ON THE REYNOLDS LUBRICATION EQUATION

By

M. CHIPOT

IMA Preprint Series # 206
January 1986

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
On the Reynolds Lubrication Equation

M. Chipot

Institute for Mathematics and its Applications
514 Vincent Hall
206 Church St. S.E.
University of Minnesota
Minneapolis, MN 55455 (U.S.A.)

and

Université de Metz
Département de Mathématiques
Ile du Saulcy, 57045 Metz - Cedex (FRANCE)
0. Introduction

Let \(\Omega \) be a bounded open set in \(\mathbb{R}^2 \) with "smooth" boundary \(\partial \Omega \). \(\Omega \) is the region where two solid bodies are in contact. These two solids are moving and the average of their velocities is denoted by \(\overline{V} = (V_1, V_2) \). The pressure \(p = p(X) \) which develops in a fluid layer confined between these two bodies satisfies the so-called Reynolds lubrication equation:

\[
V \cdot (h^3 \rho \nabla p) = 6\mu \nabla \cdot (\rho \nabla h) \quad \text{in} \quad \Omega
\]

\[
p = P_a \quad \text{on} \quad \partial \Omega.
\]

Here \(\rho \) is the density of the fluid, \(\mu > 0 \) its dynamic viscosity, \(h = h(X) \) is the distance between the two bodies and \(P_a > 0 \) is the given ambient pressure. (see [1][7][8]).

We will assume all along that \(h \) is a Lipschitz continuous function such that

\[
0 < h_1 < h(X) < h_2 \quad \text{a.e.} \quad X = (x,y) \in \Omega
\]

\[
|\nabla h(X)| < H \quad \text{a.e.} \quad X = (x,y) \in \Omega
\]

where \(h_1, h_2, H \) are positive constants.

When the fluid is incompressible, - i.e. when \(\rho \) is a positive constant, existence and uniqueness for a solution to (1) (2) is a trivial matter since the equation is linear. In the compressible case when

\[
\rho = \rho(p)
\]

the problem becomes more challenging. In [3] (see also [4],[5]) the problem has been investigated in the case where

\[
\rho(p) = p
\]

that is to say when the lubricating fluid obeys the isothermal perfect gas relation (after rescaling). In this paper we are going to examine the general case. However, most of our results are new even in the case where (6) holds.
The paper is organized as follows: in section 1 we investigate the problem of existence of a solution for (1)(2) when ρ is given by (5). In section 2 we consider a case where (1),(2) reduces to a one dimensional problem and we study the question of uniqueness as well as the shape of the solution. Finally, in a third section we give some extensions of the results of section 2 in higher dimension.

1. Existence

Assume that we are looking for a positive solution p of

$$
\nabla \cdot (h^3 \rho(p) \nabla p) = 6 \mu \nabla \cdot \nabla (\rho(p) h) \text{ in } \Omega.
$$

(7)

$$
p = p_a > 0 \text{ on } \partial \Omega.
$$

(8)

For physical reasons it is natural to assume that ρ satisfies:

ρ is continuous, non decreasing and is such that $\rho(0) = 0$, $\rho(s) > 0 \forall s > 0$. (9)

Clearly, under this assumption, the function R defined by

$$
R(s) = \int_0^s \rho(t) dt
$$

is one-to-one from $[0, +\infty)$ onto itself. Let us denote its inverse by R^{-1}. If $p > 0$ is a solution of (7)(8) (for instance in the classical sense when the data are smooth) then

$$
u = R(p)
$$

(11)

is a solution of

$$
\nabla \cdot (h^3 \nabla \nu) = \nabla \cdot (6 \mu h \rho \circ R^{-1}(u)) \text{ in } \Omega
$$

(12)

$$
u = \phi \text{ on } \partial \Omega
$$

(13)

where we have set $\phi = R(p_a)$. Conversely, if $u > 0$ is a solution of (12)(13) then $p = R^{-1}(u)$ is a solution of (7)(8). So setting
\[\beta(s) = 6u \cdot \rho \mathbb{R}^{- 1}(s) \]

we are going to consider the problem

\[\nabla \cdot (h^3 \nabla u) = \nabla \cdot (h \beta(u)) \quad \text{in} \quad \Omega. \]

\[u = \phi \quad \text{on} \quad \partial \Omega. \]

(If we do not know a priori that \(u \) is non negative we can extend \(\beta \) by 0 when \(s \) is negative) The assumptions on \(\beta \) will be:

\[\beta \text{ is a continuous function} \]

\[\exists C > 0 \text{ such that } |\beta(s)| \leq \frac{\sqrt{\nu h_1^3}}{2h_2 |V|} |s| + C \quad \forall s \in \mathbb{R} \]

where \(h_1, h_2 \) are the constants defined in (3), \(|V| \) denotes the Euclidean norm of \(V \) and \(\nu \) is the smallest eigenvalue of the problem

\[-\Delta w = \nu w \quad \text{in} \quad \Omega \]

\[w = 0 \quad \text{on} \quad \partial \Omega. \]

Remark 1: It is very easy to check that the above assumptions hold for instance for \(s > 0 \) when \(\rho \) is given by

\[\rho(s) = Cs^\alpha \]

where \(C, \alpha \) are two positive constants. More precisely in this case we have

\[\beta(s) = 6uC \left(\frac{\alpha + 1}{C} \right)^{\alpha + 1} \frac{\alpha}{s^{\alpha + 1}}. \]

Let us denote by \(H^1(\Omega), \ H^1_0(\Omega) \) the usual Sobolev spaces on \(L^2(\Omega) \) (see for instance [6]). For \(\phi \in H^1(\Omega) \) we will say that \(u \) is a weak solution of (15)(16) if and only if:

\[u - \phi \in H^1_0(\Omega) \]

\[\int_{\Omega} (h^3 \nabla u \cdot \nabla \xi - h \beta(u) \nabla \cdot \nabla \xi) \, dx = 0 \quad \forall \xi \in H^1_0(\Omega). \]
Remark 2: Note that when \(u \in H^1(\Omega) \) we have \(\beta(u) \in L^2(\Omega) \) and (23) makes sense (see (3)(17)(18))

Then we have:

Theorem 1: Let \(\phi \in H^1(\Omega) \) and assume that (3)(17)(18) hold. Then there exists a weak solution of (15)(16)

Proof: For \(v \in L^2(\Omega) \) let us denote by \(u = T(v) \) the solution of the Dirichlet problem:

\[
u - \phi \in H^1_0(\Omega) \tag{24}\]

\[
\int_{\Omega} (h^3 \nabla u \cdot \nabla \xi - h \beta(v) \nabla \cdot \nabla \xi) \, dx = 0 \quad \forall \xi \in \mathcal{C}^1(\Omega). \tag{25}\]

Moreover set

\[B_R = \{ v \in L^2(\Omega) | \|v\|_2 < R \}\]

where \(\| \cdot \|_2 \) denotes the usual norm on \(L^2(\Omega) \).

First, we claim that for \(R \) large enough, \(T \) maps \(B_R \) into \(B_R \). Indeed if we substitute \(\xi = u - \phi \) into (25) we obtain:

\[
\int_{\Omega} h^3 \| \nabla (u - \phi) \|^2 \, dx = \int_{\Omega} [h \beta(v) \nabla \cdot \nabla (u - \phi) - h^3 \nabla \phi \cdot \nabla (u - \phi)] \, dx.
\]

(\(\| \cdot \| \) denotes the usual Euclidean norm). Using (3) and (18) we get for some constant \(C \)

\[
h^3_1 \int_{\Omega} \| \nabla (u - \phi) \|^2 \, dx \leq h^3 \int_{\Omega} \left(\frac{1}{2} \|v\| + C(1 + \| \nabla \phi \|) \right) \| \nabla (u - \phi) \| \, dx.
\]

Hence by Cauchy-Scharz inequality:

\[
\int_{\Omega} \| \nabla (u - \phi) \|^2 \, dx \leq \nu \int_{\Omega} \left(\frac{1}{2} \|v\| + C + C \| \nabla \phi \| \right)^2 \, dx. \tag{26}\]

Combining the above inequality and the Poincaré inequality
\[
\int_{\Omega} |u - \phi|^2 \, dx \leq \nu^{-1} \int_{\Omega} |\nabla (u - \phi)|^2 \, dx.
\]

leads to:

\[
\int_{\Omega} |u|^2 \, dx \leq \frac{1}{2} \int_{\Omega} |v|^2 \, dx + C
\]

for some constant \(C \). If now we choose \(R^2 > 2C \) it is clear that for \(v \in B_R \) we have by (27)

\[
|u|^2_2 \leq \frac{1}{2} R^2 + C < R^2
\]

and thus \(T \) maps \(B_R \) into \(B_R \). From (25) and the fact that \(H^1(\Omega) \) is compactly embedded in \(L^2(\Omega) \), we see that \(T(B_R) \) is precompact in \(B_R \). If we assume that \(T \) is continuous, then, by Schauder fixed point theorem, \(T \) has a fixed point in \(B_R \) which is a weak solution of (15), (16). So it remains only to prove that \(T \) is continuous. Let \(v_n \) be a sequence in \(B_R \) such that \(v_n \rightarrow v \) in \(L^2(\Omega) \). We have to show that \(T(v_n) \rightarrow T(v) \) in \(L^2(\Omega) \). For this, thanks to (26) and the fact that \(H^1(\Omega) \) is compactly embedded in \(L^2(\Omega) \), it is enough to show that \(T(v) \) is the only limit point of the sequence \(T(v_n) \). So let us assume that a subsequence \(T(v_{n_k}) \rightarrow u \) when \(k \rightarrow \infty \). We can extract a subsequence, still denoted by \(n_k \), such that

\[
v_{n_k} \rightarrow v \quad \text{a.e. in} \quad \Omega
\]

\[
u_{n_k} = T(v_{n_k}) \rightharpoonup u \quad \text{in} \quad H^1(\Omega). \quad (\text{see (26)})
\]

The set \(\{ u \in H^1(\Omega) | u - \phi \in H^1_0(\Omega) \} \) is closed and convex and so is weakly closed in \(H^1(\Omega) \). Thus \(u_{n_k} - \phi \in H^1_0(\Omega) \) implies that \(u - \phi \in H^1_0(\Omega) \). Now passing to the limit in (25) i.e. in

\[
\int_{\Omega} (h^3
\nabla u_{n_k} \cdot \nabla \xi - h(\nabla u_{n_k}) \cdot \nabla \xi) \, dx = 0 \quad \forall \xi \in H^1_0(\Omega)
\]
we get
\[\int_{\Omega} (h^3 \nabla u \cdot \nabla \xi - h \beta(v) \nabla v \cdot \nabla \xi) dx = 0 \quad \forall \xi \in H^1_0(\Omega) \]

Thus \(u = T(v) \) and the proof is complete.

(To show that
\[\int_{\Omega} h \beta(v_{n_k}) \nabla v \cdot \nabla \xi dx + \int_{\Omega} h \beta(v) \nabla v \cdot \nabla \xi dx \tag{28} \]
we have to use Vitali's theorem. Indeed

\[h \beta(v_{n_k}) \nabla v \cdot \nabla \xi + h \beta(v) \nabla v \cdot \nabla \xi \quad \text{a.e. in } \Omega . \]

Moreover for any measurable set \(E \) we have by (18) and for some constant \(C \)
\[\int_E |h \beta(v_{n_k}) \nabla v \cdot \nabla \xi| dx \leq C \int_E |v_{n_k}| |\nabla \xi| dx + C \int_E |\nabla \xi| dx \]
\[\leq C \int_E |v_{n_k} - v||\nabla \xi| + C \int_E (|v| + 1)|\nabla \xi| dx \]
\[\leq C \int_E |\nabla \xi| \quad |v_{n_k} - v|_2 + C \int_E (|v| + 1)|\nabla \xi| dx . \]

Since \(v \in L^2(\Omega) \) and \(|v_{n_k} - v|_2 \to 0 \) with \(k \to +\infty \) this inequality proves the
uniform integrability of the sequence \(h \beta(v_{n_k}) \nabla v \cdot \nabla \xi \) and (28) follows. see [9]
p. 143)

2. The One Dimensional Case

When the dimension of \(\Omega \) in the \(x \) direction is small compared to its
dimension in \(y \), when \(h \) doesn't depend on \(y \) and \(\nabla = (V_1,0) \) then finding the
pressure \(p \) which develop between the two bodies can be reduced to solving a
one dimensional problem. More precisely for some \(\Omega = (a,b) \) this leads to
finding \(p = p(x) > 0 \) such that
\[(h^3 \rho(p)p')' = \alpha \rho(p)h' \quad \text{in } \Omega \tag{29} \]
\[p(a) = A \quad , \quad p(b) = B \tag{30} \]
where \(A, B \) are positive constants, \(\alpha = 6\mu V_1 > 0 \). As in the previous section \(h \) is assumed to be a measurable function satisfying

\[
0 < h_1 < h(x) < h_2 \quad \text{a.e.} \quad x \in \Omega \tag{31}
\]

\[
|h'(x)| < H \quad \text{a.e.} \quad x \in \Omega \tag{32}
\]

for some constants \(h_1, h_2, H \).

(We have denoted by \(' \) the derivative \(\frac{d}{dx} \))

Moreover we will assume that \(\rho \) satisfies (9). (Note that we do not assume \(\rho \) is increasing, this will introduce some complications later). Under the assumptions (9)(31) then it makes sense to look for a \(p \) in \(W^{1,1}(\Omega) \) as a solution to (29). (we refer the reader to [6] for the definition of these Sobolev spaces). Indeed, if \(p \in W^{1,1}(\Omega) \), then \(p \) is absolutely continuous on \(\overline{\Omega} \) and thus \(h^3 \rho(p) \) is bounded. This implies that \(h^3 \rho(p)p' \in L^1(\Omega) \) and (29) makes sense as an equality between two distributions.

In this context we can prove the following comparison result:

Theorem 2: Let \(p_i \in W^{1,1}(\Omega) \) \((i = 1, 2) \) be positive functions satisfying:

\[
(h^3 \rho(p_i)p_i')' = \alpha(\rho(p_i)h)' \quad \text{in} \quad \Omega \tag{33}
\]

\[
p_i(a) = A_i \quad , \quad p_i(b) = B_i \tag{34}
\]

where \(A_i, B_i \) are two positive constants. Assume that (9)(31) hold then

\[
A_1 > A_2, \quad B_1 > B_2 \Rightarrow p_1 > p_2 \quad \text{in} \quad \Omega , \tag{35}
\]

\[
A_1 > A_2, \quad B_1 > B_2 \Rightarrow p_1 > p_2 \quad \text{in} \quad \Omega . \tag{36}
\]

Proof: Assume that (35) does not hold. Then there exists \(x_0 \in (a, b) \) for which

\[
(p_1 - p_2)(x_0) < 0 . \tag{37}
\]

Let us denote by \((a_1, a_2) \) the connected component of \(x_0 \) in the set
\[[p_1 - p_2 < 0] = \{ x \in \Omega | (p_1 - p_2)(x) < 0 \}. \]

Thanks to our assumptions \(A_1 > A_2, B_1 > B_2 \) we have

\[(p_1 - p_2)(\alpha_1) = (p_1 - p_2)(\alpha_2) = 0. \] \hspace{1cm} (38)

Moreover from (33) we deduce that there exists a constant \(C \) such that

\[C + h^3(\rho(p_1)p_1' - \rho(p_2)p_2') = \alpha h(\rho(p_1) - \rho(p_2)) \text{ in } (\alpha_1, \alpha_2). \]

Using (10) this reads

\[C + h^3(R(p_1) - R(p_2))' = \alpha h(\rho(p_1) - \rho(p_2)) \text{ in } (\alpha_1, \alpha_2) \] \hspace{1cm} (39)

Dividing both sides of this equality by \(h^3 \) and integrating over \((\alpha_1, \alpha_2) \), we get

\[C \int_{\alpha_1}^{\alpha_2} \frac{dx}{h^3} = \alpha \int_{\alpha_1}^{\alpha_2} \frac{\rho(p_1) - \rho(p_2)}{h^2} \, dx < 0. \] \hspace{1cm} (40)

If \(\rho(p_1) = \rho(p_2) \) on \(\alpha_1, \alpha_2 \) we obtain from (39)

\[\rho(p_1)p_1' = \rho(p_2)p_2' \text{ on } (\alpha_1, \alpha_2) \]

and thus

\[(p_1 - p_2)' = 0 \text{ on } (\alpha_1, \alpha_2). \]

But this is clearly impossible (see (37)(38)). Thus from (40) we deduce that \(C < 0 \). Then, from (38)(39) we see that \((R(p_1) - R(p_2))'(x) > 0 \) for \(x \) in \(\Omega \) close to \(\alpha_1 \). So, \((R(p_1) - R(p_2))(x) > 0 \) for \(x \) in \((\alpha_1, \alpha_2) \) close to \(\alpha_1 \).

But this contradicts the fact that \(p_1 - p_2 < 0 \) on \((\alpha_1, \alpha_2) \) (Thanks to (9), \(R \) is non decreasing) thus (37) cannot hold and this completes the proof of (35). To get (36) we note first that by (35) we have \((p_1 - p_2)(x) > 0 \). Assume that for some \(x_0 \in \Omega \)

\[(p_1 - p_2)(x) > 0 \text{ on } (a, x_0), \ (p_1 - p_2)(x_0) = 0. \] \hspace{1cm} (41)
Arguing as in (39) we have for some constant C

$$C + h^3(R(p_1) - R(p_2))' = ah(p_1 - p_2) \quad \text{in} \quad \Omega.$$

If $C < 0$ we deduce from the above equality that

$$(R(p_1) - R(p_2))' > 0 \quad \text{in} \quad (a, x_0)$$

thus $(R(p_1) - R(p_2))(x_0) > 0$ which contradicts (41). If $C > 0$, then for x close to x_0

$$(R(p_1) - R(p_2))'(x) < 0$$

and thus for $x > x_0$, x close to x_0 we have $(R(p_1) - R(p_2))(x) < 0$ which contradicts (35). This completes the proof of the theorem.

As an obvious corollary of Theorem 2 we have

Theorem 3: Assume that (9)(31) hold. Then, there exists at most one positive solution $p \in W^{1,1}(\Omega)$ of (29)(30).

Moreover:

Theorem 4: Assume that (9)(31) holds and that $p \in W^{1,1}(\Omega)$ is a positive solution of (29)(30). Then:

$$A > 0 \quad , \quad B > 0 \quad \Rightarrow \quad p > 0 \quad \text{on} \quad (a, b). \quad (42)$$

Proof: It is enough to note that the function 0 is the solution of (29)(30) corresponding to $A = B = 0$ and Theorem 4 is then a consequence of Theorem 2 applied with $p_1 = p, p_2 = 0$.

Remark 3: If $A = 0$ the following example (see Cimatti [5]) shows that (42) may fail. Take $\Omega = (0, 1), \alpha = 1, h = 1, B = 1/2, p(s) = s$. Then p defined by

$$p(x) = 0 \quad \text{on} \quad (0, \frac{1}{2})$$

$$x - \frac{1}{2} \quad \text{on} \quad (\frac{1}{2}, 1)$$
is a function in $W^{1,1}(\Omega)$ satisfying (29), (30). So, note that in this case (29), (30) becomes a free boundary problem.

The next theorem combines the results of this section with those of the previous one. First let us set for $s > 0$

$$\beta(s) = \alpha p(R^{-1}(s))$$

and assume that

$$\exists C > 0 \text{ such that } |\beta(s)| < \frac{\sqrt{\nu}h_1^3}{2h_2} s + C \quad \forall s > 0 \quad (43)$$

where ν is the smallest eigenvalue of the problem (19) where Δ is replaced by $\frac{d^2}{dx^2}$.

Then:

Theorem 5: Assume that (9)(31)(43) hold. Then for $A, B > 0$ there exists a unique positive solution $p \in W^{1,1}(\Omega)$ of (29), (30). Moreover, $u = R(p)$ is the unique solution of the problem

$$u \in H^1(\Omega), \; u(a) = R(A), \; u(b) = R(B) \quad (44)$$

$$\int_{\Omega} h^3 u' \cdot \xi' \, dx = \alpha \int_{\Omega} h p R^{-1}(u) \cdot \xi' \, dx \quad \forall \xi \in H_0^1(\Omega). \quad (45)$$

Proof: Let us extend β for $s < 0$ by the formula

$$\beta(s) = \alpha p(R^{-1}(0)) = 0.$$

Then, thanks to (43) one can apply Theorem 1 (this theorem has been established in two dimensions but it holds clearly without any change in the proof in dimension one) So, there exists a solution $u \in H^1(\Omega)$ of the problem

$$u(a) = R(A), \; u(b) = R(B) \quad (46)$$

$$\int_{\Omega} h^3 u' \cdot \xi' \, dx = \int_{\Omega} f(u) \cdot \xi' \, dx \quad \forall \xi \in H_0^1(\Omega). \quad (47)$$
We claim that \(u \) is strictly positive. Indeed, if not, let \(x_0 \) be the point of \((a,b)\) such that
\[
 u(x_0) = 0, \quad u(x) > 0 \quad \text{on} \quad (x_0,b) . \tag{48}
\]

From (47) we deduce that for some constant \(C \)
\[
 C + h^3 u' = h\beta(u) \quad \text{in} \quad \Omega . \tag{49}
\]

Dividing by \(h^3 \) and integrating on \((a,x_0)\) we get
\[
 C \frac{\int_a^{x_0} dx}{h^3} - u(a) = \int_a^{x_0} \frac{\beta(u)}{h^2} dx
\]

and thus \(C > 0 \). Now, from (49), since \(\beta(0) = 0 \), we deduce that \(u'(x) < 0 \) for \(x \in (x_0,b), x \) close to \(x_0 \). This is a contradiction to (48). Then we can define
\[
 p = R^{-1}(u).
\]

Since \(u \) is strictly positive (the derivative of \(R^{-1} \) has a singularity at 0) the function \(p \) is clearly in \(H^1(\Omega) \) and satisfies (29)(30). This completes the proof thanks to theorem 2.

Remark 4: Under the assumptions of Theorem 5 if \(p \) and \(h \) are "smooth" then \(p \) is "smooth" and thus a classical solution of (29)(30) (This can be seen by a usual bootstrap argument). Note that in fact, up to now, (32) has not been used. Now, if (32) holds, and \(p \) is Lipschitz continuous, then under the assumptions of theorem 5, \(p \in W^{2,\infty}(\Omega) \) and in particular \(p \) is a function of class \(C^1 \) on \(\Omega \).

In the rest of this section we will describe more precisely the profile of the pressure \(p \) solution of (29)(30). We are going to restrict ourselves to the case \(A=B \) and so we consider \(p \in W^{1,1}(\Omega) \), solution of the problem
\[
 (h^3 p(p)p')' = \alpha(p(p)h)' \quad \text{in} \quad \Omega = (a,b) \tag{50}
\]
\[
 p(a) = p(b) = P_0 > 0 \tag{51}
\]
where \(P_0 \) is some positive constant.

Roughly speaking we are going to prove that for \(h \) as in the picture, \(p \) is as below.

\[
\begin{align*}
\text{h:} & \\
\text{p:} &
\end{align*}
\]

In addition to (31)(32) we will assume provisionally

\[
h \text{ is a function of class } C^1 \text{ near } a, \tag{52}
\]

\[
h(a) = h(b), \quad h'(a) < 0 , \tag{53}
\]

\[
\exists \epsilon(\alpha, \beta) \text{ such that } h \text{ is decreasing on } (a, c) \text{ increasing on } (c, b). \tag{54}
\]

Moreover we will assume on \(p \) that

\[
p \text{ is a locally Lipschitz continuous function on } (0, +\infty). \tag{55}
\]

Under these conditions we first prove:

Lemma 1: Assume that (9)(31)(32)(52) - (55) hold then if \(p \) is the solution of (50)(51) we have:

\[
p'(a) = p'(b) > 0 . \tag{56}
\]

Proof: First note that thanks to our assumptions \(p \) is a function of class \(C^1 \) on \(\Omega \) (see Remark 4). Next, thanks to (50), we have in \(\overline{\Omega} \) for some constant \(C \)
\[h^3 \rho(p)p' + C = \alpha \rho(p)h \ . \] (57)

This relation at the points \(a, b \) implies (see (51)(53))

\[p'(a) = p'(b) \ . \]

Next, suppose that \(p'(a) < 0 \). Then \(p \) is decreasing around \(a \). Let \(x_0 \) be the first point such that \(p'(x_0) = 0 \) (i.e. \(p'(x) < 0 \) on \([a, x_0] \)). Clearly such a point exists since \(p(a) = p(b) \). From (57) we get

\[C = \alpha \rho(p)(x_0)h(x_0) \ . \]

Since \(p'(x) < 0 \) on \([a, x_0] \), and by (53)(54):

\[p(x_0) < p(a) \quad h(x_0) < h(a) \ . \]

Hence

\[C = \alpha \rho(p)(x_0)h(x_0) < \alpha \rho(p)(a)h(a) = h^3(a)\rho(p(a))p'(a) + C < C \ . \]

This is impossible, and thus (56) holds.

Next we have:

Lemma 2: Assume that (9)(31)(32)(52) - (55) hold then if \(p \) is the solution of (50)(51) we have:

\[p'(a) = p'(b) > 0 \ . \] (58)

Proof: Thanks to (56) if (58) does not hold we would have

\[p'(a) = 0 \ . \] (59)

Thus by (57)

\[C = \alpha \rho(p)(a)h(a) \]

and we have

\[h^3 \rho(p)(x)p'(x) = \alpha \rho(p)(x)h(x) - \alpha \rho(p)(a)h(a) \ . \]
This implies for \(x > a \)

\[
\frac{h^3 p(x)p'(x)}{x-a} = \alpha(p(x) - p(a)) \frac{h(x)}{x-a} + \alpha p(a) \frac{h(x) - h(a)}{x-a}.
\] (60)

Letting \(x \) go to \(a \), from (55) we deduce that

\[
|p(x) - p(a)| \frac{1}{x-a} < \alpha \frac{|p(x) - p(a)|}{x-a} \rightarrow C|p'(a)| = 0
\]

Thus, when \(x \) goes to \(a \), the right side of (60) goes to

\[
\alpha p(a) h'(a) < 0.
\]

(see (53)). So, for \(x \) close to \(a \) we deduce from (60) that

\[
p'(x) < 0.
\]

As in the preceding lemma let \(x_0 \) be the first point such that

\[
p'(x_0) = 0 \quad p'(x) < 0 \quad \text{on} \quad (a, x_0).
\]

we have

\[
p(x_0) < p(a), \quad h(x_0) < h(a)
\]

and at the same time (see (57)(59))

\[
C = \alpha p(x_0) h(x_0) = \alpha p(a) h(a)
\]

which is impossible. Thus (59) cannot hold and we have (58).

Lemma 3: Assume that (9)(31)(32)(52) - (55) hold. Let \(p \) be the solution of (50)(51)

(i) If \(a < \alpha_1 < \alpha_2 < c \) we cannot have \(p'(\alpha_1) = p'(\alpha_2) = 0, \) \(p' < 0 \) on \((\alpha_1, \alpha_2) \).

(ii) If \(c < \alpha_1 < \alpha_2 < b \) we cannot have \(p'(\alpha_1) = p'(\alpha_2) = 0, \) \(p' > 0 \) on \((\alpha_1, \alpha_2) \).

Proof. (i) If \(p'(\alpha_1) = p'(\alpha_2) = 0 \) we have (see (57))
\[C = \alpha_\rho(p)(\alpha_1)h(\alpha_1) = \alpha_\rho(p)(\alpha_2)h(\alpha_2). \] (1)

Now since \(p \) is non-decreasing and thanks to (54):

\[\rho(p)(\alpha_1) > \rho(p)(\alpha_2), \ h(\alpha_1) > h(\alpha_2) \]

and (61) is impossible.

(ii) Same proof.

We are now able to describe the profile of the pressure \(p \). We have:

Theorem 6: Assume that (9)(31)(32)(52) - (55) hold. Then if \(p \) is the solution of (50)(51) there exist \(x_0 \in (a,c], \ x_1 \in (c,b) \) such that:

(i) \(p \) is non-decreasing on \((a,x_0)\) and increasing on \((x_1,b)\),

(ii) \(p \) is non-increasing on \((x_0,x_1)\).

Proof: Set

\[x_0 = \sup \{ x \mid p'(x') > 0 \ \forall \ x' \in (a,x) \}. \]

We have \(p'(x_0) = 0 \). (If not then \(x_0 < b \) and one has a contradiction with the definition of \(x_0 \)). Moreover \(x_0 < c \). If not from (57) we deduce

\[h^3 \rho(p)p' = \alpha_\rho(p) - C = \alpha_\rho(p) - h(x_0)p(p)(x_0) \quad \text{on } (a,x_0). \] (62)

Noting that

\[p(c) < p(x_0), \quad h(c) < h(x_0) \]

we obtain \(p'(c) < 0 \) and a contradiction with the definition of \(x_0 \).

Set

\[x_1 = \inf \{ x \mid p'(x') > 0 \ \forall x' \in (x,b) \}. \]

First we note that \(x_1 > x_0 \) - otherwise \(p \) would be non-decreasing on \((a,b)\) which is impossible since \(p \) is not constant (see lemma 2).
Next we claim that \(p' < 0 \) on \((x_0, c]\). Indeed if not there exists \(\delta \in (x_0, c] \) such that \(p'(\delta) > 0 \). By definition of \(x_0 \), there exists \(\gamma \in (x_0, \delta) \) such that \(p'(\gamma) < 0 \). If \((\alpha_1, \alpha_2)\) is the connected component of \(\gamma \) in the set \(\{x \in (x_0, \delta) \mid p'(x) < 0\} \), then we have a contradiction with (i) of Lemma 2. The above implies also that \(x_1 \in (c, b) \).

Next we prove that \(p' \) is non positive on \((c, x_1)\). If not there will exist \(\tau \in (c, x_1) \) such that \(p'(\tau) > 0 \). Considering \((\alpha_1, \alpha_2)\) as to be the connected component of \(\tau \) in the set \(\{x \in (c, x_1) \mid p'(x) > 0\} \) we are in contradiction with (ii) of lemma 2. Now the fact that \(p' > 0 \) on \((x, b)\) results easily from (ii) of Lemma 3. This completes the proof of the theorem.

Remark 5: Assume that \(p \) and \(h \) are smooth, more precisely of class \(C^1 \), then it is easy to check that \(p \) is of class \(C^2 \). Moreover one has in \((c, b)\)

\[
h^3 p'(p)p'' + h^3 p''(p) + p'(p) + h p'(p) = h p'(p) > 0.
\]

By the maximum principle (see [9]) if the maximum of \(p \) is achieved at \(c \) we have

\[
p'(c) < 0.
\]

So in this case one has necessarily \(x_0 < c \). (If not we would have \(p'(x_0) = p'(c) = 0 \) which contradicts the above inequality).

For a similar reason:

\[
p'(x) < 0 \text{ on } (c, x_1), \ p'(x) > 0 \text{ on } (a, x_0)
\]

and thus (see the proof of the above theorem)

\(p \) is increasing on \((a, x_0)\) and \((x_1, b)\)

\(p \) is decreasing on \((x_0, x_1)\).

Indeed, if for some \(d \in (a, x_0) \) we have

\[
p'(d) = 0
\] (63)
then d is a minimum for p on (d, x_0) and

$$h^3 \rho(p)p'' + h^3 \rho'(p)p' - \alpha \rho(p)p' = \alpha \rho(p) < 0 \text{ on } (d, x_0).$$

Then by the maximum principle we have $p'(d) > 0$, which contradicts (63). The proof of $p'(x) < 0$ on (c, x_1) is the same.

In the next theorem we relax the assumptions (52)(53).

We have:

Theorem 7: Assume that (9)(31)(32)(54)(55) hold. Then if p is the solution of (50)(51) there exist $x_0 \in [a, c]$ and $x_1 \in (c, b]$ such that:

(i) p is nondecreasing on (a, x_0) and (x_1, b),

(ii) p is non increasing on (x_0, x_1).

Proof: If h satisfy (54) then we can find a sequence h_n of functions satisfying (31)(32)(52)(53)(54) and such that

$$h_n(x) + h(x) \text{ a.e. on } \Omega,$$

$$h_n(x) + h(x) \text{ in } L^2(\Omega).$$

Indeed the picture below gives the recipe of how to construct h_n (the doted function)

![Diagram](image)

Then, we consider the solution u_n of (44)(45) with $h = h_n$, $A = B = 0$. From
theorem 6 we deduce that there exists \(x_0^n \in (a,c) \), \(x_1^n \in (c,b) \) such that \(u_n \) is non decreasing on \((a,x_0^n)\) and \((x_1^n,b)\) and \(u_n \) is non increasing on \((x_0^n,x_1^n)\). Extract a subsequence such that

\[
x_0^n \to x_0 \in [a,c],
\]

\[
x_1^n \to x_1 \in [c,b],
\]

\[
u_n \to u \text{ in } L^2(\Omega), \quad u_n' \rightharpoonup u' \text{ in } L^2, \quad u_n \to u. \quad \text{a.e.}
\]

(Note that thanks to (31) \(u_n \) is bounded in \(H^1(\Omega) \).)

then by standard arguments we can easily prove that \(u = R(p) \) (see the proof of theorem 1).

It results that:

\[
u \text{ and thus } p \text{ is non decreasing on } (a,x_0), (x_1,b),
\]

\[
u \text{ and } p \text{ are non increasing on } (x_0,x_1).
\]

(one of these intervals could be empty, but not two of them since \(p = Cst \) is not a solution of (50)(51) under the assumption (54)).

Remark 6: Clearly by similar arguments the theorem 7 holds if we assume only \(h \) non increasing on \((a,c)\), \(h \) non decreasing on \((c,b)\). In the case where \(c = a \) or \(c = b \) we get that \(x_0 = a \) or \(x_1 = b \) and a result can be stated in both cases. We leave to the reader the elaboration of a precise statement. Note that in each of the above cases the shape of \(p \) can be described more precisely by the techniques of Lemma 2 or Remark 5.

3. Back to Higher Dimensions

3.1. Uniqueness and positivity of the solutions

In this section, in addition to (17) we will assume that the function \(\beta \) defined by (14) and extended by 0 for \(s < 0 \) satisfies for some \(\tau > 0 \):
\(\beta \) is one-to-one from \((0, \tau)\) onto \((0, \beta(\tau))\),

\[(64) \]

\(\beta^{-1} \) is a \(C^2 \) function on \((0, \beta(\tau))\) such that

\[\lim_{x \to 0} \frac{d}{dx} \beta^{-1}(x) = \lim_{x \to 0} x \frac{d^2}{dx^2} \beta^{-1}(x) = 0 \, . \]

\[(65) \]

For \(\delta > 0 \) we set:

\[\omega_{\delta}(t) = \sup_{\substack{x, y \in (\delta, +\infty) \\
|x - y| < t}} |\beta(x) - \beta(y)| \]

\[(66) \]

and we also assume:

\[\int_0^\infty \frac{dt}{\omega_{\delta}^2(t)} = +\infty \quad \forall \delta > 0 \, . \]

\[(67) \]

Remark 7: It is easy to check that all the above assumptions hold for instance for a smooth \(p \) given by (20) near \(0 \). (Note that (67) holds if \(\beta \) is Hölder continuous with exponent \(\alpha > 1/2 \) on \((0, +\infty)\))

Moreover, if \(\phi \in H^1(\Omega) \), we will suppose that for some positive constant \(c \):

\[\phi > c > 0 \quad \text{on } \Gamma \]

\[(68) \]

and in addition to (3) we will also assume that

\[h \in W^{2,1}(\Omega) \, . \]

\[(69) \]

Under the above assumptions we are going to prove that there is at most one solution \(u \) to (22)(23). Moreover this solution is strictly positive and, if our data are smooth, is a classical solution to (15)(16). Note that the strict positivity of \(u \) is not a trivial consequence of the maximum principle.

Let \(k \) be a smooth, bounded, strictly positive function such that

\[\nabla \cdot \nabla k < K < 0 \]

\[(70) \]

where \(K \) is a constant. For \(\varepsilon > 0 \) small enough we have clearly
\[0 < \varepsilon \frac{k}{h} < \beta(\tau) \]

and we can define (see (64))

\[u_\varepsilon = \beta^{-1}(\varepsilon \frac{k}{h}) . \quad (71) \]

We will say that \(v \in H^1(\Omega) \) is a subsolution of (22)(23) iff:

\[(v-\phi)^+ \in H^1_0(\Omega) , \quad (72) \]

\[\int_{\Omega} h^3 \nabla v \cdot \nabla \xi - h\beta(v) \nabla \cdot \nabla \xi dx < 0 \quad \forall \xi \in H^1_0(\Omega), \quad \varepsilon > 0 \text{ a.e. in } \Omega , \quad (73) \]

where \((\quad)^+\) denotes the positive part of a function.

Then we have:

Proposition 1: For \(\varepsilon \) small enough \(u_\varepsilon \) is a subsolution of (22)(23).

Proof: Clearly \(u_\varepsilon \in H^1(\Omega) \) and for \(\varepsilon \) small enough \((\beta^{-1}(x) \to 0 \text{ when } x \to 0)\)

\[u_\varepsilon = \beta^{-1}(\varepsilon \frac{k}{h}) < c < \phi . \]

Hence (72) holds. Next, we have for \(\xi \in H^1_0(\Omega) \).

\[\int_{\Omega} h^3 \nabla u_\varepsilon \cdot \nabla \xi - h\beta(u_\varepsilon) \nabla \cdot \nabla \xi dx = \int_{\Omega} h^3 \nabla \beta^{-1}(\varepsilon \frac{k}{h}) \cdot \nabla \xi - h\beta(\beta^{-1}(\varepsilon \frac{k}{h})) \nabla \cdot \nabla \xi dx \]

\[= \int_{\Omega} [-\nabla \cdot (h^3 \nabla \beta^{-1}(\varepsilon \frac{k}{h})) + \varepsilon \nabla \cdot \nabla \xi] \cdot \xi dx \]

\[= \varepsilon \int_{\Omega} [-\nabla \cdot (h^3 (\beta^{-1})'(\varepsilon \frac{k}{h}) \cdot \nabla \frac{k}{h})) + \nabla \cdot \nabla \xi] \cdot \xi dx \]

\[= \varepsilon \int_{\Omega} [-\nabla \cdot (h^3 \nabla \frac{k}{h})(\beta^{-1})'(\varepsilon \frac{k}{h}) - h^3 \varepsilon (\beta^{-1})''(\varepsilon \frac{k}{h}) \cdot | \nabla \frac{k}{h} |^2 + \nabla \cdot \nabla \xi] \cdot \xi dx . \]

Thanks to (65), when \(\varepsilon \) goes to 0 the integrand goes to \(\nabla \cdot \nabla \xi \), and thus (see
\[\left(70\right) \text{ we have for } \epsilon \text{ small enough, } \xi \in H_0^1(\Omega), \xi > 0, \]
\[\int_{\Omega} \left(h^3 \nabla u \cdot \nabla \xi - h(\beta(u)) \nabla \cdot \nabla \xi \right) dx < 0. \]

This concludes the proof of the proposition.

Next we have:

Theorem 8: Let \(u \) be a solution of \(\left(22\right)\left(23\right) \) and \(v \) a subsolution of \(\left(22\right)\left(23\right) \) such that for some \(\delta > 0 \) we have
\[v > 2\delta > 0 \text{ a.e. in } \Omega. \tag{74} \]

Then
\[v < u \text{ a.e. in } \Omega \tag{75} \]

Proof: First we prove that for all \(\zeta \in C^\infty(\Omega), \zeta > 0 : \)
\[\begin{cases} h^3 \nabla (v-u) \cdot \nabla \zeta - h(\beta(v) - \beta(u)) \nabla \cdot \nabla \zeta dx < 0 \quad & \text{if } v-u > 0 \\ [v-u>0] & \end{cases} \tag{76} \]

where
\[[v-u>0] = \{x \in \Omega \mid (v-u)(x) > 0\}. \]

To do this we use the technique of [2]. For \(\delta \) satisfying \(\left(74\right) \) we have:
\[\int_0^\infty \frac{dt}{\omega_\delta(t)^2} = +\infty. \]

So, for \(\epsilon > 0 \), there exists a number \(\lambda(\epsilon) < \epsilon \) such that
\[\int_{\lambda(\epsilon)}^\epsilon \frac{dt}{\lambda(\epsilon) \omega_\delta(t)^2} = 1. \]

Define the function \(F_\epsilon(t) \) by
\[F_\epsilon(t) = \begin{cases} 0 & \text{if } t < \lambda(\epsilon) \\ \int_{\lambda(\epsilon)}^t \frac{dt}{\lambda(\epsilon) \omega_\delta(t)^2} & \text{if } \lambda(\epsilon) < t < \epsilon \\ 1 & \text{if } \epsilon < t \end{cases} \]
Clearly the function F_ε is Lipschitz continuous and for $\xi \in C^\infty(\Omega)$,
$\xi F_\varepsilon(v-u) \in H^1_0(\Omega)$. Moreover by definition of u and v, we have:

$$
\int_\Omega h^3 \nabla u \cdot \nabla \xi - h\beta(u) \nabla \xi \, dx = 0 \quad \forall \xi \in H^1_0(\Omega),
$$

$$
\int_\Omega h^3 \nabla v \cdot \nabla \xi - h\beta(v) \nabla \xi \, dx < 0 \quad \forall \xi \in H^1_0(\Omega), \; \varepsilon > 0,
$$

and thus

$$
\int_\Omega h^3 \nabla(v-u) \cdot \nabla \xi - h(\beta(v) - \beta(u)) \nabla \xi \, dx < 0 \quad \forall \xi \in H^1_0(\Omega), \; \varepsilon > 0.
$$

If $\varepsilon > 0$, it is clear that $\xi = \xi F_\varepsilon(v-u)$ is a suitable test function for the above inequality. So we obtain:

$$
I_\varepsilon = \int_\Omega \left[h^3 \nabla(v-u) \cdot \nabla \xi - h(\beta(v) - \beta(u)) \nabla \xi \right] F_\varepsilon(v-u) \, dx
$$

$$
- \int_\Omega \left[h^3 \nabla(v-u) \cdot \nabla F_\varepsilon(v-u) - h(\beta(v) - \beta(u)) \nabla \nabla F_\varepsilon(v-u) \right] \xi \, dx
$$

$$
< - h^3_1 \int_\Omega |\nabla(v-u)|^2 F'_\varepsilon(v-u) \xi \, dx + h^2_2 |\nabla(v-u)| \int_\Omega |\beta(v) - \beta(u)| |\nabla(v-u)| F'_\varepsilon(v-u) \xi \, dx. \quad (78)
$$

Then using the inequality

$$
xy < \frac{1}{2} \left(\frac{h^2_2 |\nabla|}{h^3_1} x^2 + \frac{h^3_1}{h^2_2 |\nabla|} y^2 \right) \quad \forall \; x, y \in \mathbb{R}
$$

we get:

$$
h^2_2 |\nabla| \int_\Omega |\beta(v) - \beta(u)| |\nabla(v-u)| F'_\varepsilon(v-u) \xi \, dx < \frac{h^3_1}{2} \int_\Omega |\nabla(v-u)|^2 F'_\varepsilon(v-u) \xi \, dx
$$

$$
+ \frac{h^3_1 |\nabla|^2}{2h^3_1} \int_\Omega (\beta(v) - \beta(u))^2 F'_\varepsilon(v-u) \xi \, dx.
$$

Combining this inequality and (78), and noting that $F'_\varepsilon > 0$ we obtain:
\[I_\varepsilon \leq \frac{h_2^2 |V|^2}{2h_1^3} \int_\Omega (\beta(v) - \beta(u))^2 F'_e (v-u) \zeta \, dx. \]

By (77) this leads to
\[I_\varepsilon \leq \frac{h_2^2 |V|^2}{2h_1^3} \int [\xi(\varepsilon) < v-u < \varepsilon] \zeta (\beta(v) - \beta(u))^2 \zeta dx, \quad (79) \]

where \[[\xi(\varepsilon) < v-u < \varepsilon] = \{ x \in \Omega : \xi(\varepsilon) < (v-u)(x) < \varepsilon \}. \] Now if we choose \(\varepsilon \ll \delta \) we have on this set
\[u > v - \varepsilon > 2\delta - \varepsilon > \delta \]

and by (66) we deduce that
\[(\beta(v) - \beta(u))^2 < \omega_\delta^2(v-u) \]

So (79) reduces to:
\[I_\varepsilon \leq \frac{h_2^2 |V|^2}{2h_1^3} \int [\xi(\varepsilon) < v-u < \varepsilon] \zeta \, dx \]

and (76) follows by letting \(\varepsilon \) go to zero, since \(I_\varepsilon \) goes to the left hand side of (76).

Next if \(V = (V_1, V_2) \) we choose in (76)
\[\zeta = M - \exp[s(V_2x - V_1y)] \]

where \(M \) is a constant chosen large enough so that \(\zeta > 0 \) in \(\Omega \), and \(s \) is a constant to be chosen later. Since \(V \cdot \nabla \zeta \equiv 0 \), we get
\[\int_{[v-u>0]} h^3 (v-u)^+ \nabla \zeta \, dx = \int_{\Omega} h^3 (v-u)^+ \cdot \nabla \zeta \, dx < 0. \]

Integrating by parts leads to:
\[\int_{\Omega} (v-u)^+ \cdot - \nabla \cdot (h^3 \nabla \zeta) \, dx < 0. \]

An easy computation shows that \(s \) can be selected large enough so that
and thus we have \((v-u)^+ = 0\) a.e. in \(\Omega\) which is (75)

As a corollary of the previous theorem we have:

Theorem 9: Assume that (3)(4)(17)(64)(65)(67)(68) hold. Then there exists at most one positive solution to (22)(23). Moreover this solution is strictly positive in \(\Omega\). If in addition the data \(h, \rho, \phi, \Omega\) are "smooth", then \(u\) is smooth and \(p = R^{-1}(u)\) is the classical solution of (7)(8), with \(P_a = R^{-1}(\phi)\).

Proof: Let \(u, v\) be two solutions of (22)(23). Combining proposition 1 and theorem 8 we have for some \(\delta > 0\) and \(\varepsilon\) small enough:

\[
u, v > u_\varepsilon > 2\delta > 0.
\]

Then applying Theorem 8 to \(u, v\) and \(v, u\) (note that a solution is a subsolution) we get

\[
u \geq v \geq u.
\]

Hence (22)(23) has at most one solution which is strictly positive on \(\bar{\Omega}\). By a bootstrap argument we obtain easily that \(u\) is smooth and the theorem follows.

Remark 8: If instead of (67) we assume

\[
\int_0^\infty \frac{dt}{\omega_0(t)^2} = +\infty
\]

than we can prove - assuming only that \(\phi > 0\) on \(\partial \Omega\) - that the solution of (22)(23) is unique. The proof goes like the proof of Theorem 8 (see [2]).

However (80) does not hold when \(\rho\) is given for example by (20) with \(\alpha < 1\). But we have proven that when (68) holds the solution \(u\) stays away from the singularity \(0\) and in this case we still have uniqueness. The problem of uniqueness for the solution to (22)(23) when (67) and (68) fail remains open. As we mentioned already in the previous section in this case the problem becomes a free boundary problem.
3.2. Shape of the solution

As a relevant physical case we are going to suppose in this section that ϕ - and thus p - are constant on the boundary of Ω. Moreover we will assume that $V = (V_1, 0)$, h and p are smooth, and so we will consider p to be a smooth solution of the problem

$$\nabla \cdot (h^3 \rho(p) \nabla p) = \alpha \frac{\partial}{\partial x} (h \rho(p)) \text{ in } \Omega \quad (81)$$

$$p = p_0 > 0 \text{ on } \partial \Omega \quad (82)$$

where p_0 is some positive constant and α is given (see (6)) by:

$$\alpha = 6\mu V_1 > 0.$$

Denote by

$$n = (n_x, n_y)$$

the outward normal to Ω.

Then we have:

Theorem 10: Assume that

$$\int_{\partial \Omega} h n_x d\sigma < 0 \quad (83)$$

where $d\sigma$ denotes the surface measure on $\partial \Omega$. Moreover assume that

$$\exists x_0 \in \partial \Omega \text{ where } \frac{\partial h}{\partial x} (x_0) > 0 \quad (84)$$

then p achieves a maximum strictly greater than p_0 inside Ω.

Proof: If not $p < p_0$ in Ω. This implies $\frac{\partial p}{\partial n} > 0$. Now around x_0 we have by (84):

$$\nabla \cdot (h^3 \rho(p) \nabla p) - \alpha h \rho'(p) \frac{\partial p}{\partial x} = \alpha \rho(p) \frac{\partial h}{\partial x} > 0.$$
So if we assume \(p < p_0 \) around \(x_0 \) by the strong maximum principle we have
\[
\frac{\partial p}{\partial n}(x_0) > 0.
\] (85)

Integrating (81) over \(\Omega \) and applying Green's formula we get
\[
\int_{\partial\Omega} h^3 \rho(p_0) \frac{\partial p}{\partial n} \ d\sigma = \alpha \int_{\partial\Omega} h\rho(p_0) \ n_x \ d\sigma.
\]
Hence dividing by the constant \(\rho(p_0) \), we obtain
\[
\alpha \int_{\partial\Omega} h n_x \ d\sigma = \int_{\partial\Omega} h^3 \frac{\partial p}{\partial n} \ d\sigma > 0 \quad (86)
\]
(since \(\frac{\partial p}{\partial n} > 0 \) on \(\partial\Omega \) and thanks to (85)). But this contradicts (83) and thus we cannot have \(p < p_0 \) around \(x_0 \). So for any neighborhood of \(x_0 \) in \(\Omega \) there exists a point in this neighborhood where \(p > p_0 \). Now if \(p < p_0 \) then we have found a point where \(p \) achieves its maximum inside \(\Omega \). According to the strong maximum principle this implies that \(p = p_0 \) in a neighborhood of this point, but by (81) we would have
\[
\alpha \frac{\partial h}{\partial x} = 0
\]
around this point and this contradicts (84) and completes the proof.

With exactly the same proof as in the previous theorem we have

Theorem 11: Assume that
\[
\int_{\partial\Omega} h n_x \ d\sigma > 0 \quad (87)
\]
and that
\[
\exists x_1 \in \partial\Omega \text{ such that } \frac{\partial h}{\partial x}(x_1) < 0
\] (88)
then \(p \) achieves a minimum strictly less than \(p_0 \) inside \(\Omega \).
Combining Theorem 10 and Theorem 11 we have the following result which
generalizes theorem 6 to more than one dimension:

Theorem 12: Assume that (84)(88) hold and that

\[\int_{\partial \Omega} \hat{h}_x \, d\sigma = 0 \quad (89) \]

Then \(p \) achieves a maximum strictly greater than \(p_0 \) in \(\Omega \) and a minimum
strictly less than \(p_0 \) in \(\Omega \).

Remark 9: If we assume that \(p \) is strictly positive, then we can get some more
information about the shape of \(p \) by noting that \(p \) can achieve its maximum only
in the region:

\[\{ \frac{\partial h}{\partial x} < 0 \} = \{ (x,y) \in \Omega \, | \, \frac{\partial h}{\partial x} (x,y) < 0 \} \].

Indeed on the complement of this set in \(\Omega \) we have by (81)

\[\nabla \cdot (h^3 \rho(p) \nabla \rho) - \alpha h \rho'(p) \frac{\partial \rho}{\partial x} = \alpha \frac{\partial h}{\partial x} \rho(p) > 0 \]

and by the maximum principle if \(p \) achieves a maximum inside we have \(p = C = \text{cst.} \). But then by (81) we get

\[0 = \alpha \rho(C) \frac{\partial h}{\partial x} > 0 \]

which is impossible.

Similarly, if \(p \) is strictly positive, then the minimum of \(p \) can be only
achieved in the region

\[\{ \frac{\partial h}{\partial x} > 0 \} = \{ (x,y) \in \Omega \, | \, \frac{\partial h}{\partial x} (x,y) > 0 \} \].

Remark 10: It is clear that (89) holds for instance when \(\Omega \) is a smooth domain
symmetric with respect to the y-axis and
\[h(-x,y) = h(x,y) \quad \text{on} \quad \Omega \quad (90) \]

In the following we show that the shape of the pressure \(p \) can be more complicated than in the one dimensional case, by proving that \(p \) can achieve its maximum (resp. minimum) at more than one point.

Let us begin with the following result:

Proposition 2: Assume that (3)(4)(17)(18)(64)(65)(67)(68) hold and assume also that \(h, \rho, \Omega \) are smooth. Then there exists a unique smooth positive solution \(p \) of (81)(82). Moreover if \(\Omega \) is symmetric with respect to the \(x \)-axis and if \(h \) satisfies

\[h(x,-y) = h(x,y) \quad \text{in} \quad \Omega \quad (91) \]

then

\[p(x,-y) = p(x,y) \quad \text{in} \quad \Omega \quad . \quad (92) \]

Proof: The existence and uniqueness of \(p \) results from Theorems 1 and 9. From the weak formulation of (81) we have for all \(\xi \in H^1_0(\Omega) \)

\[
\int_{\Omega} h^3(x,y)\rho(p(x,y))\nabla p(x,y) \cdot \nabla \xi(x,-y) \, dx \, dy = \alpha \int_{\Omega} h(x,y)\rho(p(x,y)) \frac{\partial}{\partial x} \xi(x,-y) \, dx \, dy .
\]

(Note that if \(\xi(x,y) \in H^1_0(\Omega) \), \(\xi(x,-y) \in H^1_0(\Omega) \) thanks to the symmetry of \(\Omega \).)

Changing \(y \) into \(-y \) in the above integrals and using (91) we get

\[
\int_{\Omega} h^3(x,y)\rho(p(x,-y))\nabla p(x,-y) \cdot \nabla \xi(x,y) \, dx \, dy = \alpha \int_{\Omega} h(x,y)\rho(p(x,-y)) \frac{\partial}{\partial x} \xi(x,y) \, dx \, dy
\]

and thus \(p(x,-y) \) is a weak solution of (81)(82). By uniqueness of such a solution (92) follows.
Let us consider a domain Ω, containing 0, and symmetric with respect to the x-axis, (see the figure below).

Let us denote by Ω_ϵ the strip

$$\Omega_\epsilon = \{(x,y) \in \Omega \mid y \in (-\epsilon, \epsilon)\}$$

where we choose ϵ small enough in such a way that $\Omega_\epsilon \not\subseteq \Omega$.

Then we have the following:

Theorem 12: Assume that we are under the assumptions of the proposition 2.

Moreover assume that (84)(88)(89)(91) hold and that

$$\frac{\partial h}{\partial x} (x,y) \equiv 0 \text{ in } \Omega_\epsilon \quad (93)$$

Then the unique positive solution p of (81)(82) achieves at least two maxima and at least two minima outside of Ω_ϵ in Ω and no maximum nor minimum can be achieved in Ω_ϵ.

Proof: Thanks to theorem 12 (see remark 10) p achieves a maximum strictly greater than p_0 and a minimum strictly less than p_0 in Ω. If the maximum - say M is achieved in Ω_ϵ then thanks to (81)(93) we have in Ω_ϵ

$$\nabla \cdot (h^3 \rho(p) \nabla p) - \alpha h \rho'(p) \frac{\partial p}{\partial x} = \alpha \frac{\partial h}{\partial x} \rho(p) = 0$$
and thus by the maximum principle $p \equiv M$ in Ω_{ϵ}. But this contradicts

$$p = p_0 < M \quad \text{on} \quad \partial \Omega.$$

For the same reason p cannot achieve its minimum in Ω_{ϵ}. Thus p achieves its maximum and its minimum outside of Ω_{ϵ}. Now thanks to Proposition 2 we have (92) and it results that p achieves its maximum and its minimum at at least two points symmetric with respect to the x-axis. This completes the proof of the theorem.

Acknowledgements: This work was done during the academic year 1984-1985 when I was visiting the Institute for Mathematics and its Applications. It is a pleasure for me to thank this Institution and their organizers for their support during the completion of this paper. I am also indebted to M. Luskin for several discussions which suggested some of the results presented here.
References

Recent IMA Preprints (continued)

158 M. Birroil and U. Mosco, Wiener Estimates for Parabolic Obstacle Problems
159 E. Bennett and W. Zame, Prices and Bargaining in Cooperative Games
160 W.A. Harris and Ya. Sibays, The n-th Roots of Solutions of Linear Ordinary Differential Equations
161 Wikiard and F. Bass, Analytical Problems in Continuum Physics
162 P. Bauman and D. Phillips, Large-Time Behavior of Solutions to a Scalar Conservation Laws in Several Space Dimensions
163 A. Nevick-Cohen, Interfacial Instabilities in Directional Solidification of Dilute Binary Alloys: The Kuramoto-Sivashinsky Equation
164 M.F. Weinstein, On Metastable Patterns in Parabolic Systems
165 D. Arnold and R.S. Falk, Continuous Dependence on the Elastic Coefficients for a Class of Anisotropic Materials
167 Ingo Muller, Gases and Rubbers
168 Ingo Muller, Pseudoelectricity in Shape Memory Alloys — An Extreme Case of Thermoelasticity
169 Luis Magalhaes, Persistence and Smoothness of Hyperbolic Invariant Manifolds for Functional Differential Equations
170 A. Dainton and W. Vogelius, Homogenization Limits of the Equations of Elasticity in Thin Domains
172 J.L. Vazquez and C. Yarur, Isolated Singularities of the Solutions of the Schrödinger Equation with a Radial Potential
173 G. Dal Maso and U. Mosco, Wiener's Criterion and p-Convergence
174 John H. Maddocks, Stability and Folds
175 R. Hardt and D. Kinderlehrer, Existence and Partial Regularity of Static Liquid Crystal Configurations
176 M. Merkur, Construction of Smooth Ergodic Cocycles for Systems with Fast Periodic Approximations
177 J.L. Ericksen, Stable Equilibrium Configurations of Elastic Crystals
178 Patrick Aviles, Local Behavior of Solutions of Some Elliptic Equations
179 S.-N. Chow and R. Lusterbach, A Bifurcation Theorem for Critical Points of Variational Problems
180 R. Pego, Phase Transitions: Stability and Admissibility in One Dimensional Nonlinear Viscoelasticity
181 Mariano Ginesta, Quadratic Functions and Partial Regularity
182 J. Bona, Fully Discrete Galerkin Methods for the Korteweg De Vries Equation
183 J. Maddocks and J. Keller, Mechanics of Robes
184 F. Bonsi, Qualitative Properties for some nonlinear higher order
185 F. Bonsi, Finite Speed of Propagation and Asymptotic Rates for some Nonlinear Higher Order Parabolic Equations with Absorption
186 S. Reichestein and S. Reiter, Game Forms with Minimal Strategy Spaces
187 T. Ding, An Answer to Littlewood's Problem on Boundedness
188 J. Rubinstein and R. Mauri, Dispersion and Conv pension in Periodic Media
189 W.H. Fleming and P.E. Souganidis, Asymptotic Serles and the Method of Vanishing Viscosity
190 H. Belfo De Velga, Existence and Asymptotic Behavior for Strong Solutions of Navier-Stokes Equations in the Whole Space
191 L.A. Caffarelli, J.L. Vazquez, and N.I. Wolanski, Lipschitz Continuity of Solutions and Interfaces of the N-Dimensional Porous Medium Equation
192 R.Johnson, m-Functions and Floquet Exponents for Linear Differential Systems
193 F.V. Atkinson and L.M. Peletier, Ground States and Dirichlet Problems for \(-\Delta u = f(u)\) in \(\mathbb{R}^n\)
194 G. Dal Maso and U. Mosco, The Wiener Modulus of a Radial Measure
195 H.A. Levine and R.F. Weinberger, Inequalities between Dirichlet and Neumann Eigenvalues
196 E. Rubinstein, On the Macroscopic Description of Slow Viscous Flow Past a Random Array of Spheres
197 G. Dal Maso and U. Mosco, Wiener Criteria and Energy Decay for Relax Dirichlet Problems
198 V. Oliker and P. Waltman, On the Monge-Ampere Equation Arising in the Reflector Mapping Problem
199 M. Chipot, D. Kinderlehrer and L. Caffarelli, Some Smoothness Properties of Linear Laminates
200 Y. Giga and R. Kohn, Characterizing Blow-up Using Similarity Variables
201 P. Cannarsa and H. M. Soner, On the Singularities of the Viscosity Solutions to Hamilton-Jacobi-Bellman Equations
202 A. Majda, Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws
203 G. Buttazzo, G. Dal Maso and U. Mosco, A Derivation Theorem for Capacities with Respect to a Radon Measure
204 S. Cowin, M. Mehrabadi, On the Identification of Material Symmetry for Anisotropic Elastic Materials
120 D.R.J. Chillington, Three Introductory Lectures on Differential Topology and its Applications
121 Giorgio Vergara Caffarelli, Green's Formulas for Linearized Problems with Live Loads
122 F. Chiarenza and N. Garofalo, Unique Continuation for Nonnegative Solutions of Schrodinger Operators
123 J.L. Ericksen, Constitutive Theory for some Constrained Elastic Crystals
124 Minoru Murata, Positive solutions of Schrodinger Equations
125 John Maddocks and Gareth P. Parry, A Model for Twinning
126 M. Keneko and M. Wooders, The Core of a Game with a Continuum of Players and Infinite Coalitions: Nonemptiness with Bounded Sizes of Coalitions
127 William Zame, Equilibrium in Production Economies with an Infinite Dimensional Commodity Space
128 Myrna Holtz Wooders, A Tiebout Theorem
129 Abstracts for the Workshop on Theory and Applications ofLiquid Crystals
130 Yoshikazu Giga, A Remark on A Priori Bounds for Global Solutions of Semilinear Heat Equations
131 M. Chipot and G. Vergara-Caffarelli, The N-Membranes Problem
132 P.L. Lions and P.E. Souganidis, Differential Games and Directional Derivatives ofViscosity Solutions of Isaacs' Equations II
133 G. Capriz and P. Glovine, On Virtual Effects During Diffusion of a Dispersed Medium in a Suspension
134 Fall Quarter Seminar Abstracts
135 Umberto Mosco, Wiener Criterion and Potential Estimates for the Obstacle Problem
136 Chi-Sing Man, Dynamic Admissible States, Negative Absolute Temperature, and the Entropy Maximum Principle
137 Abstracts for the Workshop on Oscillation Theory, Computation, and Methods ofCompensated Compactness
138 Arle Lazerowitz, Tracking Nonperiodic Trajectories with the Overtaking Criterion
139 Arle Lazerowitz, Convex Sets in ℝⁿ as Affine Images of some Fixed Set in ℝⁿ
140 Arle Lazerowitz, Stochastic Tracking with the Overtaking Criterion
141 Abstracts from the Workshop on Amorphous Polymers and Non-Newtonian Fluids
142 Winter Quarter Seminar Abstracts
143 D.G. Aronson and J.L. Vazquez, The Porous Medium Equation as a Finite-spee Approximation to a Hamilton-Jacobi Equation
144 E. Sanchez-Palencia and H. Weinberger, On the Edge Singularities of a Composite Conducting Medium
145 Jon C. Leadbetter, Soliton Solutions in a Class of Fully Discrete Nonlinear Wave Equations
146 Chi-Sing Man and H. Cohen, A Coordinate-Free Approach to the Kinematics ofMembranes
147 J.L. Lions, Asymptotic Problems in Distributed Systems
148 Reiner Lauterbach, An Example of Symmetry Breaking with Submaximal Isotrop Subgroup
149 Abstracts from the Workshop on Metastability and Incompletely Posed Problem
151 Abstracts from the Workshop on Dynamical Systems in Continuum Physics
152 V.I. Oliker, The problem of Embedding 𝑆 1 into ℝ 3 with Prescribed Gauss
153 R. Borsari, A Lattice Defect in an Elastic Body
154 J. Fleckinger and Michael Lapidus, Eigenvalues of Elliptic Boundary Value Problems with and Indefinite Weight Function
155 R. Kohn and M. Vogelius, Thin Plates with Rapidly Varying Thickness, and Their relation to Structural Optimization
156 M. Gurtin, Some Results and Conjectures in the Gradient Theory of Phase Transitions