ABSTRACTS FROM THE WORKSHOP ON
OSCILLATION THEORY, COMPUTATION, AND METHODS OF COMPENSATED COMPACTNESS

IMA Preprint Series # 137
April 1985

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
# Author(s)	Title
1 | Workshop Summaries from the September 1982 Workshop on Statistical Mechanics, Dynamical Systems and Turbulence
2 | Raphael De la Llave, A Simple Proof of G. Siegel's Center Theorem
3 | H. Simpson, Spectral Zeros of Positive Definite Matrices and Strong Ellipticity in Elastic Materials
4 | George R. Sell, Vector Fields in the Vicinity of a Compact Invariant Manifold
5 | Milan Miklavic, Non-linear Stability of Asymptotic Suction
6 | Hans Weinberger, A Simple System with a Continuum of Stable Inhomogeneous Steady States
7 | Bao-Sen Du, Period 3 Bifurcation for the Logistic Mapping
8 | Hans Weinberger, Optimal Numerical Approximation of a Linear Operator
9 | L.R. Ansell, D.F. Evans, B. Ninh, Three Component I onic Solutions
10 | D.F. Evans, D. Mitchell, S. Mukherjee, B. Ninh, Surfactant Diffusion: New Results and Interpretations
11 | Leif Arkeryd, A Remark about the Final Aperiodic Regime for Maps on the Interval
12 | Luis Magalhaes, Manifolds of Global Solutions of Functional Differential Equations
13 | Kenneth Meyer, Torii In Resonance
14 | C. Eugene Wayne, Surface Models with Nonlocal Potentials: Upper Bounds
16 | George R. Sell, Smooth Linearization Near a Fixed Point
17 | David Wollkind, A Nonlinear Stability Analysis of a Model Equation for Alloy Solidification
18 | Pierre Collet, Local C Conjugacy on the Julia Set for some Holomorphic Perturbations of z + z^2
19 | Henry Gluck, Spectra, On the Modified Bessel Functions of the First Kind / On Barreling for a Material In Finite Elasticity
20 | George R. Sell, Linearization and Global Dynamics
21 | P. Constantin, C. Foias, Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations
22 | Milan Miklavic, Stability for Semilinear Parabolic Equations with Noninvertible Linear Operator
23 | P. Collet, H. Epstein, G. Gallavotti, Perturbations of Geodesic Flows on Surfaces of Constant Negative Curvature and their Mixing Properties
24 | J.E. Dunn, J. Serrin, On the Thermodynamics of Interstitial Working
25 | Scott J. Spector, On the Absence of Bifurcation for Elastic Bars in Uniaxial Tension
26 | W.A. Coppel, Maps on an Interval
27 | James Kirkwood, Phase Transitions in the Ising Model with Transverse Field
28 | Luis Magalhaes, The Asymptotics of Solutions of Singular Perturbed Functional Differential Equations: and Concentrated Delays are Different
29 | Charles Tresser, Homoclinic Orbits for Flow In R
30 | Charles Tresser, About Some Theorems by L.P. Sil'nikov
31 | Michael Alzamora, On the Renormalized Coupling Constant and the Susceptibility In \(\phi^4\) Field Theory and the Ising Model In Four Dimensions
32 | C. Eugene Wayne, The KAM Theory of Systems with Short Range Interactions I
33 | M. Slemrod, J. E. Marsden, Spatial Chaos In a Van Der Waals Fluid Due to Periodic Thermal Fluctuations
34 | J. Kirkwood, C.E. Wayne, Perturbation in Continuous Systems
35 | Luis Magalhaes, Invariant Manifolds for Functional Differential Equations Close to Ordinary Differential Equations
36 | C. Eugene Wayne, The KAM Theory of Systems with Short Range Interactions II
37 | Jean de Canniere, Passive Quasi-Free States of the Noninteracting Fermi Gas
38 | Elsa C. Almfors, Maxwell and van der Waals Revisited
39 | Elsa C. Almfors, On the Mechanics of Modified Structures
40 | William Ruckle, The Strong Topology on Symmetric Sequence Spaces
41 | Charles R. Johnson, A Characterization of Bordes Rule Via Optimization
42 | Hans Weiss, Kazuo Ishimoto, The Spatial Homogeneity of Stable Equilibria of Some Reaction-Diffusion Systems on Convex Domains
43 | K.A. Perlick-Spector, W.O. Williams, On Work and Constraints in Mixtures
44 | H. Rosenberg, E. Toubiana, Some Remarks on Deformations of Minimal Surface
45 | Stephen Pekkan, The Duration of Transients
46 | V. Caspore, K.L. Cooke, M. Witten, Random Fluctuations of the Duration of Harvest
47 | E. Fabes, D. Stroock, The L^2-Integrability of Green's Functions and Fundamental Solutions for Elliptic and Parabolic Equations
48 | H. Brezis, Semilinear Equations In R^N without Conditions at Infinity
49 | M. Slemrod, Lax-Friedrichs and the Viscosity-Capillarity Criterion
50 | C. Johnson, W. Barrett, Spanning Tree Extensions of the Hadamard-Fischer Inequalities
51 | Andrew Postlavele, David Schmaider, Revelation and Implementation under Differential Information
52 | Paul Blanchard, Complex Analytic Dynamics on the Riemann Sphere
53 | G. Levitt, H. Rosenberg, Topology and Differentiability of Labyrinths In the Disc and Annulus
54 | G. Levitt, H. Rosenberg, Symmetry of Constant Mean Curvature Hypersurfaces in Hyperbolic Space
55 | Ennio Stacchetti, Analysis of a Dynamic, Decentralized Exchange Economy
56 | Henry Simpson, Scott Spector, On Failure of the Complementing Condition and Nonuniqueness in Linear Elastostatics
57 | Craig Tracy, Complete Integrability in Statistical Mechanics and the Six-Vertex-Equation
58 | Tongren Ding, Boundedness of Solutions of Duffing's Equation
59 | Abstracts for the Workshop on Price Adjustment, Quantity Adjustment, and Business Cycles
60 | Rafael Rob, The Coase Theorem an Informational Perspective
61 | Joseph Jerome, Approximate Newton Methods and Homotopy for Stationary Optimization Equations
62 | Rafael Rob, A Note on Competitive Bidding with Asymmetric Information
63 | Rafael Rob, Equilibrium Price Distributions
64 | William Ruckle, The Linearization Projection, Global Theories
65 | Russell Johnson, Kenneth Palmer, George R. Sell, Ergodic Properties of Linear Systems
66 | Stanley Reiter, How a Network of Processors can Schedule Its Work
67 | R.N. Goldman, D.C. Heath, Linear Subdivision is Strictly a Polynomial Phenomenon
68 | R. Gleason, R. Johnson, The Floquet Exponent for Two-dimensional Linear Systems with Bounded Coefficients
69 | Steve Williams, Realization and Saddle Implementation: Two Aspects of Mechanism Design
70 | Steve Williams, Sufficient Conditions for Saddle Implementation
71 | Nicholas Yannellos, William R. Zame, Equilibria in Banach Lattices Without Ordered Preferences
72 | W. Harris, Y. Sibuya, The Reciprocals of Solutions of Linear Ordinary Differential Equations
73 | Steve Pelikan, A Dynamical Meaning of Fractal Dimension
74 | D. Heyne, W. Duderstadt, Continuous-Time Portfolio Management: Minimizing the Expected Time to Reach a Goal
75 | J.S. Jordan, Information Flows Intrinsic to the Stability Economic Equilibrium
76 | J. Jerome, An Adaptive Newton Algorithm Based on Numerical Inversion: Regularization Post Condition
77 | David Schmaider, Integral Representation Without Additivity
Abstracts from the Workshop on

Oscillation Theory, Computation, and Methods of Compensated Compactness

April 1 - April 6, 1985
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>Philip Colella</td>
<td>Dispersive differential and difference equations.</td>
<td>1</td>
</tr>
<tr>
<td>R. DiPerna</td>
<td>Measure valued solutions to conservation laws</td>
<td>2</td>
</tr>
<tr>
<td>Ami Harten</td>
<td>On nonoscillatory high order accurate schemes</td>
<td>3</td>
</tr>
<tr>
<td>Peter Lax</td>
<td>Dispersive differential and differential equations.</td>
<td>4</td>
</tr>
<tr>
<td>Andrew Majda</td>
<td>Nonlinear geometric optics</td>
<td>5</td>
</tr>
<tr>
<td>D. McLaughlin</td>
<td>The propagation of integrable oscillations</td>
<td>6</td>
</tr>
<tr>
<td>Jace Nunziato</td>
<td>Some experiences in computational fluid mechanics</td>
<td>8</td>
</tr>
<tr>
<td>Stanley Osher</td>
<td>Very high order accurate TVD schemes</td>
<td>10</td>
</tr>
<tr>
<td>O. Pironneau</td>
<td>Homogenization of slightly compressible inviscid flows</td>
<td>11</td>
</tr>
<tr>
<td>Maria Schonbek</td>
<td>Two applications of the theory of compensated compactness</td>
<td>13</td>
</tr>
<tr>
<td>M. Slemrod</td>
<td>Interrelationships among mechanics, numerical analysis</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>compensated compactness and oscillation theory</td>
<td></td>
</tr>
<tr>
<td>S. Venakides</td>
<td>The zero dispersion limit of the Korteweg de Vries equation</td>
<td>15</td>
</tr>
<tr>
<td>Robert Warming</td>
<td>Stability of finite difference approximations for</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>hyperbolic initial boundary value problems</td>
<td></td>
</tr>
</tbody>
</table>
CONTINUUM PHYSICS AND PARTIAL DIFFERENTIAL EQUATIONS

WORKSHOP ON

OSCILLATION THEORY, COMPUTATION, AND METHODS OF COMPENSATED COMPACTNESS

April 1 - April 6, 1985

Conference committee: Constantine Dafermos, Jerry Ericksen, David Kinderlehrer, Marshall Slemrod

Historically, one of the most important problems in continuum mechanics has been the understanding of hyperbolic conservation laws. This is because such systems arise from the underlying balance laws of mass, momentum, and energy. Their nonlinearity and hyperbolicity arise from the simplest constitutive assumptions, even in an ideal gas. The goal of this workshop is to examine the implications of compensated compactness and dispersion in the analysis and numerical analysis of such equations. The influence of viscosity and fluctuation mechanisms in nature will be discussed as well. Recently there has been remarkable progress in all of these fields.

Participants will include representatives of these areas. Since one of the ultimate users of these ideas will be the applied engineer or scientist engaged in numerics, those in the forefront of applying theory and writing codes were sought.

In addition to the talks, whose abstracts are reproduced here, the conference ended with a stimulating round table discussion chaired by Constantine Dafermos and Luc Tartar.
NUMERICAL SIMULATION OF FLUID FLOWS WITH STRONG SHOCKS

Phillip Colella
Lawrence Berkeley Laboratory

The numerical calculation of discontinuous solutions to the Euler equations for inviscid compressible flow is often carried out using finite difference methods to capture discontinuities. In this technique, one uses difference approximations which have a form which is a discrete analogue of divergence form for the differential equations, and represent the discontinuity as a steep gradient on the mesh. Capturing methods have developed to a point that shocks are represented by sharp monotone transitions on the the grid without sacrificing accuracy in smooth regions.

We discuss how the accurate representation of shocks by capturing depends on the discrete travelling wave structure in the case of strong shocks, i.e. those for which there is substantial production of entropy at the shock. We give examples of cases where capturing fails to give adequate results for strong shocks because of irregular mesh spacing, vanishing characteristic velocities, or the introduction of a fast time scale due to chemical reactions. In all these cases, capturing methods perform adequately for smooth solutions, or even for weak shocks. As a partial remedy to this problem we propose an algorithm for tracking selected discontinuities. We treat a discontinuity as an interior free boundary for a capturing calculation, at which Rankine-Hugoniot relations are applied as boundary conditions. Thus we can treat problems for which there is a single strong shock interacting with a weak wave background, including weak shocks and other discontinuities which intersect the tracked boundary. We apply this technique to the problem of self-similar shock reflection in two space dimensions, and present preliminary results of a counterexample to von Neumann's criterion for transition from regular to Mach reflection.

1
We discuss the notion of measure-valued solutions to hyperbolic systems of conservation laws. One of the goals is to represent weak limits of associated singularly perturbed equations. Two classical examples are provided by the zero diffusion limit and the zero dispersion limit for the inviscid Burgers equation.

For a scalar conservation law, we prove that if a measure-valued solution begins as a Dirac mass then it remains a Dirac mass for all time provided that it satisfies an averaged version of the Lax entropy inequality. As a corollary one obtains a new proof of convergence of the viscosity method for a scalar conservation by observing that the Young measure for a diffusive sequence constitutes a measure-valued solution of the underlying hyperbolic equation which satisfies an averaged version of the Lax entropy inequality.
ON NONOSCILLATORY HIGH ORDER ACCURATE SCHEMES

Ami Harten

School of Mathematical Sciences,
Tel-Aviv University
and
Department of Mathematics
UCLA

In this paper we present nonoscillatory shock capturing schemes that are high order accurate in the sense of local truncation error wherever the solution is smooth. These schemes are obtained via a high-order reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging solution of the resulting initial problem, and averaging of this approximate solution over each cell. The nonoscillatory nature of the numerical solution is achieved by employing a new interpolation technique in the reconstruction step. This interpolation has the property that it generates a high order accurate approximation to the interpolated function wherever it is smooth, without having a Gibbs phenomenon at points of discontinuity.
DISPERSEE DIFFERENTIAL AND DIFFERENTIAL EQUATIONS

Peter D. Lax
Courant Institute

In 1944 V. Neumann proposed a difference scheme for computing compressible fluid flows with shocks. The scheme lacked any viscosity, real or artificial, and consequently produced solutions that had mesh-scale oscillations behind the shock. V. Neumann identified tentatively these oscillations with the thermal motion of molecules heated by shock wave, and conjectured that the weak limits of such oscillatory approximate solutions would be weak solutions of the equations of compressible flow. I surmise, but cannot prove that the weak limits involved are analogous to the weak dispersion limit of solutions of the KdV equation, and therefore do not satisfy in the weak sense the equations of fluid dynamics.
NONLINEAR GEOMETRIC OPTICS

by Andrew Majda
Princeton University

The method of weakly nonlinear geometric optics is one of the main perturbation techniques used in analyzing nonlinear wave motion in hyperbolic systems. Recently, this method has been developed systematically as a tool for nonlinear wave propagation in multi dimensions with applications to the diffraction of weak shocks, the formation of Mack stems in reacting shock fronts, and the development of simplified asymptotic models in combustion theory. First we describe these methods in detail for nonlinear hyperbolic systems in a single space variable then we describe a number of generalizations and applications in several space variables.

The tacit assumptions used in deriving these approximations are that the underlying solutions of the hyperbolic system remain smooth. These assumptions are rarely satisfied in practice due to shock formation; nevertheless, the approximations work quite well in practical problems. We also report on joint rigorous work with R.DiPerna for weak solutions for systems in a single space variable which prove that the formal approximations are also valid for weak solutions with shocks and even better than predicted by the formal theory!! This is a partial explanation and justification of the methods for weak solutions.
THE PROPAGATION OF INTEGRABLE OSCILLATIONS

David W. McLaughlin
Program in Applied Mathematics
University of Arizona
Tucson, Arizona 85721

In this lecture I describe some results on the nonlinear propagation of finite amplitude, rapidly oscillating, integrable waves. These results were obtained with the mathematical methods of modulation theory. My goal in the lecture is to explain the additional features which integrability supplies, both with regard to the implementation of the mathematical techniques and with regard to the understanding of the macroscopic properties of the wave.

First, a large robust family, called N-phase waves, of exact solutions of the integrable equation is introduced. Two types of stability for members of this family is investigated - (i) with respect to periodic perturbations of the initial data and (ii) modulational stability. A representation of the modulation equations for the propagation of macroscopic properties of the wave in terms of differentials on a Riemann surface is obtained. Advantages of this representation of the modulation equations are discussed. Explicit solutions of the modulation equations for two initial value problems is described in some detail. Finally, I discuss those results should survive the removal of integrability.

REFERENCES

In this paper we will review some of the recent experiences we have had at Sandia National laboratories in computing solutions for several different classes of nonlinear fluids in relatively simple geometries. The purpose of this presentation will be to display, by example, some of the interesting numerical analysis issues that arise as a result of nonlinear material behavior. As the first example, we consider a nonlinear elastic fluid with chemical reactions and discuss solutions for detonation and detonation failure in a two-dimensional channel. In this case, the numerical algorithm utilizes a finite difference method with artificial viscosity and is shown to lead to two distinctly different stable solutions depending on the time step criterion used. Physically, this problem is characterized by two disparate time scales; one based on the acoustic transit time across a fluid element and the other associated with the thermal decomposition of the fluid. The correct solution is obtained using a numerical stability criterion based on the smaller time scale.

The second example to be considered involves the thermally-induced convection in a viscous fluid as a result of an exothermic polymerization reaction. In the context of a rectangular container, a solidification front develops near the top of the container and propagates down through the fluid changing the aspect ratio of the region ahead of the front. Using a Galerkin-based finite element method, a numerical solution of the partial differential equations is obtained which
tracks the front and correctly predicts the fluid temperatures near the walls. However, there is evidence of oscillating behavior with regard to the number of convection cells in the fluid ahead of the front and in the direction of flow. The final example concerns the one-dimensional radial flow of a nonlinear viscoelastic (Maxwell) fluid and numerical solutions were again obtained using a Galerkin-finite element method. In this case, convergence to a stable solution was obtained for all values of the Weisenberg number provided a continuous linear approximation was used for the stress. However, for a continuous quadratic approximation, there is a combination of mesh size and Weisenberg number for which solution convergence fails.

These three examples are not atypical. They serve to demonstrate that in numerically solving nonlinear partial differential equations, it is quite easy to obtain multiple solutions, oscillatory phenomena, instabilities, and lack of convergence (possible non-existence). It is clear that these computational difficulties can arise either due to the numerical method involved or from the complexities of the physical model being addressed. In pressing to solve problems of technological interest, it is extremely important to sort out these matters. This requires considerably more detailed mathematical analysis of the governing partial differential equations at the outset so that the numerical analyst can utilize the proper numerical algorithm, identify the appropriate physical solution, or at least recognize that the problem posed does not lead to physically meaningful results.
A systematic procedure for constructing semi-discrete families of $2m-1$ order accurate, $2m$ order dissipative, variation diminishing, $2m+1$ point band width, conservation form approximations to scalar conservation laws is presented. Here m is any integer between 2 and 8. Simple first order forward time discretization, used together with any of these approximations to the space derivatives, also results in a fully discrete, variation diminishing algorithm. These schemes all use simple flux limiters, without which each of these fully discrete algorithms is even linearly unstable. Extensions to systems, using a nonlinear field-by-field decomposition are presented, these non-linear approximations are variation diminishing, and hence convergent. A new and general criterion for approximations to be variation diminishing is also given. Finally, numerical experiments using some of these algorithms are presented.
HOMOGENIZATION OF SLIGHTLY COMpressible INviscid Flows

T. Chacon

O. Pironneau

INRIA

We propose to study the following problem:

\[u_t + u \nabla u + \nabla p = 0 \]
\[\rho_t + \nabla \cdot u = 0 \]
\[u(x,0) = u^0 \left(x, \frac{x}{\varepsilon} \right), \quad p(x,0) = p^0 \left(x, \frac{x}{\varepsilon} \right) \]

which describes slightly compressible adiabatic inviscid flows with rapidly varying initial data (\(\varepsilon \) small). Following the multiscale asymptotic expansion used in [1][2] we derive an equation for the mean flow

\[u_t + u \nabla u + \nabla p + \nabla \cdot \varphi \left(\text{tr} (\nabla a \nabla a^T) \right) \nabla a \nabla a^T = 0 \]
\[\rho_t + \nabla \cdot u = 0 \]
\[a_t + u \nabla a = 0 \quad a(x,0) = x \]
\[q_t + u \nabla q + \varphi \left(\text{tr} (\nabla a \nabla a^T) \right) \nabla a \nabla a^T : \nabla u = 0 \]

This system is compared with the incompressible case studied on the 3-D flow between parallel plates.
Figure 1

Tableulation of β by solving

$$w \nabla w + \nabla \pi = 0 \quad \text{in }]0,1[^3$$

$$\nabla \cdot w = 0$$

with periodic boundary conditions, as a function of the trace of the matrix C.

REFERENCES

TWO APPLICATIONS OF THE THEORY OF COMPENSTATED COMPACTNESS

Maria E. Schonbek
Princeton University

We will discuss two applications of the theory of compensated compactness. The first is concerned with the zero dissipation-dispersion limit for the Korteweg-deVries-Burger equation

\[u_t + uu_x + \delta u_{xxx} = \epsilon u_{xx} . \]

The second applications is the existence of singular conservation laws of the form

\[u_t + f(u)_x + \phi'(u) = 0 . \]

Finally I will speak about a decay result for solutions of the Navier Stokes equations.
INTERRELATIONSHIPS AMONG MECHANICS, NUMERICAL ANALYSIS, COMPENSATED COMPACTNESS AND OSCILLATION THEORY

Marshall Slemrod
Rensselaer Polytechnic Institute

This lecture discusses:

1. The role of viscosity and capillarity in continuum mechanics as introduced in the work of Rayleigh, Korteweg, Van der Waals.

2. How these ideas motivate finite difference methods for numerical solution of systems of conservation laws, eg. The Lax-Friedichs method.

3. How attempts have been taken to compute "viscous" limits eg. the Hopf-Cole transform and formal ideas of oscillation theory.

4. How a rigorous theory of "viscous" limits arises out of Tartar and DiPerna's results on compensated compactness and the related Young measure.
THE ZERO DISPERSION LIMIT OF THE KORTEweg DE Vries EQUATION
WITH PERIODIC INITIAL DATA

Stephanos Venakides
Stanford University

We study the initial value problem of the Korteweg de Vries equation

\[u_t - 6uu_x + \varepsilon^2 u_{xxx} = 0 \]

\[u(x,0,\varepsilon) = -\varphi(x) \]

in the limit \(\varepsilon \to 0 \), when \(\varphi(x) \) is a \(\mathbb{Z} \)-periodic function. The blow-up of the first derivative of the solution of the unperturbed problem \(u_t - 6uu_x = 0 \) in finite time leads to the emergence of a shock region in the solution of the perturbed problem in which a fast spatial and temporal scale appears. Our analysis utilizes the complete integrability of the Korteweg de Vries equation to rigorously obtain the weak limit:

\[\overline{u}(x,t) = \lim_{\varepsilon \to 0} \frac{d}{dx} \lim_{\varepsilon \to 0} \int_{x'}^{x} u(x',t,\varepsilon) dx' \]

Furthermore we describe the problem in terms of a microstructure which allows us to conclude that in the shock region \(u(x,t,\varepsilon) \) is a modulated periodic or multiply periodic solution of (1) having wave numbers and frequencies of order \(\frac{1}{\varepsilon} \). Our conclusion on the oscillations rests on a plausible assumption of "molecular chaos" in the microstructure. This assumption can be verified at \(t=0 \).
STABILITY OF FINITE DIFFERENCE APPROXIMATIONS FOR HYPERBOLIC INITIAL BOUNDARY VALUE PROBLEMS

Robert F. Warming and Richard M. Beam
NASA Ames Research Center
Moffett Field, CA 94305

We consider the stability of finite-difference approximations to hyperbolic initial-boundary value problems (IBVPs) in one spatial dimension. A complication is the fact that generally more boundary conditions are required for the discrete problem than are specified for the partial differential equation. Consequently, additional "numerical" boundary conditions are required and improper treatment of these additional conditions can lead to instability and/or inaccuracy. For a linear IBVP with homogeneous analytical boundary conditions, a finite difference approximation with requisite numerical boundary conditions, can be written in vector-matrix form as $u^{n+1} - Cu^n$. Lax-Richtmyer stability stability requires a uniform bound on $||C^n||$ (i.e., C to the nth power) in some matrix norm for $t=n\Delta t < T$. One would like to have a simple algebraic test for Lax-Richtmyer stability. We state a conjecture that provides an algebraic test based on the normal mode analysis of Gustafsson, Kreiss, and Sundstrom. The conjecture is corroborated by extensive examples where the matrix norm of C is computed numerically at a fixed time as the spatial mesh is refined. The maximum modulus of the normal mode eigenvalues or Cauchy eigenvalues is related directly to the growth rate of unstable schemes. An analogous conjecture is also considered for the semi-discrete approximation, i.e., the method of lines for hyperbolic IBVPs.

Paper to be presented at a Workshop on Oscillation Theory, Computation, and Methods of Compensated Compactness to be held at the University of Minnesota, Minneapolis, Minn., April 1-5, 1985
<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>Abstracts for the Workshop on Bayesian Analysis in Economics and Game Theory</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>G. Chichilnisky, G.M. Heal</td>
<td>Existence of a Competitive Equilibrium in L and Sobolev Spaces</td>
</tr>
<tr>
<td>80</td>
<td>Thomas S. Spreeman</td>
<td>Time-dependent Solutions of a Nonlinear System in Semiconductivity Theory, II: Boundedsness and Periodicity</td>
</tr>
<tr>
<td>81</td>
<td>Yekel Kana, Eng</td>
<td>Engaging in R&D and the Emergence of Expected Non-convex Technologies</td>
</tr>
<tr>
<td>82</td>
<td>Horve Moul</td>
<td>Choice Functions over a Finite Set: A Summary</td>
</tr>
<tr>
<td>83</td>
<td>Horve Moul</td>
<td>Choosing from a Tournament</td>
</tr>
<tr>
<td>84</td>
<td>David Schmider</td>
<td>Subjective Probability and Expected Utility Without Additivity</td>
</tr>
<tr>
<td>85</td>
<td>J.G. Kevrekidis, R. Aris, L.D. Schmidt, and S. Pelikan</td>
<td>The Numerical Computation of Invariant Circles of Maps</td>
</tr>
<tr>
<td>86</td>
<td>F. William Lawvere</td>
<td>Finite Categories, Closed Categories, and the Existence of Semi-Continuous Entropy Functions</td>
</tr>
<tr>
<td>87</td>
<td>F. William Lawvere</td>
<td>Functional Remarks on the General Concept of Chaos</td>
</tr>
<tr>
<td>88</td>
<td>Steven R. Williams</td>
<td>Necessary and Sufficient Conditions for the Existence of a Locally Stable Message Process</td>
</tr>
<tr>
<td>89</td>
<td>Steven R. Williams</td>
<td>Implementing a Generic Smooth Function</td>
</tr>
<tr>
<td>90</td>
<td>Dillip Abreu</td>
<td>Infinitely Repeated Games with Discounting: A General Theory</td>
</tr>
<tr>
<td>91</td>
<td>J.S. Erickson</td>
<td>Instability in the Implementation of Walrasian Allocations</td>
</tr>
<tr>
<td>92</td>
<td>Myrna Holtz Wod</td>
<td>William R. Zame</td>
</tr>
<tr>
<td>93</td>
<td>J.L. Noakes</td>
<td>Critical Sets and Negative Bundles</td>
</tr>
<tr>
<td>94</td>
<td>Graciela Chichilnisky, Von Neumann-Morgenstern Utilities and Cardinal Preferences</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>J.L. Erickson</td>
<td>Twinning of Crystals</td>
</tr>
<tr>
<td>96</td>
<td>Anna Nagurney</td>
<td>On Some Market Equilibrium Theory Paradoxes</td>
</tr>
<tr>
<td>97</td>
<td>Anna Nagurney</td>
<td>Sensitivity Analysis for Market Equilibrium</td>
</tr>
<tr>
<td>98</td>
<td>Abstracts for the Workshop on Equilibrium and Stability Questions in Continuum Physics and Partial Differential Equations</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Millard Beatty</td>
<td>A Lecture on Some Topics in Nonlinear Elasticity and Elastic Stability</td>
</tr>
<tr>
<td>100</td>
<td>Filomena Pacella</td>
<td>Central Configurations of the N-Body via the Equivalent Morse Theory</td>
</tr>
<tr>
<td>101</td>
<td>D. Carlson and A. Hoger</td>
<td>The Derivative of a Tensor-valued Function of a Tensor</td>
</tr>
<tr>
<td>102</td>
<td>Kenneth Mount</td>
<td>Privacy Preserving Correspondence</td>
</tr>
<tr>
<td>103</td>
<td>Millard Beatty</td>
<td>Finite Amplitude Vibrations of a Neo-hookean Oscillator</td>
</tr>
<tr>
<td>104</td>
<td>D. Emmons and N. Yannells</td>
<td>On Perfectly Competitive Economies: Loeb Economies</td>
</tr>
<tr>
<td>105</td>
<td>E. Mascolo and R. Scliachl</td>
<td>Existence Theorems in the Calculus of Variations</td>
</tr>
<tr>
<td>106</td>
<td>D. Kinderlehrer</td>
<td>Twinning of Crystals (II)</td>
</tr>
<tr>
<td>107</td>
<td>R. Chen</td>
<td>Solutions of Minimax Problems Using Equivalent Differentiable Equations</td>
</tr>
<tr>
<td>108</td>
<td>D. Abreu, D. Pearce, and E. Stacchetti</td>
<td>Optimal Cartel Equilibria with Imperfect Monitoring</td>
</tr>
<tr>
<td>109</td>
<td>R. Lauterbach</td>
<td>Hopf Bifurcation from a Turning Point</td>
</tr>
<tr>
<td>110</td>
<td>C. Kahn</td>
<td>An Equilibrium Model of Quits under Optimal Contracting</td>
</tr>
<tr>
<td>111</td>
<td>M. Kaneko and M. Wodders</td>
<td>The Core of a Game with a Continuum of Players and Finite Coalitions: The Model and Some Results</td>
</tr>
<tr>
<td>112</td>
<td>Haim Brezis</td>
<td>Remarks on Sublinear Equations</td>
</tr>
<tr>
<td>113</td>
<td>D. Carlson and A. Hoger</td>
<td>On the Derivatives of the Principal Invariants of a Second-order Tensor</td>
</tr>
<tr>
<td>114</td>
<td>Raymond Deneckere and Steve Pelican</td>
<td>Competitive Chaos</td>
</tr>
<tr>
<td>115</td>
<td>Abstracts for the Workshop on Homogenization and Effective Moduli of Materials and Media</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Abstracts for the Workshop on the Classifying Spaces of Groups</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Umberto Mosco</td>
<td>Pointwise Potential Estimates for Elliptic Obstacle Problems</td>
</tr>
<tr>
<td>118</td>
<td>J. Rodrigues</td>
<td>An Evolutionary Continuous Casting Problem of Stefan Type</td>
</tr>
<tr>
<td>119</td>
<td>C. Mueller and F. Weisssler</td>
<td>Single Point Blow-up for a General Semilinear Heat Equation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>D.R. Chillingworth</td>
<td>Three Introductory Lectures on Differential Topology and Its Applications</td>
</tr>
<tr>
<td>121</td>
<td>Giorgio Vergara Caffarelli</td>
<td>Green's Formulas for Linearized Problems with Live Loads</td>
</tr>
<tr>
<td>122</td>
<td>F. Chilareh and N. Garofalo</td>
<td>Unique Continuation for Nonnegative Solutions of Schrodinger Operators</td>
</tr>
<tr>
<td>123</td>
<td>J.L. Hrickson</td>
<td>Constitutive Theory for some Constrained Elastic Crystals</td>
</tr>
<tr>
<td>124</td>
<td>Minoru Murata</td>
<td>Positive solutions of Schrodinger Equations</td>
</tr>
<tr>
<td>125</td>
<td>John Maddocks and John P. Parry</td>
<td>A Model for Twinning</td>
</tr>
<tr>
<td>126</td>
<td>M. Kaneko and M. Wodders</td>
<td>The Core of a Game with a Continuum of Players and Finite Coalitions: Nonemptiness with Bounded Sizes of Coalitions</td>
</tr>
<tr>
<td>127</td>
<td>William Zame</td>
<td>Equilibria in Production Economics with an Infinite Dimensional Commodity Space</td>
</tr>
<tr>
<td>128</td>
<td>Myrna Holtz Wodders</td>
<td>A Tiebout Theorem</td>
</tr>
<tr>
<td>129</td>
<td>Abstracts for the Workshop on Theory and Applications of Liquid Crystals</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Yoshikazu Giga</td>
<td>A Remark on A Priori Bounds for Global Solutions of Semilinear Heat Equations</td>
</tr>
<tr>
<td>131</td>
<td>M. Chipot and G. Vergara-Caffarelli</td>
<td>The N-Membranes Problem</td>
</tr>
<tr>
<td>132</td>
<td>P.L. Lions and P.E. Souganidis</td>
<td>Differential Games and Directional Derivatives of Viscosity Solutions of Isaacs' Equations II</td>
</tr>
<tr>
<td>133</td>
<td>G. Capriz and P. Goloine</td>
<td>On Virtual Effects During Diffusion of a Dispersed Medium in a Suspension</td>
</tr>
<tr>
<td>134</td>
<td>Fall Quarter Seminar Abstracts</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Umberto Mosco</td>
<td>Wiener Criterion and Potential Estimates for the Obstacle Problem</td>
</tr>
<tr>
<td>136</td>
<td>Chi-Sing Man</td>
<td>Dynamic Admissible States, Negative Absolute Temperature, and the Entropy Maximum Principle</td>
</tr>
</tbody>
</table>