EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR STRONG SOLUTIONS
OF THE NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE

BY
H. BEIRÃO DA VEIGA

IMA Preprint Series # 190
October 1985

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
Recent IMA Preprints

Author(s) Title
40 William Ruckle, The Strong Topology on Symmetric Sequence Spaces
41 Charles R. Johnson, A Characterization of Borel's Rule Via Optimization
42 Hans Weinberger, Kazuo Kishi, The Spatial Homogeneity of Stable Equilibria of Some Reaction-Diffusion Systems on Convex Domains
43 K.A. Percivale-Spector, W.O. Williams, On Work and Constraints in Mixtures
44 H. Rosenberg, E. Tromba, Some Remarks on Deformations of Minimal Surfaces
45 Steven Smale, The Duration of Transients
46 V. Capasso, K.L. Cooke, W. Witten, Random Fluctuations of the Duration of Harvest
47 E. Fabes, D. Stocker, The L-Intergrability of Green's Functions and Fundamental Solutions for Elliptic and Parabolic Equations
48 H. Lienhard, Nonlinear Equations in R without Conditions at Infinity
49 M. Sieradski, Ax-Shrinking and the Viscosity-Capillarity Criterion
50 C. Johnson, W. Barrett, Spanning Tree Extensions of the Hadamard-Fischer Inequalities
51 Andrew Postlewaite, David Schervish, Revelation and Implementation Under Differential Information
52 Paul Blanchard, Complex Analytic Dynamics on the Riemann Sphere
53 G. Levitt, H. Rosenberg, Topology and Differentiability of Labyrinths in the Disc and Annulus
54 G. Levitt, H. Rosenberg, Symmetry of Constant Mean Curvature Hypersurfaces in Hyperbolic Space
55 Ennio Stacchetti, Analysis of a Dynamic, Decentralized Exchange Economy
56 Henry Simpson, Scott Spector, On Failure of the Complementing Condition and Nonuniqueness in Elastic Theory
57 Craig Tracy, Complete Integrability in Statistical Mechanics and the Toda Lattice Equations
58 Tongren Ding, Boundedness of Solutions of Duffing's Equation
59 Abstracts for the Workshop on Price Adjustment, Quantity Adjustment, and Business Cycles
60 Rafael Rob, The Coase Theorem an Informational Perspective
61 Joseph Jerome, Approximate Newton Methods and Homotopy for Stationary Operator Equations
62 Rafael Rob, A Note on Competitive Bidding with Asymmetric Information
63 Rafael Rob, Equilibrium Price Distributions
64 William Ruckle, The Linearization Projection, Global Theories
65 Russell Johnson, Kenneth Palmer, George R. Sell, Ergodic Properties of Linear Dynamical Systems
66 Stanley Rabinowitz, How a Network of Processors can Schedule its Work
67 R.K. Goldman, D.C. Maehl, Linear Subdivision is Strictly a Polynomial Phenomenon
68 R. Glazebrook, R. Johnson, The Floquet Exponent for Two-Dimensional Linear Systems with Bounded Coefficients
69 Steve Williams, Realization and Nash Implementation: Two Aspects of Mechanism Design
70 Steve Williams, Sufficient Conditions for Nash Implementation
71 Michael Traglia, William R. Zame, Equilibria in Banach Leattos Without Ordered Preferences
72 W. Harris, Y. Silbueys, The Reciprocals of Solutions of Linear Ordinary Differential Equations
73 Steve Smale, A Dynamical Meaning of Fractal Dimension
74 D. Kelly, S. Smale, Continuous-Time Portfolio Management: Minimizing the Expected Time to Reach a Goal
75 J.S. Jordan, Information Flows Intrinsic to the Stability Economy Equilibrium
76 J. Jerome, An Adaptive Newton Algorithm Based on Numerical Inversion: Regularization Post Condition
77 David Schervish, Integral Representation Without Additivity
78 Abstracts for the Workshop on Bayesian Analysis in Economics and Game Theory
79 G. Chichilnisky, G.J. Millard, Existence of a Competitive Equilibrium in L and Sobolev Spaces
80 Thomas P. Sellke, Time-dependent Solutions of a Nonlinear System in Semiconductory Theory, I: Boundedness and Periodicity
81 Takahashi, Engaging in R&D and the Emergence of Expected Nonconvex Technologies
82 Harve Meyer, Choice Functions over a Finite Set: A Summary
83 Harve Meyer, Choosing from a Tournament
84 David Schervish, Subjective Probability and Expected Utility Without Additivity
86 F. William Lawvere, State Categories, Closed Categories, and the Existence of Semi-Continuous Entropy Functions
87 F. William Lawvere, Functional Remarks on the General Concept of Chaos
88 Steven R. Williams, Necessary and Sufficient Conditions for the Existence of a Locally Stable Memoryless Process
89 Steven R. Williams, Implementing a Universal Smooth Function
90 Hilipin Abrams, Infinitely Repeated Games with Discounting: A General Theory
91 J.S. Jordan, Instability in the Implementation of Walrasian Allocations
92 Myrna Holtz Wooders, William R. Zame, Large Games: Fair and Stable Outcomes
93 J.L. Harkes, Critical Sets and Negative Bundles
94 Graciela Chichilnisky, Von Neumann-Morgenstern Utilities and Cardinal Preferences
95 J.L. Ericksen, Twinning of Crystals
96 Anna Nagurney, On Some Market Equilibrium Theory Paradoxes
97 Anna Nagurney, Sensitivity Analysis for Market Equilibrium
98 Abstracts for the Workshop on Equilibrium and Stability Questions in Continuum Physics and Partial Differential Equations
99 William Bragg, A Lecture on Some Topics in Nonlinear Elasticity and Elastic Stability
100 Filomena T. M. Bochort, Central Configurations of the N-Body Problem via the Equalization of Force
EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR STRONG SOLUTIONS
OF THE NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE

by

H. Beirão da Veiga

We shall consider the initial value problem for the non-stationary
Navier-Stokes equations in the whole space, namely

\[\begin{align*}
 \nu' - \mu \Delta \nu + (\nu \cdot \nabla) \nu &= f - \nabla p, & \text{in } [0,T[\times \mathbb{R}^n, \\
 \nabla \cdot \nu &= 0, & \text{in } [0,T[\times \mathbb{R}^n, \\
 \nu &= a(x), & \text{in } \mathbb{R}^n, \\
 \lim_{|x| \to +\infty} \nu(t,x) &= 0, & \text{for } t \in [0,T[,
\end{align*} \]

(0.1)

where \(T \in]0,+\infty[\), \(\nu \) is a positive constant, \(\nu' = \partial \nu / \partial t \), and

\[((\nu \cdot \nabla) \nu)_j = \sum_{i=1}^{n} \nu_i \frac{\partial \nu_j}{\partial x_i}, \quad j = 1, \ldots, n. \]

The vector field \(\nu(t,x) \) and the scalar field \(p(t,x) \) are unknowns. The
initial velocity \(a(x) \) and the external forces \(f(t,x) \) are given. The
pressure is determined by the condition \(\lim_{|x| \to +\infty} p(t,x) = 0 \), as \(|x| \to +\infty \).
Moreover,

\[\nabla \cdot f = 0 \quad \text{a.e. in } [0,T[, \quad \text{and } \nabla \cdot a = 0. \]

(0.2)

The first condition (0.2) is not strictly necessary.

Our main concern will be the asymptotic behaviour of the solutions, and the
core of the paper are the a priori estimates in sections 1 and 3. Appendices,
and proofs concerning the local existence of the solutions in section 2
(estimates of section 1, apart), are presented mainly for the sake of completeness. The reader acquainted with Navier-Stokes equations should skip Section 2
and appendices, or do them by different methods.
By a solution of problem (0.1), we mean a divergence free vector \(v(t,x) \) such that
\[
\int_0^T \int [v \cdot \phi' + \mu v \cdot \Delta \phi + (v \cdot \nabla) \phi \cdot v + f \cdot \phi] dx dt = - \int \phi|_{t=0} dx,
\]
for every regular divergence free vector field \(\phi(t,x) \), with compact support respect to the space variables, and such that \(\phi(T,x) = 0 \).

In section 1 (see theorem 1.5) we establish some basic a priori estimates for the norm \(|v(t)|_\alpha \) in \(L^\alpha(\mathbb{R}^n) \), and for the time existence \(T_\alpha \), of the solution of (0.1).

In section 2, we assume that \(\alpha > n \) and we state two existence theorems:

In theorem 2.1 we prove that if \(a \in L^\alpha \) and \(f \in L^1(0,T;L^\alpha) \), then there exists a (unique) solution \(v \in C_\alpha([0,T_\alpha];L^\alpha) \) of (0.1), such that \(|v(t)|_\alpha < y(t), \forall t \in [0,T_\alpha] \). Here, \(C_\alpha([0,T_\alpha];L^\alpha) \) denotes the space of the weakly continuous functions on \([0,T_\alpha]\) with values in \(L^\alpha \). Moreover, \(T_\alpha \) is defined as the time existence of the maximal solution \(y(t) \) of the o.d.e. \(y' = ky^q + |f(t)|_\alpha \), with initial data \(y(0) = |a|_\alpha \), \(k \) is a positive constant, and \(q = (3\alpha - n)/(\alpha - n) \).

In theorem 2.2 we assume that \(a \in L^\alpha \cap L^2 \) and \(f \in L^1(0,T;L^\alpha \cap L^2) \), and we prove the existence of a (unique) solution \(v \in C([0,T_\alpha];L^2 \cap L^\alpha) \), such that \(|v(t)|_\alpha < y(t) \).

Since we are mainly interested on finite energy solutions (in view of the results of section 3), we prove the strong continuity only in theorem 2.2. However, strong continuity could be proved also in theorem 2.1.

An existence result, related to theorem 2.1, was proved by Fabes, Jones and Riviere [2], by assuming that \(a \in L^\alpha \) and \(f \in L^q(0,T;L^\alpha) \), \(q > 1 \). Under these conditions, they show that there exists a (unique) solution in \(L^p(0,T^*;L^\alpha) \), for some \(T^* > 0 \); however, the value \(p = +\infty \) is not attained. Other interesting (related) existence results in the \(\mathbb{R}^n \) case are proved by Kato [5]
and, in the bounded domain case, by Giga and Miakawa [3]; see also Giga [4].

The uniqueness of the solution in the class \(L^p(0,T; L^a) \), with \(n < \alpha < +\infty \) and \((2/p) + (n/a) < 1 \), was proved by Fabes, Jones and Riviere [2].

In section 3 we obtain some sharp estimates for the solution of (0.1), by assuming a smallness condition on the data. More precisely, we will prove the following results:

Theorem 0.1 Given \(\alpha > n \), there exist two positive constants \(c_1 \) and \(c_2 \), depending only on \(\alpha \) and \(n \), such that the following statement holds:

Let \(T \in]0, +\infty] \), and \(a \in L^{\alpha} \cap L^{\infty} \) and \(f \in L^{\infty}(0,T; L^{a}) \cap L^{1}(0,T; L^{\infty}) \) verify (0.2). Moreover, assume that the data \(a \) and \(f \) verify

\[
|a|_2 + \|f\|_{L^{1}(0,T; L^{\infty})}^{2(\alpha-n)/\alpha(n-2)} |a|_a < c_1 \mu^n(n-2)/\alpha(n-2),
\]

and that

\[
|a|_2 + \|f\|_{L^{1}(0,T; L^{\infty})}^{6(\alpha-2n)/\alpha(n-2)} \|f\|_{L^{\infty}(0,T; L^{a})} < c_2 \mu^{2(n+\alpha-n)/\alpha(n-2)}.
\]

Then, there exists a (unique) solution \(v \in L^{\infty}(0,T; H^{1}) \cap C([0,T]; L^{a} \cap L^{\infty}) \) of the Navier-Stokes equation (0.1). Moreover,

\[
\|v\|_{C([0,T; L^{a})} < c_1 \mu^n(n-2)/\alpha(n-2) \left[|a|_2 + \|f\|_{L^{1}(0,T; L^{\infty})} \right]^{-2(\alpha-n)/\alpha(n-2)}.
\]

In the absence of external forces, we will prove the following decay estimate:

Theorem 0.2. Given \(\alpha > n \), there exist positive constants \(c_3 \), \(c_4 \) and \(c_5 \), depending only on \(\alpha \) and \(n \), such that if \(f \equiv 0 \), \(a \in L^{\alpha} \cap L^{\infty} \), \(v \cdot a = 0 \) and

\[
|a|_2^{2(\alpha-n)/\alpha(n-2)} |a|_a < c_3 \mu^n(n-2)/\alpha(n-2),
\]

then there exists a (unique) solution \(v \in L^{\infty}(0, +\infty; H^{1}) \) \(\cap C([0, +\infty; L^{a} \cap L^{\infty}) \) of problem (0.1). Moreover,
\((0.7)\)
\[|v(t)|_\alpha < |a|_\alpha [1 + c_4 \mu \frac{|a|_{l2}^{-\beta}}{|a|_{l2}^{\beta}} t]^{-1/\beta}, \]

for every \(t \in [0, +\infty[\), where \(\beta = 4\alpha/(\alpha-2)n \). In particular,

\((0.8)\)
\[|v(t)|_\alpha < c_5 |a|_{l2} \left(\frac{1}{\mu t} \right)^{(\alpha-2)n/4\alpha}, \quad \forall t > 0. \]

Remarks (i) Actually, the solution \(v \) in theorem 0.2, belong to \(C^\infty(]0, +\infty[\times \mathbb{R}^n) \), since it is bounded in \(L^\alpha(\mathbb{R}^n) \), for \(\alpha > n \). By regularization, one can obtain estimates for stronger norms than \(| |_\alpha \).

(ii) The uniqueness of the solution, in theorems 0.1 and 0.2, follows from the uniqueness theorem of Prodi [12] and Serrin [14]. See also [8], chap. 1, theorem 6.9.

(iii) Conditions (0.3), (0.4) and (0.6) are invariant under scale change in space-time.

(iv) In view of results proved in [2], [5] it looks possible to replace in theorems 0.1 and 0.2 the \(L^\alpha \)-norm by an \(L^0 \)-norm, for \(\alpha_0 < n \). However, we did not investigate in this direction.

At the end of section 3 we prove that the statements in theorems 0.1 and 0.2 hold again, by setting \(\alpha = n \). In this particular case, the formulas simplify considerably; see theorem 3.3.

Some results, related to those presented in this paper, can be found in Fabes, Jones and Riviere [2], and in Kato [5]. In this last paper some asymptotic estimates are given, specially in the case \(a \in L^n \) and \(f \equiv 0 \). It is interesting to note that, by setting \(p = 2 \) and \(q = n \) in estimate (1.5) of reference [5], one has \(|v(t)|_n = O(1/t^{(n-2)/4}) \), as \(t \to +\infty \), which is just the asymptotic behavior implied by our estimate (3.17). However, in [5] the result is proved under the assumption that the exponent \((n-2)/4 \) is small than 1.
For other results, more or less related to ours, see, e.g., Giga and Miyakawa [3], Giga [4], Masuda [10], and Weissler [18].

The results proved in our paper, were obtained independently of those of the above papers. The method utilized is quite different, too.

1. In the sequel with the symbol \(L^\alpha \), \(1 < \alpha < +\infty \), we will denote either \(L^\alpha (\mathbb{R}^n) \) or \([L^\alpha (\mathbb{R}^n)]^n \). Both norms will be denoted \(\| \cdot \|_\alpha \). Similarly, \(W^{s,p} \), \(s \in \mathbb{R}, p \in [1, +\infty [\), will denote the Sobolev spaces \(W^{s,p}(\mathbb{R}^n) \) and \([W^{s,p}(\mathbb{R}^n)]^n \), and \(\| \cdot \|_{s,p} \) will denote the respective norms. For convenience, we set \(W^s = W^{s,2}, \| \cdot \|_s = \| \cdot \|_{s,2} \). For definitions and properties see [6], [7], [9], [17]. We also define \(H = \{ u \in L^2 : \nabla \cdot u = 0 \} \) and \(V = \{ u \in H^1 : \nabla \cdot u = 0 \} \).

In section 2, we will utilize the Bessel potential spaces \(H^{s,p}(\mathbb{R}^n) \) (see [6], [9], [17]). Recall that \(H^{s,p} = W^{s,p} \), for any integer \(s \).

For vector field \(v \), we define
\[
|\nabla v|^2 = \sum_{i,j=1}^n \left(\frac{\partial v_i}{\partial x_j} \right)^2.
\]

Sometimes, we will utilize abbreviated notations, as \(|\nabla v|_\alpha \) instead of \(\| \nabla v \|_\alpha \), \(L^p(X) \) instead of \(L^p(0,T;X) \), and so on. Standard notation will be used without an explicit definition. Moreover, unless otherwise specified, the domain of integration with respect to the space variables is \(\mathbb{R}^n \).

For the sake of convenience we define the quantities
\[
N_\alpha(v) \equiv \int |\nabla v|^{\alpha} |v|^{\alpha-2} dx,
\]
\[
M_\alpha(x) \equiv \int |v|^{\alpha/2} |v|^{\alpha/2} dx.
\]

These quantities will play a leading role in the sequel.

In this section we assume \(\alpha > n \) (except that in theorems 1.4 and 1.5, \(\alpha > 2 \) would suffice) and
\[(1.1) \quad a \in L^\alpha, \; f \in L^1(0,T;L^\alpha).\]

Here we will establish some a priori estimates for solutions of \((0.1)_{1,2,3}\). In order to justify the calculations which follow, we assume in this section that

\[(1.2) \quad v \in L^1(0,T;W^{2,\alpha}), \; v' \in L^1(0,T;L^\alpha).\]

In fact, assumption \((1.2)\) implies further regularities for \(v\) and \(p\). Specifically, since

\[\| v \|_{1,\alpha} < C \| v \|_{\alpha/2},\]

assumption \((1.2)\) implies \(v \in C([0,T];L^\alpha) \cap L^2(0,T;W^{1,\alpha})\). On the other hand, a well known Sobolev embedding theorem [7] implies \(\forall v \in L^1(0,T;L^\infty)\), hence from equation \((0.1)_1\) it follows that \(\forall p \in L^1(0,T;L^\alpha)\).

Moreover, since \(v \in L^\omega(L^\alpha) \cap L^2(L^\infty)\), one has \(v^2 \in L^2(L^\alpha)\). Consequently, by using Calderon-Zygmund's inequality [16], equation \((1.10)\) yields \(p \in L^2(0,T;L^\alpha)\).

We start by proving the following result:

Lemma 1.1 Let \(v\) be a solution of \((0.1)_{1,2,3}\), belonging to the class \((1.2)\). Then \(v\) verifies the estimates \((1.5), (1.8)\) and

\[(1.3) \quad \frac{1}{\alpha} \frac{d}{dt} |v|_{\alpha} + \mu \frac{\alpha}{\alpha-2} \mathcal{N}_\alpha(v) + 4\mu \frac{\alpha-2}{\alpha} \mathcal{M}_\alpha(v) \leq \frac{(\alpha-2)2}{2\mu} |p|^2 |v|^{\alpha-2} + |f|_{\alpha} |v|^{\alpha-1}.\]

Proof. Note, first, that

\[(1.4) \quad |v|_{\alpha/2} \leq \frac{\alpha}{\alpha-2} |v|^{\alpha/2} - \frac{1}{\alpha} |\nabla v|, \text{ a.e. in } \mathbb{R}^n.\]
In order to prove (1.3), we multiply both sides of equation (0.1) by
$|v|^{\alpha-2}v$, and integrate over \mathbb{R}^n. After suitable integrations by parts (recall
that $\nabla \cdot v = 0$), we obtain the identity

\begin{align}
(1.5) \quad \frac{1}{\alpha} \frac{d}{dt} |v|^{\alpha} + \mu N_\alpha(v) + 4\mu \frac{\alpha - 2}{\alpha^2} M_\alpha(v) = \\
- \int \nabla p \cdot v |v|^{\alpha-2} dx + \int f \cdot v |v|^{\alpha-2} dx.
\end{align}

On the other hand, one has

\begin{align}
(1.6) \quad - \int \nabla p \cdot v |v|^{\alpha-2} dx = (\alpha - 2) \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} v_i v_j |v|^{\alpha-2} dx = \\
= \frac{2(\alpha - 2)}{\alpha} \int p |v|^{\alpha/2} - 2 \left(\sum_{i=1}^{n} v_i \right) \left(\sum_{i=1}^{n} \frac{\partial}{\partial x_i} (|v|^{\alpha/2}) \right) dx.
\end{align}

From (1.5) and (1.6), since

\begin{align}
(1.7) \quad | \sum_{i,j} v_i v_j \frac{\partial v_j}{\partial x_i} | \leq |v|^{\alpha} |\nabla v|,
\end{align}

one gets

\begin{align}
(1.8) \quad \frac{1}{\alpha} \frac{d}{dt} |v|^{\alpha} + \mu N_\alpha(v) + 4\mu \frac{\alpha - 2}{\alpha^2} M_\alpha(v) \leq \\
\leq (\alpha - 2) \int |p| |\nabla v| |v|^{\alpha-2} dx + |f|_\alpha |v|^{\alpha-1}.
\end{align}

Since

\begin{align}
(\alpha - 2) \int |p| |\nabla v| |v|^{\alpha-2} dx \leq \frac{(\alpha-2)^2}{2\mu} \int p^2 |v|^{\alpha-2} dx + \frac{\mu}{2} N_\alpha(v),
\end{align}

(1.3) follows. \qed

Lemma 1.2 Let v be a solution of (0.1)$_{1,2,3}$ in the class (0.2). Then
(1.9) \[\frac{1}{\alpha} \frac{d}{dt} |v|^{\alpha} + \frac{\mu}{2} N_\alpha(v) + 4\mu \frac{\alpha - 2}{\alpha^2} M_\alpha(v) \leq \]
\[\leq c \frac{\alpha - 2}{\mu} |v|^{\alpha+2} + |f|_\alpha |v|^{\alpha-1}. \]

Proof. Hölder's inequality gives
\[\int |p|^2 |v|^{\alpha-2} dx \leq |p|_{\alpha+2/2}^2 |v|^{\alpha-2}_{\alpha+2}. \]

On the other hand, by applying the divergence operator to both sides of equation (0.1), one gets

(1.10) \[-\omega p = \sum_{i,j=1}^n \frac{\partial^2}{\partial x_i \partial x_j} (v_i v_j). \]

By using the Calderon-Zygmund's inequality [16], one obtains

(1.11) \[|p|_{\alpha+2/2} \leq c |v|^{\alpha}_\alpha. \]

Consequently,

(1.12) \[\int |p|^2 |v|^{\alpha-2} dx \leq c |v|^{\alpha+2}_{\alpha+2}. \]

Equation (1.9) follows from (1.3) and (1.12).

Lemma 1.3 Let \(w \in W^{1,\alpha} \). Then

(1.13) \[|v|^{\alpha+2}_{\alpha+2} \leq c |v|^{\alpha-n+2}_\alpha \left[M_\alpha(v)\right]^{n/\alpha}. \]

In particular,

(1.14) \[|v|^{\alpha+2}_{\alpha+2} \leq c \left|v|^{\alpha-n+2}_\alpha \right. \left[N_\alpha(v)\right]^{n/\alpha}. \]
Proof. Define $2^* = 2n/(n - 2)$. Since

$$
\frac{\alpha}{2(\alpha + 2)} = \frac{1 - \theta}{2} + \frac{\theta}{2^*}, \quad \text{for} \quad \theta = \frac{n}{\alpha + 2},
$$

one gets

$$
|g|_2^{1-n/(\alpha+2)} \frac{n/(\alpha+2)}{\alpha} < |g|_2^{1-n/(\alpha+2)} |g|_{2^*}^{n/(\alpha+2)}.
$$

(1.15)

On the other hand, by a well known Sobolev's embedding theorem [7], one has $|g|_{2^*} < c|\nabla g|$. By applying this estimate, together with (1.15), to the function $g = |v|_{a/2}$, one gets (1.13). Moreover (1.13) and (1.4) yield (1.14). \qed

Theorem 1.4 Let $\alpha > n$, and let v be a solution of (0.1)$_{1,2,3}$ in the class (1.2). Then,

$$
\frac{1}{\alpha} \frac{d}{dt} |v|_{\alpha}^{\alpha} + \frac{\mu}{4} N_\alpha(v) < c_{\mu}^{(-n+\alpha)/(\alpha-n)} |v|_{\alpha}^{\alpha n+2}/(\alpha-n) + |f|_{\alpha} |v|_{\alpha}^{\alpha-1}.
$$

(1.16)

Proof. From (1.9) and (1.14) one obtains,

$$
\frac{1}{\alpha} \frac{d}{dt} |v|_{\alpha}^{\alpha} + \frac{\mu}{2} N_\alpha(v) + \frac{\mu}{2} \frac{\alpha-2}{\alpha} M_\alpha(v) < c_{\mu} \left[N_\alpha(v) \right]^{n/\alpha} |v|_{\alpha}^{\alpha-n+2} + |f|_{\alpha} |v|_{\alpha}^{\alpha-1}.
$$

By applying Young's inequality, with exponents α/n and $\alpha/\alpha(n)$, to the first term on the right hand side of the above inequality, one gets (1.16). \qed

Now we state the main result in this section. For convenience, define

$$
q = \frac{3\alpha - n}{\alpha - n}, \quad k = c_{\beta}^{-(\alpha + n)/(\alpha - n)}.
$$
Consider the following Cauchy problem for o.d.e.,

\[y' = ky^q + |f(t)|_a, \quad t > 0, \]
\[y(0) = |a|_a. \]

(1.17)

Let \(T_a \) be the time existence of the maximal solution \(y(t) \) of (1.17). One then has the following result:

Theorem 1.5 Let \(\alpha > n \), and assume that \(a \) and \(f \) verify (0.2) and (1.1). Let \(v \) be a solution of \((0.1)_{1,2,3} \) in the class (1.2), and let \(y(t) \) and \(T_a \) be defined as above. Then

\[|v(t)|_a \leq y(t), \quad \forall t \in [0, T_a]. \]

(1.18)

Proof. Note first that inequality (1.18) has the following meaning: Given \(\tau \in [0, T_a] \), if \(v \) is a solution of \((0.1)_{1,2,3} \) in \([0, \tau] \), which belongs to the class (1.2) in \([0, \tau] \), then (1.18) holds in \([0, \tau] \).

By defining \(z(t) = |v(t)|_a \), from (1.16) one has, \(z' \leq k|z|^q + |f(t)|_a \), \(z(0) = |a|_a \). The result follows by comparison theorems for o.d.e.

2. In this section we prove the existence theorems 2.1 and 2.2. For the reader's convenience, some auxiliary results are proved in the appendix.

Theorem 2.1 Let \(\alpha > n \), and assume that \(a \) and \(f \) verify (0.2) and (1.1). Let \(T_a \) be defined as in theorem 1.5. Then, there exists a (unique) solution \(v \in C_\star([0, T_a]; L^q) \) of the Navier-Stokes equations (0.1). This solution satisfies inequality (1.18).
Proof. It will be clear from the proof that it is sufficient to argue on an arbitrary interval \([0, \tau]\), for \(\tau \in [0, T_\alpha]\). Let \(a_n\) and \(f_n\) be regular functions, rapidly decreasing at infinity with respect to the space variables (even \(C^\infty\) functions, with compact support with respect to the space variables) verifying (0.2), and such that \(a_n + a\) in \(L^\alpha\), \(f_n + f\) in \(L^1(0, T; L^\alpha)\). Denote by \(T_{\alpha, n}\) the time existence (in theorem 1.5) corresponding to the data \(a_n\) and \(f_n\).

Since \(T_{\alpha, n} + T_\alpha\) as \(n \to +\infty\), we may assume \(T_{\alpha, n} > \tau\). Due to the regularity of the data \(a_n\) and \(f_n\), it is well known that there exists a (unique) local regular solution \(v_n\). In particular, \(v_n \in L^\infty(H) \cap L^2(V)\). From the a priori estimate of theorem 1.5, it follows that if \(v_n\) is regular in \([0, s]\), \(0 < s < \tau\), then \(v_n \in L^\infty(0, s; L^\alpha)\). On the other hand, if \(v_n \in L^\infty(0, s; L^\alpha)\), then \(v_n\) is regular in \([0, s]\). This is a well known result, in line with Serrin's paper [13].

The results stated above, imply that the regular solution \(v_n\) exists in all \([0, \tau]\).

Since the sequence \(v_n\) is uniformly bounded in \(L^\infty(0, \tau; L^\alpha)\) (by theorem 1.5), there exists a subsequence which is weak-*convergent to a function \(v \in L^\infty(0, \tau; L^\alpha)\).\(^1\) Clearly, the regular solution \(v_n\) solves the following weak formulation of the Navier-Stokes equation (0.1),

\[
\int_0^\tau \int_0^\tau [v_n \cdot \phi' + \mu v_n \cdot \Delta \phi + [(v_n \cdot \nabla) \phi] \cdot v_n + f_n \cdot \phi] \, dx \, dt = -\int \nabla v_n \cdot \phi(0) \, dx,
\]

where \(\phi(t, x)\) is any divergence free test function, with compact support with respect to the space variables, and such that \(\phi(\tau, x) = 0, \nabla x \in \mathbb{R}^n\).

\(^1\) Actually, by the uniqueness of the solution \(v\) [2], it follows that the sequence itself converges to \(v\).
To prove that the limit function \(v \) is solution of the Navier-Stokes equation (2.1), with data \(a \) and \(f \), we adapt to our case (\(\alpha \neq 2 \) and \(\Omega = \mathbb{R}^n \)) the method of Lions, described in [7], chap. I, section 6. We will prove (in appendix A) the main point, namely, that there exists a subsequence \(v_{u^+} \) such that

\[
(2.2) \quad \lim_{u^+ \to +\infty} v_{u^+} = v \quad \text{in} \quad L^p(0,\tau;L^q(B_R)), \quad \forall \tau > 0.
\]

Here, \(B_R = \{ x \in \mathbb{R}^n : |x| < R \} \), and \(p \in [1, +\infty[\) is arbitrarily chosen.

Since the convergence in \(L^1(0,\tau[\times B_R) \) implies pointwise convergence for a subsequence, we can assume that \(v_{u^+}(t,x) + v(t,x) \) almost everywhere in \(]0,\tau[\times \mathbb{R}^n \). This is the main tool used to pass to the limit in the non-linear term of equation (2.1).

Since \(v \in L^\infty(0,\tau;L^a) \cap C([0,\tau];X) \), where \(X \) is the Banach space \(X \equiv W^{-1,\alpha} + W^{s-2,\alpha/2}, s < 1 \), the weak continuity of \(v(t) \) follows easily. Note that, as a consequence of (0.1)_1, one has \(v' \in L^1(0,\tau;X) \); see (4.3)_2 and (4.4)_2, in appendix A.

In the next section we will be particularly interested on finite energy solutions. Hence, we establish here the following result:

Theorem 2.2 Let \(a \in H \cap L^\alpha \), \(f \in L^1(0,T;H \cap L^\alpha) \), \(\alpha > n \), and let \(T_\alpha \) and \(y(t) \) be defined as above. Then, there exists a (unique) solution \(v \) of the Navier-Stokes equation (0.1), in the class \(C([0,T_\alpha[;H \cap L^\alpha) \cap L^2(0,T_\alpha;V) \). Moreover, (1.18) holds.

This result can be regarded as a consequence of theorem 2.1 and energy estimate (2.3). However, it seems more natural to pass to the limit in equation (2.1) by using the energy estimate.
\[\| \nu \|_{L^\infty(0, \tau; H)} + \mu \| \nu \|_{L^2(0, \tau; V)} \leq |a_n|_2 + \| f_n \|_{L^1(0, \tau; H)},\]

which is now available. In this case, the regular approximating data \(a_n \) and \(f_n \) verify the assumptions \(a_n \rightarrow a \) in \(H \cap L^\alpha \), \(f_n \rightarrow f \) in \(L^1(0, T; H \cap L^\alpha) \). By theorem 1.5, one has again

\[\| \nu_n \|_{L^\infty(0, \tau; L^\alpha)} \leq \text{constant indep. of } n.\]

The proof of theorem 2.2 follows the same ideas as in theorem 2.1, except that for the compactness argument, which is now similar to that utilized (see [7]) for the usual Faedo-Galerkin procedure.\(^2\) Infact, integrating by parts and by Sobolev's embedding theorem, it follows that the map

\[\phi + \int_0^\tau \int [(v_n \cdot V)v_n] \cdot \phi \, dx \, dt, \quad \forall \phi \in L^2(\nu),\]

defines a uniformly bounded family in \(L^2(\nu') \). Here, we utilize (2.4), and also (2.3) if \(n = 3 \). By using (0.1)_1, it follows in particular, that \(\nu_n \) is uniformly bounded in \(L^1(\nu') \). Hence, for every \(R > 0 \), one has

\[\| \nu_n \|_{L^2(0, \tau; V(B))} \leq \text{constant,}\]

\[\| \nu_n' \|_{L^1(0, \tau; V'(B))} \leq \text{constant,}\]

uniformly with respect to \(n \). By using (2.5), it is easy to prove that there exists a subsequence \(\nu_{n_\nu} \), strongly convergent to \(\nu \) in \(L^2(0, \tau; L^2(B)) \), \(\forall R > 0 \), and pointwisely-convergent, almost everywhere in \(]0, T[\times R^n \) (see the end of appendix A). The uniqueness of the solution follows as in Prodi [12] and Serrin [14]. See also [7], chap. I, section 6. The strong continuity of \(\nu \), will be proved in appendix B.

\(^2\) However, by using (2.4), we get here stronger a priori bounds, which are independent of the dimension \(n \).
3. In this section we prove global estimates and decay properties for the norm \(|v(t)|_a \), \(t \in [0, +\infty[; a > n \), of the solution \(v \in C([0, +\infty[; L^a \cap L^2) \) of the Navier-Stokes equations, constructed in section 2, theorem 2.2. Here we assume that \(a \) and \(f \) are small.

The global a priori estimates of this section, together with the local existence theorem 2.2, yield the global existence of the solutions. Obviously, the global estimates of this section are proved first for solutions belonging to the class (1.2), hence for the approximating solutions \(v_n \), utilized in theorem 2.2. By passing to the limit when \(n \to +\infty \), one shows that the estimates hold for the limit function \(v \) (argue as done for the local estimate (1.18) in theorem 2.2). For clearness, and in order to avoid tedious repetitions, we will argue directly on the solution \(v \).

Lemma 3.1 Let \(\alpha > 2 \). Then

\[
N_\alpha(v) > c |v|_2^{-\frac{4\alpha}{(\alpha-2)n}} |v|_\alpha^{\alpha + \frac{4\alpha}{(\alpha-2)n}}.
\]

Proof. From (1.4) and from a Sobolev's embedding theorem \((|g|_2^* < c |\nabla g|_2^*, 2^* = 2n/(n-2)) \), one gets

\[
N_\alpha(v) > c |v|_{\alpha n/n-2}^\alpha.
\]

Furthermore, if \(\upsilon = 4/[4 + (\alpha-2)n] \), one has

\[
1/\alpha = \upsilon/2 + (1 - \upsilon)/[(\alpha n/[(n-2)].
\]

Consequently

\[
|v|_\alpha < |v|_2^{\frac{4}{(\alpha-2)n}} |v|_{\alpha n/n-2}^{(\alpha-2)n/(4+\alpha-2)n}.
\]

From (3.2) and (3.3), one gets (3.1).

Let now \(v \) be as in theorem 1.4. by using (1.16) and (3.1), a straightforward calculation gives
where for convenience, we define, \(y(t) \equiv |v(t)|_\alpha \), \(\beta = 4\alpha/(\alpha-2)n \),
\(\gamma = 2\alpha^2(n-2)/n(\alpha-2)(\alpha-n) \). Let \(T \in]0, +\infty[\), It is well known that for every \(t \in [0, T] \), one has

\[
|v(t)|_2 < |a|_2 + \int_0^T |f(\tau)|d\tau \equiv K.
\]

If \(K = 0 \), then \(v(t) = 0, \forall t > 0 \). Hence we assume that \(K > 0 \). From (3.4) one gets

\[
y' < c_8 [c_g u |v|_2^{-\beta} - u^{-\alpha/(\alpha-n)} y_\gamma] y^{1+\beta} + |f|_\alpha.
\]

Let us prove now the following result:

Lemma 3.2 Assume that (3.6) holds. If

\[
y(0) Y < \frac{c_g}{2} K^{-\beta} \mu^{\alpha/\alpha-n}
\]

and

\[
|f(t)|_\alpha < c_8 \mu \frac{c_g}{4} K^{-\beta} [\mu^{\alpha/\alpha-n} \frac{c_g}{2} K^{-\beta}] (1+\beta)/\gamma,
\]

a.e. in \([0, T] \), then

\[
y(t) Y < \frac{c_g}{2} \mu^{\alpha/\alpha-n} K^{-\beta}, \forall t \in [0, T].
\]

Proof. For \(t = 0 \), (3.9) holds. Moreover, by using (3.6) and (3.8), one easily shows that whenever (3.9) holds with the equal sign, then \(y'(t) < 0 \). This proves the lemma.

Proof. For \(t = 0 \), (3.9) holds. Moreover, by using (3.6) and (3.8), one easily shows that whenever (3.9) holds with the equal sign, then \(y'(t) < 0 \). This proves the lemma.

Theorem 0.1 follows from lemma 3.2, by setting \(c_1 = (c_g/2)^{1/\gamma} \),
\(c_2 = c_8 (c_g/4)(c_g/2)^{(1+\beta)/\gamma} \).
Let us now consider the homogeneous case $f \equiv 0$. By setting $c_3 = (c_4/2)^{1/\gamma}$, the assumption (0.6) is nothing but (3.7), since $K = |a|_2$. Hence, from (3.6) it follows that

$$y' \leq -c_4 \mu |a|_2^{-\beta} y^{1+\beta},$$

for every $t \in [0,T]$, where for convenience we put $c_4 = c_8 c_9/2$. Consequently, by comparison theorems for o.d.e, one gets

$$y(t) < y(0) [1 + c_4 \mu \beta |a|_2^{-\beta} y(0)^{\beta} t]^{-1/(\beta)}.$$

This yields (0.7) and (0.8).

□

Remark 3.3. In a bounded domain Ω (with the boundary condition $v = 0$ on $\partial \Omega$), by using the following Poincare's inequality $|g|_2 < c(\mu, n)|g|_2$, $Vg \in H^1_0(\Omega)$, one gets (compare with (3.2)) $N_\alpha(v) > c(\alpha, n, \mu)|v|_\alpha^\alpha$. Hence, from (1.16) one would obtain

$$\frac{d}{dt} |v|_\alpha + c|v|_\alpha < c_\mu|v|_\alpha^{(3\alpha-n)/(\alpha-n)} + |f|_\alpha,$$

which would immediately give a quite strong estimate for $|v(t)|_\alpha$; in particular, if $f \equiv 0$ one would have an exponential decay for $|v(t)|_\alpha$. However, some devices must be introduced in order to obtain estimates like (1.9) (not obtainable from (1.12) alone).

In the remaining of this section we present the asymptotic estimates for the limit case $\alpha = n$ (here, the positive constants c depend only on n). We wish to point out that these estimates will be proved only for sufficient regular solutions (say, in the class (1.2)). However, one can apply these L^n estimates, together with the uniform estimate in $L^\infty(H) \cap L^2(V)$, to a sequence of regular approximate solution v_n, in order to get (by a compactness argument) a weak solution $v \in L^\infty(H) \cap L^2(V) \cap L^\infty(L^n)$, verifying the L^n estimate under
consideration. Alternatively, one can utilize the methods introduced by Kato (see for instance [5]) to get the existence of the solution.\footnote{for uniqueness results in \(L^\infty(\mathbb{L}^n(\Omega)) \), we refer the reader to [15].}

By starting from (1.9) and (1.14), we obtain

\[
\frac{1}{n} \frac{d}{dt} |v|^n_n + \frac{\mu}{2} N_n(v) \leq \frac{c_{10}}{\mu^2} N_n(v) |v|^2_n + |f|^n_n |v|^{n-1}_n,
\]

where \(c_{10} \) is a suitable constant. Hence,

\[
(3.11) \quad \frac{1}{n} \frac{d}{dt} |v|^n_n \leq -\frac{\mu}{2} N_n(v) [1 - \frac{c_{10}}{\mu^2} |v|^2_n] + |f|^n_n |v|^{n-1}_n.
\]

From (3.11) and (3.1) it follows that

\[
\frac{d}{dt} |v|^n_n \leq -\frac{\mu}{2} c_{11} |v|^2 - (4/n-2) |v|^n+2/n-2 |v|^2_n + |f|^n_n,
\]

provided \(c_{10} \mu^2 |v|^2_n < 1 \). Recalling (3.5), one shows that if \(|a|^n_n < \mu(2c_{10})^{-1/2} \) and if

\[
\|v\|_{L^\infty(0,T;L^n)} < \frac{\mu}{8} c_{11} K^{-4/(n-2)} (\frac{\mu}{\sqrt{2c_{10}}})^{n+2/n-2},
\]

then \(|v(t)|_n < \mu(2c_{10})^{-1/2}, \forall t \in [0,T] \). In fact, \((d/dt) |v|^n_n < 0 \), whenever \(|v|^n_n = \mu(2c_{10})^{-1/2} \). This proves the first part of the following result:

Theorem 3.3. Let \(a \in L^n \cap L^2 \) and \(f \in L^1(0,T;L^2) \cap L^\infty(0,T;L^n) \), verify (0.2). Assume that \(v \) is a sufficiently regular (say, in class (1.2)) solution of (0.1). Then, there exist positive constants \(c_6 \) and \(c_{12} \) such that if

\[
|a|^n_n < c_6 \mu,
\]

and

\[
\|v\|_{L^\infty(0,T;L^n)} < \frac{\mu}{8} c_{11} K^{-4/(n-2)} (\frac{\mu}{\sqrt{2c_{10}}})^{n+2/n-2},
\]

then \(|v(t)|_n < \mu(2c_{10})^{-1/2}, \forall t \in [0,T] \).
(3.14) \[\left(|a|_2 + \|f\|_{L^1(0,T;L^2)} \right)^{4/(n-2)} \|f\|_{L^\infty(0,T;L^n)} < c_{12}^{2n/n-2}, \]

one has

(3.15) \[|v(t)|_n < c_6 \mu, \quad \forall t \in [0,T]. \]

Moreover, if \(f = 0 \), and if (3.13) holds, then

(3.16) \[|v(t)|_n < |a|_n [1 + c \mu |a|^{4/(n-2)}_2 |a|^{4/(n-2)}_n]^{-n/2}, \]

for every \(t \in [0, +\infty[. \) In particular,

(3.17) \[|v(t)|_n < c_4 |a|_2 \left(\frac{1}{\mu t} \right)^{(n-2)/4}, \quad \forall t > 0. \]

In order to prove the statement concerning the case \(f \equiv 0 \), we remark that if \(a \) verifies \(|a|_n < \mu (2c_{10})^{-1/2} \), then

\[\frac{d}{dt} |v|_n < -\frac{c_{11} \mu}{4} |a|^{4/(n-2)}_2 |v|^{1+4/(n-2)}_n, \quad \forall t > 0. \]

Now (3.16) follows, by using comparison theorems for o.d.e.

\[\square \]

Remark. Note that the estimates proved in theorem 3.3 are just those proved in theorems 0.1 and 0.2, by setting there \(\alpha = n \).

Appendix A

4. In this appendix we prove the statement (2.2). We start by establishing an auxiliary lemma, whose proof is given for the reader's convenience. For brevity, we utilize here some results on parabolic semigroups. More direct computations could be done, by using the heat potentials in the whole space.
Lemma 4.1 Let u be a solution of the heat equation $u' - \Delta u = f$ in $]0, T[\times \mathbb{R}^n$, with zero initial data. Assume that $1 < p < +\infty$ and $1 < q < +\infty$. If $f \in L^p(0, T; L^q)$, then $u \in L^p(0, T; W^{s, q})$, $\forall s \in [0, 2[$. If $f \in L^p(0, T; W^{-1, q})$, then $u \in L^p(0, T; W^{s, q})$, $\forall s \in [0, 1[.$

Proof. By a well-known device, we can replace $-\Delta$ by $A \equiv -\Delta + 1$. Since $-A$ is the generator of an holomorphic semigroup in L^q, and $0 \in \rho(A)$, one has (see [11]) $\|e^{-tA}\| < ct^{-\theta}$, $0 < \theta < 1$. Hence,

$$|A^\theta u(t)|_q \leq \int_0^T \frac{c}{|t-s|^{\theta}} |f(s)|_q \, ds, \quad \forall t \in [0, T].$$

By utilizing well-known results on the convolution of functions, one shows that $u \in L^p(D(A^\theta))$. The first statement in the lemma follows, since $D(A^\theta) = H^{2\theta, q} \subset W^{2\theta, q}$, for $\varepsilon > 0$ (see [6], [9], [17]). The second statement follows from the first one, by using the isomorphism $A^{-1/2}$ from $W^{-1, q}$ onto L^q.

Let now v_n be defined as in the proof of theorem 2.1. We want to show that there exists a subsequence $v_{n'}$ verifying (2.2). Let p_n be the pressure corresponding to the regular solution v_n, and consider the solutions u_n and w_n of the equations

\begin{equation}
\begin{aligned}
&u_n' - \mu \Delta u_n = -\nabla p_n + (v_n \cdot \nabla) v_n, \quad \text{in }]0, T[\times \mathbb{R}^n, \\
&u_n = 0 \quad \text{for } t = 0,
\end{aligned}
\end{equation}

and

\begin{equation}
\begin{aligned}
&w_n' - \mu \Delta w_n = f_n, \quad \text{in }]0, T[\times \mathbb{R}^n, \\
&w_n = a_n \quad \text{for } t = 0,
\end{aligned}
\end{equation}

respectively. Note that it is possible to consider each scalar equation separa-
tely. Clearly, $v_n = u_n + w_n$. Since the sequence v_n is uniformly bounded in $L^\infty(0,\tau;L^\alpha)$, the terms

$$(v_n \cdot v)v_n = \frac{3}{\sqrt{x_i}} (v_n, iv_n)$$

are uniformly bounded in $L^\infty(0,\tau;W^{-1,\alpha/2})$. The same holds for v_p_n, as a consequence of (1.10) and of the Calderon-Zygmund inequality. By lemma 4.1, one has

$$\|u_n\|_{L^\infty(W^s,\alpha/2)} \leq \text{constant},$$

$$\|u_n\|_{L^\infty(W^{s-2},\alpha/2)} \leq \text{constant},$$

where $s < 1$, and the constants are independent of n. On the other hand, one has

$$\|w_n\|_{L^p(W^1,\alpha)} \leq \text{constant},$$

$$\|w_n\|_{L^1(W^{-1,\alpha})} \leq \text{constant},$$

for every $p \in [1,2[$. The estimate (4.4) is proved by using an argument similar to that utilized in the proof of lemma 4.1, and by recalling that $L^p(D(A^{1/2})) = L^p(W^1,\alpha)$. The estimate (4.4) follows from (4.4) and (4.2).

Define $B_R = \{x \in \mathbb{R}^n : |x| < R\}$. Clearly, the estimates (4.3) and (4.4) hold with \mathbb{R}^n replaced by B_R. Moreover, the embeddings $W^{s,\alpha/2}(B_R) \subset L^\alpha(B_R)$, $s > n/\alpha$, and $W^{1,\alpha}(B_R) \subset L^\alpha(B_R)$, are compact. Consequently, well known compactness theorems (see Lions [7], chap. I, section 5, and Aubin [1]) show that the sequence v_n is relatively compact in $L^p(0,\tau;L^\alpha)$, $1 < p < 2$. Actually, this result holds for every $p \in [1,\infty[$, since in addition the sequence v_n is bounded in $L^\infty(L^\alpha)$.

Finally, fix a sequence of radius R_m such that $\lim R_m = +\infty$ as $m \to +\infty$, and select convergent subsequence (successively, with respect to m) in $L^p(0,\tau;L^\alpha(B_{R_m}))$. The diagonal subsequence verifies the desired property (2.2).
Appendix B

5. Here, we prove that the solution \(v \) in theorem 2.2, belongs to \(C([0,\tau];L^a) \), for every \(\tau \in [0,T_a] \). We start by proving the following result:

Lemma 5.1 Let \(a, f \) and \(v \) be defined as in theorem 2.2, let \(q \in [1,2] \), \(b \in [2,\alpha] \), and assume that \(\nabla v \in L^p(0,\tau;L^b) \).

Define \(\gamma \) by the equation \(1/\gamma = (1/\alpha) + (1/b) \), and let \(s \in]n/\alpha,1[\).

Moreover, if \(\gamma > n \), assume that \(s > n/\gamma \). Finally, define \(b_1 \) by the equation

\[
\frac{1}{b_1} = \frac{1}{\gamma} - \frac{s}{n} = \frac{1}{b} + \left(\frac{1}{\alpha} - \frac{s}{n} \right).
\]

One then has

\[
\nabla v \in L^p(0,\tau;L^{b_1}) \quad \text{if} \quad \frac{1}{b_1} > \frac{1}{\alpha},
\]

(5.1)

\[
\nabla v \in L^p(0,\tau;L^a) \quad \text{if} \quad \frac{1}{b_1} < \frac{1}{\alpha}.
\]

Proof. Let \(v = u + w \), where \(u \) and \(w \) are the solutions of the linear equations (4.1), (4.2) after dropping the indices \(n \). Since \(v \in L^\infty(L^a) \), one has \((v \cdot v)v \in L^p(L^\gamma) \). Moreover, \(-\Delta p = \text{div}(v \cdot v)v \) implies \(\nabla p \in L^p(L^\gamma) \).

From lemma 4.1, one deduces that \(\nabla u \in L^p(W^s,Y) \).

If \(1/b_1 > 0 \), then by Sobolev's embedding theorems, one has \(W^s,Y \subset L^{b_1} \).

Hence (5.1) holds for \(\nabla u \). Similarly, if \(1/b_1 = 0 \) then \(W^s,Y \subset L^\infty \), hence (5.1) holds for \(\nabla u \). Finally, if \(1/b_1 < 0 \) then \(W^s,Y \subset L^\infty \), and (5.1) holds again for \(\nabla u \). Equation (5.1) holds also for \(\nabla w \), since \(\nabla w \in L^p(L^a \cap L^\gamma) \) (argue as for the proof of (4.4)).

\(\square \)
We prove now that \(v \in C([0,\tau; L^\alpha \cap L^2]) \). By starting from the value \(\beta = 2 \), and by applying successively lemma 5.1, one shows that \(\forall v \in L^p(L^q) \), \(\forall p \in [1,2[\). Consequently, \((v \cdot v)v \) and \(\forall p \) belong to \(L^p(L^q) \), \(\forall p \in [1,2[\), \(\forall q \in [1,\alpha/2] \). By using lemma 4.1 we show that \((v = u + w, \) as in the proof of lemma 5.1),

\[
 u \in L^p(W^s,p) \cap W^{1,p}(W^{s-2},q), \quad 0 < s < 2.
\]

Hence,

\[
 u \in W^{1-\theta,p}(W^{s-2(1-\theta)},q), \quad \theta < 1.
\]

By choosing \(q = \alpha/2 \), \(n/(2\alpha) < \theta < 1/2 \), \(s = 2(1-\theta) + (n/\alpha) \), \(1/(1-\theta) < p < 2 \), well known embedding theorems yield \(u \in C(L^q) \). By choosing \(q = 2\alpha/(2+\alpha) \), one gets \(u \in C(L^2) \). Hence, \(u \in C(L^\alpha \cap L^2) \). On the other hand, well known results on the Cauchy problem for parabolic equations, give \(v \in C(L^\alpha \cap L^2) \).

\[\square\]

References

