial D} = 0 \quad \text{and} \quad \psi_{jL} \mid_{\partial D} = 0\]

with \(m_{jL} < \dim M_j\), \(\hat{m}_{jL} < \dim \mathfrak{A}_j\) respectively.

Proposition 3

\[\phi_0, \psi_0 \in B_0(D).\]

And there are \(\beta_2 > \beta_1 > 0\) such that

\[\beta_1 d(x) < \phi_0(x) < \beta_2 d(x),\]
\[\beta_1 d(x) < \psi_0(x) < \beta_2 d(x).\]

Proof: Since we can take a sufficiently large \(\lambda\) such that

\[\psi_0(x) = \frac{(\lambda + \lambda_0) \int_D G_\lambda(x,y)\psi_0(y)dy}{d(x)},\]

the proposition follows immediately from Theorem (B) and Lemma 2.

Corollary \(\phi_0(x)\) or \(\psi_0(x)\) can be used instead of \(d(x)\) in the definition of \(B_0(D)\).

Let us denote the Green function of \(\frac{\partial^2 u}{\partial t^2} = Lu\) on \(D\) by \(\hat{p}^D(t,x,y)\) \((= p^D(t,y,x))\) and set

\[\hat{r}^D_t f(x) = \int_D \hat{p}^D(t,x,y)f(y)dy.\]

Proposition 4

Semigroups \(T^D_t\) and \(T^D_t\) on \(B_0(D)\) have a common first eigenvalue \(e^{-\lambda_0 t}\)

which is simple with eigenfunctions \(\phi_0\) and \(\psi_0\) respectively.
Proof: By Lemma 3, T^D_t only has non-zero pure point spectrum. Then it follows from the spectral mapping theorem ([8] Th. 16.7.2) that T^D_t and T^D_t have the first eigenvalue $e^{-\lambda_0 t}$. Since G_λ and G_{λ} have no generalized eigenfunction with the eigenvalue $e^{-\lambda_0 t}$ either. That shows $e^{-\lambda_0 t}$ is a simple eigenvalue of T^D_t and T^D_t.

Theorem 1

T^D_t, T^D_t as semigroups on $B_0(D)$ are strongly continuous.

Proof: By Hille-Yosida Theorem, it suffices to prove that

$$\|\lambda G_\lambda - f\|_{B_0(D)} \to 0, \|\lambda G_\lambda f - f\|_{B_0(D)} \to 0 \quad (\lambda \to \infty) \quad (13)$$

It follows from Proposition 2 that

$$\frac{1}{d(x)} \int_D \lambda G_\lambda(x, y)I_{\{|x - y| > \delta\}} dy$$

$$\leq \frac{c}{\delta^{n-1}} \lambda e^{-B\sqrt{\lambda} \delta} m(D) \to 0 \quad (\lambda \to \infty)$$

(uniformly with respect to x).

Thus Proposition 3 gives us

$$\sup_{x \in D} \frac{\lambda G_\lambda(x, y)}{\phi_0(x)} \to 0 \quad (\lambda \to \infty) \quad (14)$$

Now for any $f \in B_0(D)$, by the corollary of Proposition 3 there is a $\tilde{f} \in C_0(D)$ such that $f = \tilde{f} \phi_0$. Then we have
\[\| \lambda G f - f \|_{B_0(D)} = \| \frac{\lambda G}{\phi_0} f \|_C(D) \]

\[\leq \sup_{x \in D} \int_D \frac{\lambda G(x,y) \phi_0(y)}{\phi_0(x)} |\tilde{f}(y) - \tilde{f}(x)| \, dy + \]

\[+ \sup_{x \in D} |\tilde{f}(x)| \int_D \frac{\lambda G(x,y) \phi_0(y)}{\phi_0(x)} \, dy - 1 | \]

\[\leq C_1 \sup_{x \in D} \int_{|x-y| > \delta} \frac{\lambda G(x,y)}{\phi_0(x)} \, dy + \max_{x \in D} \sup_{|y-x| < \delta} |\tilde{f}(y) - \tilde{f}(x)| \frac{\lambda}{\lambda + \lambda_0} + \]

\[+ \| \tilde{f} \|_{C(D)} \left(\frac{\lambda}{\lambda + \lambda_0} - 1 \right) . \]

Hence (13) follows from (14).

3. KILLED DIFFUSIONS

Let us assume that \(X = (\Omega, F, F_t, P, \theta_t, X) \) is the Markov process generated by \(L \) on \(\mathbb{R}^n \).

Denote

\[T_t^\psi f(x) = e^{\lambda_0 t} \frac{T_t^D(\phi_0 f)(x)}{\phi_0(x)} = \int_D p^\psi(t, x, y) f(y) \, dy \]

and

\[\hat{T}_t^\psi f(x) = e^{\lambda_0 t} \frac{\hat{T}_t^D(\psi_0 f)(x)}{\psi_0(x)} = \int_D \hat{p}^\psi(t, x, y) f(y) \, dy \]

where \(f \in C_0(D) \) and
\[p_{\phi}(t,x,y) \triangleq \frac{\lambda_0 t D(t,x,y) \phi_0(y)}{\phi_0(x)} \]

\[\hat{p}_{\psi}(t,x,y) \triangleq \frac{\lambda_0 t D(t,x,y) \psi_0(y)}{\psi_0(x)} = \frac{\lambda_0 t D(t,y,x) \psi_0(y)}{\psi_0(x)} \]

It is easy to see that \(T_{t1}^\phi = 1, T_{t1}^\psi = 1. \)

Theorem 2 There exist \(C_2 \) (depending on \(t_0 \)) \(> C_1 > 0 \), such that for \(t > t_0 \) and \(x \in D \)

\[C_1 e^{-t \lambda_0 D(x)} < p_x(\tau_D > t) < C_2 e^{-t \lambda_0 D(x)} \] \((15) \)

and

\[C_1 e^{-t \lambda_0 \phi_0(x)} < p_x(\tau_D > t) < C_2 e^{-t \lambda_0 \phi_0(x)} \] \((16) \)

hold.

Proof: Since Proposition 3 we only need to check (16). For the lower bound, we have

\[p_x(\tau_D > t) = \int_D \frac{p_D(t,x,y) \phi_0(y)}{\phi_0(x)} e^{\lambda_0 t} \frac{1}{\phi_0(y)} \ dy \]

\[> \sup_{x \in D} \frac{1}{\phi_0(y)} \triangleq C_1 > 0. \]

For the upper bound, we recall from Lemma 3 and Proposition 3 that there exists a constant \(C_{t2} \) such that \(g_t(x) \triangleq \int_D \frac{p_D(t,x,y)}{\phi_0(x)} \ dy \leq C_{t2}. \) Hence for \(t > t_0 \)

\[p_x(\tau_D > t) = T_{t-t_0}^\phi g_{t_0}(x) \leq C_{t0} T_{t-t_0}^\phi 1 \leq C_{t2} \]

since \(T_{t1}^\phi = 1. \)
Theorem 3

There exists a constant \(c \) only depending on \(D \), such that

\[
\sup_{x \in D} \left| e^{\lambda_0 t} \frac{P_x(\tau_D > t)}{\phi_0(x)} - c \right| \to 0 \quad (t \to \infty)
\]

(17)

Moreover

\[
\sup_{x \in D} \left| e^{\lambda_0 t} \frac{\int_D P(t,x,y)f(y)dy}{\phi_0(x)} - \int_D f(y)\psi_0(y)dy \right| \to 0 \quad (t \to \infty)
\]

(18)

\[
\sup_{x \in D} \left| e^{\lambda_0 t} \frac{\int_D \rho(t,x,y)f(y)dy}{\psi_0(x)} - \int_D f(y)\phi_0(y)dy \right| \to 0
\]

(18')

where \(f \in M_b(D) \).

Proof:

First we assume \(f \in B_0(D) \).

The compactness of \(T^D_t \) on \(B_0(D) \) implies that there exists a decomposition of \(B_0(D) \) into the direct sum of its subspaces \(\mathcal{M}_{\lambda_0} \) and \(\mathcal{N}_{\lambda_0} \) which are invariant under \(e^{-\lambda_0 t} - T^D_t \), and

\[
B_0(D) = \mathcal{M}_{\lambda_0} + \mathcal{N}_{\lambda_0}, \quad \mathcal{M}_{\lambda_0} = \{ a\phi_0 : \alpha \in \mathbb{R}^\prime \}
\]

\[
T^D_t \mathcal{N}_{\lambda_0} \subset \mathcal{N}_{\lambda_0}
\]

and \(T^D_t \) is compact on \(\mathcal{N}_{\lambda_0} \), while \(e^{-\lambda_0 t} \) is no more in the spectrum of \(T_t \) on \(\mathcal{N}_{\lambda_0} \) ([11] Section 6.2, Th. 6).

Now \(f \) can be written into

\[
f = c_f \phi_0 + g \quad g \in \mathcal{N}_{\lambda_0}.
\]

And then
\[T^D_t f = c_f e^{-\lambda_0 t} \phi_0 + T^D_t g, \]

Let \(\lambda_1 \) be in the point spectrum of \(T^D_t \) with the smallest real part bigger than \(\lambda_0 \). The spectrum radius theorem tells us that

\[
\lim_{t \to \infty} \|T^D_t\|^{1/t} = e^{-\text{Re} \lambda_1} < e^{-\mu} \quad (\lambda_0 < \mu < \text{Re} \lambda_1).
\]

Thus we have

\[
\|T^D_t\|^{1/t} < e^{-\mu} \quad (t \text{ large enough}).
\]

Hence

\[
\sup_{x \in D} \left| \frac{e^{\lambda_0 t} T^D_t f}{\phi_0(x)} - C_f \right| = \sup_{x \in D} \left| \frac{e^{\lambda_0 t} T^D_t g}{\phi_0(x)} \right| < \text{const} e^{\lambda_0 t} = \text{const} e^{\lambda_0 t} \|T^D_t g\| \quad (t \to \infty).
\]

Let us specify \(c_f \):

\[
0 = \lim_{t \to \infty} \int_D \frac{e^{\lambda_0 t} T^D_t f}{\phi_0(x)} \psi_0(x) \phi_0(x) dx = \lim_{t \to \infty} \int_D \psi_0(y) f(y) dy - c_f
\]

Secondly, for \(f \in M_0(D) \), we have \(T^D_t f \in B_0(D) \) from Lemma 3. Applying the formula just got, we obtain

\[
\sup_{x \in D} \left| \frac{e^{\lambda_0 t} T^D_t f}{\phi_0(x)} \right| - \int_D \psi_0(y) T^D_t F^D_t f(y) dy + 0 = 0 \quad (t \to \infty)
\]

Then (18) follows.
4. CONDITIONAL KILLED DIFFUSIONS

Theorem 4

T^ψ_t and \hat{T}^ψ_t are strongly continuous semigroups on $C_u(D)$. If $f \in C^\infty_K(D)$ (infinitely differential functions with compact support), then

$$A^\phi f = \left(\frac{1}{Z} \nabla \psi + \nabla \psi + a(\nabla \log \phi_0) \nabla \right) f,$$

$$A^\psi f = \left(\frac{1}{Z} \nabla \psi - \nabla \psi + a(\nabla \log \psi_0) \nabla \right) f,$$

(19)

where A^ϕ, A^ψ are the generator of T^ϕ_t and \hat{T}^ψ_t on $C_u(D)$ respectively.

Proof: The first assertion is just a restatement of Theorem 1. For the second one, we have $f \in D(A^\phi)$ iff $\phi f \in D(A)$ (A: generator of T_t) and under this condition $A^\phi f = A(\phi_0 f)/\phi_0$. Then (19) follows from the direct calculation.

As usual $\{p^\phi(t,x,y)\}$ and $\{p^\psi(t,x,y)\}$ generate families of Markov measures $\{p^\phi_x\}$ and $\{p^\psi_x\}$ with state space D respectively.

Theorem 5

X is a continuous homogeneous conservative Markov process with strong Feller (and $C_u(D)$ strongly continuous semigroup) under both $\{p^\phi_x\}$ and $\{p^\psi_x\}$ with invariant measure $\nu_0(\Gamma) = \int_{\Gamma} \phi_0(x) \psi_0(x) dx$ ($\Gamma \in B(D)$).

$\{p^\psi_x\}$ is the time reversal of $\{p^\phi_x\}$ with respect to the invariant measure ν_0 which is mixing.

And we have for any initial measure $\mu(\Gamma)$ ($\Gamma \in B(D)$):

$$\int_D \int_D p^\phi(t,x,y) f(y) \mu(dx) dy + \int f(y) \mu_0(dy) \quad (f \in M_b(D))$$

(20)

$$\sup_{x \in D} \int_D \left| p^\psi(t,x,y) - \psi_0(y) \psi_0(y) \right| dy + 0 \quad (t + \infty)$$

(21)

(the same for \hat{p}^ψ!)
Proof:

First, we show the path continuity of X under \(\{p_t^x\} \) (or \(\{p_t^x\} \)). For any $\xi \in \sigma(X_t: s < t)$, we have

$$E_{X_t}^\xi = \frac{e^{\lambda_0 t}}{\phi_0(x)} E_x(\xi \phi_0(X_t)).$$

It follows that

$$p_{X_t}^x(w: X_s(w) \text{ discontinuous on } [0,n]) = \frac{e^{\lambda_0 t}}{\phi_0(x)} E_x (I(X_s \text{ discontinuous on } [0,n]) \phi_0(X_n)) = 0$$

Next, we set

$$q_{t_0}(y) = \int_D \frac{p^D(t_0,x,y)}{\phi_0(x)} \mu(dx).$$

Then Theorem 2 implies

$$\int_D p^\phi(t,x,y)f(y)\mu(dx) = \int_{D \times D} \int_D p^D(t - t_0,x,y,z)\phi_0(z)f(z)q_{t_0}(y)dydz$$

$$= \int_D e^{\lambda_0(t - t_0)} \int_{t_0}^{t} (\phi_0(y))e^{-\lambda_0 t_0}q_{t_0}(y)dy$$

$$+ \int_{L^2(\Omega)} \phi_0(y)e^{\lambda_0 t_0}q_{t_0}(y)dy (t + \infty)$$

$$= \langle \phi_0^t, \psi_0^t \rangle_{L^2(\Omega)} = \int_D f(y)\mu_0(dy).$$

To see the mixing of μ_0, we calculate, for instance, for bounded measurable functions f and g

$$E_{\mu}^\phi[f(C_{t},X_{t+s_1},X_{t+s_2})g(X_{u_1},X_{u_2})]$$

$$= \int \phi_0(x)\psi_0(x)p^\phi(u_1,x,y)p^\phi(u_2-u_1,y,z)g(y,z)p^\phi(t - u_2,z,a)$$

$$p^\phi(s_1,a,b)p^\phi(s_2 - s_1,b,c)f(a,b,c)dxdydzdadbdc.$$
The right hand side goes to $E^\Phi f(X_0, X_{s_1}, X_{s_2})E^\Phi g(x_{U_1}, x_{U_2})$ as $t \to \infty$, because we have

$$
\int \phi_0(x)\psi_0(x)p^\phi(u_1, x, y)dx = \phi_0(y)\psi_0(y)
$$

$$
\int \phi_0(y)\psi_0(y)p^\phi(u_2 - u_1, y, z)g(y, z)dy =
\quad = e^{\lambda_0(u_2 - u_1)}\phi_0(z)\int p^D(u_2 - u_1, y, z)\psi_0(y)g(y, z)dz
$$

$$
\hat{\phi}_0(z)g(z)
$$

and

$$
\int \phi_0(z)g(z)p^\phi(t - u_2, z, a)dz = \phi_0(a)\int e^{\lambda_0(t - u_2)}p^D(t - u_2, a, z)g(z)dz
$$

$$
+ \phi_0(a)\psi_0(a)\int g(z)\phi_0(z)dz \quad (t \to \infty,\text{ uniformly})
$$

What we get above deduces that for any $\sigma(X_t, 0 < t < \infty)$ cylinder sets A and B, it is valid that

$$
p^\phi_{\mu_0}(\theta_t A \cap B) + p^\phi_{\mu_0}(A)p^\phi_{\mu_0}(B) \quad (t \to \infty).
$$

Thus the standard way of approximating $\sigma(X_t, 0 < t < \infty)$ measurable sets A, B by cylinder sets A_n, B_n ensures that

$$
|p^\phi_{\mu_0}(\theta_t A \cap B) - p^\phi_{\mu_0}(\theta_t A \cap B_n)| < p^\phi_{\mu_0}(\theta_t A \Delta \theta_t A_n) + p^\phi_{\mu_0}(B \Delta B_n)
$$

$$
= p^\phi_{\mu_0}(A \Delta A_n) + p^\phi_{\mu_0}(B \Delta B_n) \to 0 \quad (n \to \infty,\text{ uniformly for } t)
$$

which implies

$$
p^\phi_{\mu_0}(\theta_t A \cap B) + p^\phi_{\mu_0}(A)p^\phi_{\mu_0}(B) \quad (t \to \infty)
$$
Finally, we estimate
\[
\sup_{x \in \mathbb{D}} \int_D |p^\phi(t, x, y) - \phi_0(y)\psi_0(y)| \, dy
\]
\[
= \sup_{x \in \mathbb{D}} \int_D (p^\phi T, x, y) - p^\phi(t, x', y)\phi_0(x')\psi_0(x') \, dx' \, dy
\]
\[
\leq \sup_{x \in \mathbb{D}} \int_D |p^\phi(t, x, y) - p^\phi(t, x', y)\phi_0(x')\psi_0(x')| \, dx'
\]
\[
= \sup_{x \in \mathbb{D}} \sup_{\|M\|_D < 1} |T_t f(x) - T_t f(x')| \phi_0(x')\psi_0(x') \, dx'
\]
\[
+ 0 \quad (t + \infty)
\]
since (18) holds uniformly for \(f : \mathbb{N} \leq 1 \).

The other conclusions of the Theorem are easy to obtain.

Corollary If \(L \) is symmetric, then \(\psi_0(x) = \text{const.} \phi_0(x)e^{2/\lambda}(a^{-1}b) \).

The next theorem says that \(X \) under \(\{P'_x\} \) (we denote it as \(X^\phi \)) can be regarded as original process \(X \) (under \(\{P_x\} \)) conditioned on \(D \) in the following sense: \(\{P'_x\} \) is the weak limit (when \(T + \infty \)) of \(X^T \) the killed diffusion conditioned up to time \(T \). Actually \(X^T \) is determined by the nonhomogeneous Markov measures \(\{P'_{s,x}\} [12] \) with the density:

\[
p^T(s, t, x, y) = p^D(t - s, x, y) \frac{p_y(y_D > T - t)}{p_x(y_D > T - s)}.
\]

(22)

Hence we call \(\{P'_x\} \) conditional killed diffusion on \(D \).

Theorem 6 For any \(T_0 > 0 \), \(X^T \) converges weakly to \(X^\phi \) in \(D[0, T_0] \) as \(T + \infty \).
Proof.

Two things have to be done for the proof. First, the convergence of the finite distributions of $p^T_{s,x}$ on $[0,T_0]$. Second, the uniform tightness of the family $p^T_{s,x}$ with $T_0 < T$. In the light of Theorem 1 and 2, we have

$$p^T(s,t,x,y) < \text{Const.} \ p^\phi(t - s,x,y) \quad (23)$$

and

$$p^T(s,t,x,y) + p^\phi(t - s,x,y) \quad (T \to \infty).$$

It implies that the finite distributions of $p^T_{s,x}$ converge to those of p^ϕ_x. On the other hand, since Theorem 3 T^ϕ_t is strongly continuous on $C_0(D)$, then $p^\phi(t,x,y)$ satisfies that

$$\sup_{x \in D} \int_{|x-y| > \delta} p^\phi(t,x,y)dy \to 0 \quad (t \to 0)$$

by an argument similar to that in [4].

It follows from (23) that

$$\sup_{x \in D} \int_{|x-y| > \delta} p^T(s,t,x,y)dy \to 0 \quad (t \to 0)$$

uniformly with respect to s and T. Now a theorem [16] about the tightness of the Markov families of $D[0,T_0]$ provides us that $p^T_{s,x}$ is compact in $D[0,T_0]$. Thus it implies that $p^T_{s,x} \Rightarrow p^\phi_x$ in $D[0,T_0]$. \qed

We see that this Theorem gives us a comprehensive understanding of the Markov process X^ϕ.

All these Propositions and Theorems above remain true with a usual modifi-
cation in the case of $n = 2$ or $n = 1$.
REFERENCES

58. M. Biroli and U. Mosco, Wiener Estimates for Parabolic Obstacle Problems
59. E. Bennett and M. Zama, Prices and Bargaining in Cooperative Games
60. W.A. Harris and Y. Shibuya, The n-th Root of Solutions of Linear Ordinary Differential Equations
61. Milward F. Beatty, Some Dynamical Problems in Continuum Physics
63. A. Novick-Cohen, Interfacial Instabilities in Diffusional Solidification of Dilute Binary Alloys: The Kuramoto-Sivashinsky Equation
64. H.F. Weinberger, On Metastable Patterns in Parabolic Systems
65. D. Arnold and R.S. Falk, Continuous Dependence on the Elastic Coefficients for a Class of Anisotropic Materials
67. Ingo Müller, Gases and Rubbers
68. Ingo Müller, Pseudoelasticity in Shape Memory Alloys - an Extreme Case of Thermoplasticity
69. Luis Magalhães, Persistence and Smoothness of Hyperbolic Invariant Manifolds for Functional Differential Equations
70. A. Damjanov and M. Vogelius, Homogenization Limits of the Equations of Elasticity in Thin Domains
72. J.L. Vazquez and C. Yarur, Isolated Singularities of the Solutions of the Schrödinger Equation with a Radial Potential
73. G. Dal Maso and U. Mosco, Wiener's Criterion and T-Convergence
74. John H. Maddocks, Stability and Folds
75. R. Hardt and D. Kinderlehrer, Existence and Partial Regularity of Static Liquid Crystal Configurations
76. M. Maruker, Construction of Smooth Ergodic Coycles for Systems with Fast Periodic Approximations
77. J.L. Ericksen, Stable Equilibrium Configurations of Elastic Crystals
78. Patricio Aviles, Local Behavior of Solutions of Some Elliptic Equations
80. R. Pepe, Phase Transitions: Stability and Admissibility in One Dimensional Nonlinear Viscoelasticity
81. Mariano Giaquinta, Quadratic Functions and Partial Regularity
82. J. Bona, Fully Discrete Galerkin Methods for the Korteweg De Vries Equation
83. J. Maddocks and J. Keller, Mechanics of Robes
84. F. Berens, Qualitative Properties for some nonlinear higher order
85. F. Berens, Finite Speed of Propagation and Asymptotic Rates for some Nonlinear Higher Order Parabolic Equations with Absorption
86. S. Reichstein and S. Reiter, Game Forms with Minimal Strategy Spaces
87. T. Ding, An Answer to Littlewood's Problem on Boundedness
88. J. Rubinstein and R. Mauer, Dispersion and Convection in Periodic Media
89. W.H. Fleming and P.E. Souganidis, Asymptotic Series and the Method of Vanishing Viscosity
90. Hanh Bui, Existence and Asymptotic Behavior for Strong Solutions of Navier-Stokes Equations in the Whole Space
91. L.A. Caffarelli, J.L. Vazquez, and N.I. Wolanski, Lipschitz Continuity of Solutions and Interfaces of the N-Dimensional Porous Medium Equation
92. R. Johnson, m-Functions and Floquet Exponents for Linear Differential Systems
93. F.V. Atkinson and L.A. Peletier, Ground States and Dirichlet Problems for \(-\Delta u = f(u)\) in \(\mathbb{R}\)
95. H.A. Levine and H.F. Weinberger, Inequalities between Dirichlet and Neumann Eigenvalues
96. J. Rubinstein, On the Macroscopic Description of Slow Viscous Flow Past a Random Array of Spheres
97. G. Dal Maso and U. Mosco, Wiener Criteria and Energy Decay for Relaxed Dirichlet Problems
98. V. Oliker and P. Waltman, On the Monge-Ampere Equation Arising In the Reflector Mapping Problem
200. Y. Giga and R. Kohn, Characterizing Blow-up Using Similarity Variables
201. P. Cannarsa and M. M. Soner, On the Singularities of the Viscosity Solutions to Hamilton-Jacobi-Bellman Equations
203. G. Buttazzo, G. Dal Maso, and U. Mosco, A Derivation Theorem for Capacities with Respect to a Radon Measure
204. S. Cowin, M. Mehrabadi, On the Identification of Material Symmetry for Anisotropic Elastic Materials
206. M. Chipot, On the Reynolds Lubrication Equation
207. R.V. Kohn and G.W. Milton, On Bounding the Effective Conductivity of Anisotropic Composite Materials
208. I.J. Bakelman, Notes Concerning the Torsion of Hardening Rods and Its N-Dimensional Generalizations
209. I.J. Bakelman, The Boundary Value Problems for Non-Linear Elliptic Equations II
210. Quangluong Gong & Minh Q. Tran, On the Large Deviation Functions of Markov Chains
211. Arle Loizarowicz, Control Problems with Random and Progressively Known Target
212. R.W.R. Darling, Ergodicity of a Measure-Valued Markov Chain Induced by Random Transformations