RESULTANTS AND INVERSION FORMULA
FOR N POLYNOMIALS IN N VARIABLES

By

Jie Tai Yu

IMA Preprint Series # 1134
April 1993
RESULTANTS AND INVERSION FORMULA
FOR N POLYNOMIALS IN N VARIABLES

JIE TAI YU

Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556, USA
Email: jyu@artin.helios.nd.edu

ABSTRACT. Based on the concepts of multivariate resultants and minimal polynomials, we
give an explicit inversion formula for n polynomials in n variables, which includes McKay and
Wang's formula for two polynomials in two variables as a special case. As a consequence, we
obtain a resultant criterion formula for the inverse of polynomial maps.

1. INTRODUCTION

The Lagrange Inversion Formula has been extended to the multi-variable case by several
authors. In a recent paper by Gessel [4], many of these formulas are examined and it shows
that they are all equivalent. Those formulas apply to a system of n formal power series in
n variables, for which the inverse system consists of n formal power series in n variables.

In this paper we study a system of n polynomials in n variables, for which the inverse
system is also n polynomials in n variables. By means of minimal polynomials [10] and
multivariate resultants [5], we obtain an explicit inversion formula, which includes Mckay
and Wang's formula (n = 2) in [7] as a special case.

Our inversion formula can be viewed as a generalization of the usual Cramer's rule to
the case of n polynomials equations in n variables.

Key words and phrases. Resultants, Inversion Formula, Jacobian Conjecture.
Although the theorems in this paper have been proved for polynomials over C, all the theorems remain true if C is replaced by an arbitrary field.

I hope that the methods and results in this paper can be helpful for solving the Jacobian Conjecture. See [2].

2. Prelimineries

Definition 1 (Macaulay [5, p.4-5; 6, p.3]). The resultant of n general homogeneous polynomials f_1, \ldots, f_n in n variables of degrees l_1, \ldots, l_n can be defined as an integral function of the coefficients of the f_i, without repeated factors, whose vanishing is the sufficient and necessary condition that the n polynomials should have a common solution. The resultant of n nonhomogeneous polynomials in $n - 1$ variables is the resultant of corresponding homogeneous polynomials of the same degrees obtained by introducing a variable x_0 of homogeneity.

Remark. Macaulay [5] proved such a resultant is unique determined by the coefficients of f_i, and gave an explicit expression of the resultant as a polynomial of the coefficient of the f_i. See section 5 of this paper for details.

Lemma 2 [5, p.5 and p.27]. Let

$$f_1, \ldots, f_n \in C[x_1, \ldots, x_{n-1}]$$

are general polynomials (i.e., all coefficients of the f_i are indeterminates) and let all solution in C^n of the system

$$f_2 = 0, \ldots, f_n = 0$$

are

$$\{(a_1^{(i)}, \ldots, a_{n-1}^{(i)}) | i = 1, 2, \ldots, d = deg f_2 \ldots deg f_n\},$$
Let
\[R_{x_1 \ldots x_{n-1}}(f_1(x_1, \ldots, x_{n-1}), \ldots, f_n(x_1, \ldots, x_{n-1})) = \frac{Res_{x_1, \ldots, x_{n-1}}(f_1, \ldots, f_n)}{[Res_{x_1, \ldots, x_{n-1}}(f_2^+, \ldots, f_n^+) \deg f_i)^{deg f_i}} \]
where \(f_i^+ \) is the unique homogeneous form such that \(\deg(f_i - f_i^+) \leq \deg f_i \). Then
\[R_{x_1 \ldots x_{n-1}}(f_1(x_1, \ldots, x_{n-1}), \ldots, f_n(x_1, \ldots, x_{n-1})) = \Pi_{i=1}^d f_1(a_1^{(i)}, \ldots, a_{n-1}^{(i)}) \]
and
\[R_{x_1 \ldots x_{n-1}}(f_1(x_1, \ldots, x_{n-1}), \ldots, f_n(x_1, \ldots, x_{n-1})) = 0 \]
\[\Leftrightarrow f_1(x_1, \ldots, x_{n-1}), \ldots, f_n(x_1, \ldots, x_{n-1}) \]
have a common zero.

Lemma 3 [10, Theorem 4]. Let
\[f = (f_1, \ldots, f_n) : C^n \to C^n \]
be a polynomial automorphism and let
\[f^{-1} = g = (g_1, \ldots, g_n) \]
Suppose that
\[h_i(x_1, \ldots, x_n) \]
is the minimal polynomial of
\[f_1(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n), \]
\[\ldots \]
\[f_n(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n). \]
Then
\[g_i(x_1, \ldots, x_n) = \frac{h_i(x_1, \ldots, x_n)}{h_i(f_1(0, \ldots, 0, 1, 0, \ldots, 0), \ldots, f_n(0, \ldots, 0, 1, 0, \ldots, 0))}, \]
where 1 is at the \(i^{th} \) component.
3. Main Results

Theorem 4. Let

\[u_1, \ldots, u_n \in C[t_1, \ldots, t_{n-1}] \]

be polynomials with zero constant terms such that

\[u_2, \ldots, u_n \]

are algebraically independent, and let

\[S(x_1, \ldots, x_n) = R_{t_1 \ldots t_{n-1}}(u_1 - x_1, \ldots, u_n - x_n) \]

Then

\[S(x_1, \ldots, x_n) = [h(x_1, \ldots, x_n)]^q \]

where \(q \) is a positive integer and \(h \) is an irreducible polynomial in \(C[x_1, \ldots, x_n] \). Namely \(h \) is the minimal polynomial of \(u_1, \ldots, u_n \).

Proof. By lemma 2,

\[S(x_1, \ldots, x_n) = \Pi_{i=1}^d (u_1(a_1^{(i)}, \ldots, a_{n-1}^{(i)}) - x_1), \quad (2) \]

\(S(x_1, \ldots, x_n) \) is a non-constant polynomial in \(x_1, \ldots, x_n \) such that

\[S(u_1(t_1, \ldots, t_{n-1}), \ldots, u_n(t_1, \ldots, t_{n-1})) = 0, \]

so if \(h(x_1, \ldots, x_n) \) is the minimal polynomial of

\[u_1(t_1, \ldots, t_{n-1}), \ldots, u_n(t_1, \ldots, t_{n-1}), \]

then \(h(x_1, \ldots, x_n) | S(x_1, \ldots, x_n) \).

On the other hand, let \(H(x_1, \ldots, x_n) \in C[x_1, \ldots, x_n] \) is an irreducible factor of

\[S(x_1, \ldots, x_n) = R_{t_1 \ldots t_{n-1}}(u_1(t_1, \ldots, t_{n-1}) - x_1, \ldots, u_n(t_1, \ldots, t_{n-1}) - x_n). \]
If \((X_1, \ldots, X_n)\) is a zero of \(H(x_1, \ldots, x_n)\), then

\[S(X_1, \ldots, X_n) = 0, \]

hence

\[u_1(t_1, \ldots, t_{n-1}) - X_1, \ldots, u_n(t_1, \ldots, t_{n-1}) - X_n \]

have a common zero \((T_1, \ldots, T_n)\),

\[\Rightarrow H(u_1(T_1, \ldots, T_{n-1}), \ldots, u_n(T_1, \ldots, T_{n-1})) = 0, \]

which means all points on the hypersurface \(H(x_1, \ldots, x_n) = 0\) are on the hypersurface \(h(x_1, \ldots, x_n)\). Since both \(h\) and \(H\) are irreducible, they are same.

In other words, up to a constant factor, \(S(x_1, \ldots, x_n)\) has only one irreducible factor in \(C[x_1, \ldots, x_n]\). Thus

\[R(x_1, \ldots, x_n) = [h(x_1, \ldots, x_n)]^q. \]

Remark.

1. By Macaulay [5], we can express \(S(x_1, \ldots, x_n)\) in terms of the coefficients of \(u_1, \ldots, u_n\) in \(t_1, \ldots, t_{n-1}\).

2. Again by [5], \(R(x_1, \ldots, x_n)\) is not depend on the different choices of algebraically indenent \(u_2, \ldots, u_n\) among \(u_1, \ldots, u_n\) (up to a constant factor).

3. Theorem 4 gives efficient algorithm to obtain the minimal polynomials of \(n\) polynomials in \(n - 1\) vaviables which includ \(n - 1\) algebraically independent polynomials.

4. By lemma 2,

\[S(x_1, \ldots, x_n) = \frac{Res_{t_1 \ldots t_{n-1}}(u_1 - x_1, \ldots, u_n - x_n)}{[Res_{t_1 \ldots t_{n-1}}(u_1^+, \ldots, u_n^+)]^\text{deg}f_i}. \]

When we specialize the coefficients of the \(u_1\), the right side could be

\[\begin{matrix} 0 \\ \text{0} \end{matrix} \]

But we can overcome this difficulty by appropriate specialization, i.e., specializing some coefficients first, divising, then specializing the rest coefficients, we still can obtain \(S(x_1, \ldots, x_n)\)
as a non-constant polynomial. For details, see a forthcoming paper by S. S.-S. Wang and C. C.-A. Cheng.

Theorem 5 (Inversion Formula). If

\[f = (f_1, \ldots, f_n) : \mathbb{C}^n \to \mathbb{C}^n \]

is a polynomial automorphism such that

\[f^{-1} = g = (g_1, \ldots, g_n), \]

and

\[f_{1,i} = f_1(t_1, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n), \]

\[\ldots \]

\[f_{k_i-1,i} = f_{k_i-1}(t_1, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n), \]

\[f_{k_i+1,i} = f_{k_i+1}(t_1, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n) \]

\[\ldots \]

\[f_{n,i} = f_n(t_1, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n) \]

are algebraically independent. Let

\[f_{k_i,i} = f_{k_i}(t_1, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n) \]

and

\[S_i(x_1, \ldots, x_n) = R_{t_1 \ldots t_{i-1} t_{i+1} \ldots t_n}(f_{1,i} - x_1, \ldots, f_{n,i} - x_n). \]

Then

\[[g_i(x_1, \ldots, x_n)]^q = \frac{S_i(x_1, \ldots, x_n)}{S_i(f_1(0, \ldots, 0, 1, 0, \ldots, 0), \ldots, f_n(0, \ldots, 0, 1, 0, \ldots, 0))}, \]

\[i = 1, \ldots, n. \]
where 1 is at the i^{th} component and

$$q = \deg_{x_i} S_i(f_1(0,\ldots,0,x_i,0,\ldots,0),\ldots,f_n(0,\ldots,0,x_i,0,\ldots,0)).$$

Remark. Here $S_i(x_1,\ldots,x_n)$ is just $S(x_1,\ldots,x_n)$ in theorem 5.

Proof. Since

$$C[x_1,\ldots,x_n] = C[f_1,\ldots,f_n],$$

we obtain

$$C[t_1,\ldots,t_{i-1},t_{i+1},\ldots,t_n]$$
$$= C[f_1(t_1,\ldots,t_{i-1},0,t_{i+1},\ldots,t_n),\ldots,f_n(t_1,\ldots,t_{i-1},0,t_{i+1},\ldots,t_n)].$$

$$i = 1,\ldots,n.$$

Therefore $f_{1,i},\ldots,f_{n,i}$ contain $n - 1$ algebraically elements.

By theorem 4,

$$S_i(x_1,\ldots,x_n) = [h_i(x_1,\ldots,x_n)]^q,$$

where h_i is the minimal polynomial of

$$f_1(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n),$$

......

$$f_n(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n).$$

By lemma 3,

$$S_i(x_1,\ldots,x_n) = c[g_i(x_1,\ldots,x_n)]^q,$$

hence

$$S_i(f_1(0,\ldots,0,x_i,0,\ldots,0),\ldots,f_n(0,\ldots,0,x_i,0,\ldots,0))$$
$$= c[g_i(f_1(0,\ldots,0,x_i,0,\ldots,0),\ldots,f_n(0,\ldots,0,x_i,0,\ldots,0))]^q = cx_i^q.$$
So
\[q = \deg_{x_i} S_i(f_1(0, \ldots, 0, x_i, 0, \ldots, 0), \ldots, f_n(0, \ldots, 0, x_i, 0, \ldots, 0)) \]
and
\[c = S_i(f_1(0, \ldots, 0, 1, 0, \ldots, 0), \ldots, f_n(0, \ldots, 0, 1, 0, \ldots, 0)). \]

Remark. Theorem 5 is a generalization of [7, Theorem 12], hence we have answered McKay and Wang’s [7, Question 16].

4. A RESULTANT CRITERION FORMULA FOR THE INVERSE OF POLYNOMIAL MAPS

In his book [1](also see [2] for a partial result), Abhyankar gives a nice

Proposition 6. Let \(k \) be a field and let \(f = (f_1, f_2) : k^2 \to k^2 \) be a polynomial map, and
\[
S_i(x_i, y_1, y_2) = \text{Res}_{\{x_1, x_2\} - \{x_i\}}(f_1 - y_1, f_2 - y_2), i = 1, 2,
\]
then

(1) \(x_i(i = 1, 2) \) are rational function of \(y_1, y_2 \) if and only if
\[
\deg_{x_i} S_i = 1 (i = 1, 2).
\]

Moreover,
\[
x_i = \frac{p_i(y_1, y_2)}{q_i(y_1, y_2)},
\]
where the \(\text{gcd}(p_i, q_i) = 1 \) and \(q_i \neq 0 \).

\[\iff S_i(x_i, y_1, y_2) = c_i(q_i(y_1, y_2)x_i - p_i(y_1, y_2)), c_i \in k^*. \]

(2) \(x_i(i = 1, 2) \) are polynomials in \(y_1, y_2 \) if and only if
\[
\deg_{x_i} S_i = 1 (i = 1, 2).
\]
and the coefficients of x_i in S_i are constants. Moreover, $x_i = g_i(y_1, y_2), g_i$ are polynomials

$$\Leftrightarrow S_i(x_i, y_1, y_2) = c_i(x_i - g_i(y_1, y_2)), c_i \in k^*.$$

Abhyankar suggests that the similar results should be ture for general suituation. We prove in this paper that it is the case.

We now introduce some notations.

Let $f = (f_1, \ldots, f_n) : k^n \to k^n$ be a polynomial map and

$$f_{ki} = f_k(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).$$

Suppose

$$f_{1i}, \ldots, f_{ki-1}, f_{ki+1}, \ldots, f_{ni}$$

are algebraically independent, we denote

$$R_i(f_1, \ldots, f_n) = \frac{Res_{x - \{x_i\}}(f_1, \ldots, f_n)}{[Res_{x - \{x_i\}}(f^+ - \{f_{ki}^+\})]^{m_i}},$$

where x means $\{x_1 \ldots x_n\}$, f^+ means $\{f_1^+, \ldots, f_n^+\}$ and $m_i = \deg f_{ki,i}$.

Theorem 7. Let $f = (f_1, \ldots, f_n) : k^n \to k^n$ be a polynomial map, and let

$$S_i(x_i, y_1, \ldots, y_n) = R_i(f_1 - y_1, \ldots, f_n - y_n), i = 1, \ldots, n.$$

Then

$$x_i = \frac{p_i(y_1, \ldots, y_n)}{q_i(y_1, \ldots, y_n)},$$

where $gcd(p_i, q_i) = 1$ and $q_i \neq 0$

$$\Leftrightarrow S_i(x_i, y_1, \ldots, y_n) = c_i(q_i(y_1, \ldots, y_n)x_i - p_i(y_1, \ldots, y_n))^{s_i};$$

(2)

$$x_i = g_i(y_1, \ldots, y_n),$$
G_i are polynomials

$$
\Leftrightarrow S_i(x_i, y_1, \ldots, y_n) = c_i(x_i - g_i(y_1, \ldots, y_n))^{s_i}.
$$

Both in (1) and (2), $c_i \in k^*$ and s_i are positive integers.

Proof. We only prove (1), since (2) is a consequence of (1).

\Leftarrow: Suppose

$$S_i(x_i, y_1, \ldots, y_n) = c_i(q_i(y_1, \ldots, y_n)x_i - p_i(y_1, \ldots, y_n))^{s_i}, c_i \in k^*.$$

Substituting $y_i = f_i, S_i = 0$. Hence

$$x_i = \frac{p_i(y_1, \ldots, y_n)}{q_i(y_1, \ldots, y_n)}.$$

\Rightarrow: Suppose

$$x_i = \frac{p_i(y_1, \ldots, y_n)}{q_i(y_1, \ldots, y_n)},$$

$i = 1, \ldots, n$ are inverse function of $y_i = f(x_1, \ldots, x_n)$.

The functions

$$f_i(x_1, \ldots, x_{i-1}, \frac{p_i}{q_i}, x_{i+1}, \ldots, x_n) - y_i, i = 1, \ldots, n$$

considered as polynomials in

$$x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$$

with coefficients in $k(y_1, \ldots, y_n)$ have

$$\frac{p_k}{q_k}, k = 1, \ldots, i - 1, i + 1, \ldots, n$$

as a common solution, so

$$S_i(x_i, y_1, \ldots, y_n) = R_i(f_1 - y_1, \ldots, f_n - y_n)$$.

considered as a polynomial in \(x_i\) with coefficients in \(k(y_1, \ldots, y_n)\) has a zero

\[
x_i = \frac{p_i}{q_i}.
\]

Hence

\[
R_i(f_1 - y_1, \ldots, f_n - y_n) = A_i(x_i - \frac{p_i}{q_i})^{s_i}, i = 1, \ldots, n,
\]

where \(A_i \in k(y_1, \ldots, y_n)\), comparing the coefficients in \(x^{s_i}\) of both sides, \(A_i \in k[y_1, \ldots, y_n]\).

Since

\[
k(x_1, \ldots, x_n) = k(f_1, \ldots, f_n),
\]

by proposition 2,

\[
A_i\left(\frac{p_i}{q_i}\right)^{s_i} = S_i(0, y_1, \ldots, y_n) = R_i(f_1 - y_1, \ldots, f_n - y_n)|_{x_i=0}
\]

are polynomials in \(k[y_1, \ldots, y_n]\). Hence \(A_i = c_i q_i^{s_i}\), so

\[
R_i(f_1 - y_1, \ldots, f_n - y_n) = c_i(q_i(y_1, \ldots, y_n)x_i - p_i(y_1, \ldots, y_n))^{s_i}, c_i \in k^*.
\]

As a consequence of theorem 7, we obtain

Theorem 8. (1) Let \(f : k^n \rightarrow k^n\) is a polynomial map, then \(f\) is a polynomial automorphism

\[
\Leftrightarrow
\]

there are some positive integers \(s_i\) such that

\[
\frac{d^{s_i}(R_i(f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)))}{dx_i^{s_i}} \in k^*, i = 1, \ldots, n.
\]

(2) Let \(\text{char}(K) = 0\), then the Jacobian conjecture holds

\[
\Leftrightarrow
\]

there are some positive integers \(s_i\) such that \(J(f) \in k^*\) implies that

\[
\frac{d^{s_i}(R_i(f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)))}{dx_i^{s_i}} \in k^*, i = 1, \ldots, n.
\]
5. Macaulay's construction of resultants

Macaulay [5] shows that the resultant equals the quotient of the determinant of a certain matrix A whose entries are coefficients of the polynomials, and a minor of A. In this section we briefly mention Macaulay's construction of resultants.

Suppose we are given n homogeneous polynomials f_i in n variables x_i, and that f_i has degree d_i. We need some notation for monomials of f_i. Let α be an n-tuple of integers, we write x^α for the monomial $x_1^{\alpha_1} \ldots x_n^{\alpha_n}$.

The rows and columns of the matrix A are indexed by the set of monomials in x_1, \ldots, x_n of degree d where

$$d = 1 + \sum_{i=1}^n (d_i - 1),$$

and letting X^d denote the set of monomials of degree d, the cardinality of X^d is

$$N = |X^d| = \binom{d + n - 1}{k}.$$

Definition 9. A polynomial is said to be reduced in x_i if its degree (the maximum degree of its monomials) in x_i is less than d_i. A polynomial that is reduced in all variables but one is said simply to be reduced.

Now consider the polynomial

$$f = C_1 f_1 + \cdots + C_n f_n, \quad (*)$$

where each c_i is a homogeneous polynomial of degree $d - d_i$ with symbolic coefficients, which is reduced in x_1, \ldots, x_i. f is a homogeneous polynomial of degree d, and so has N coefficients. There also, in total, exactly N coefficients in the C_i. To see this, image for the moment that each f_i equals $x_i^{d_i}$. Then every monomial in f is a multiple of a monomial from exactly one of the C_i's. For the monomial cx^α, let j be the smallest index i such that x^α is not reduced in x_i. Then cx^α is a multiple of a monomial from C_j and from no other C_i.
RESULTANTS AND INVERSION FORMULA FOR N POLYNOMIALS IN N VARIABLES

Since the coefficients of \(f \) are linear function of the coefficients of the \(C_i \) via (*) , this determines a linear map \(a \) from coefficients of the \(C_i \) to coefficients of \(f \). Each non-zero entry in the matrix \(A \) is a coefficient of some \(f_i \). This defines the matrix \(A \) we mentioned earlier.

More precisely, if we index rows and columns of \(A \) by elements of \(X^d \), then the row corresponding to \(x^\alpha \) represents the polynomial

\[
\frac{x^\alpha}{x_i^d} f_i.
\]

The determinant of \(A \) vanishes if the \(f_i \) have a common zero, and it is therefore a multiple of the resultant \(R \) of the \(f_i \) [5]. We can write \(\text{det}(A) = MR \), where \(M \) is an additional factor which we should move. Macaulay shows that \(M \) is the determinant of a certain submatrix of \(A \), in fact the submatrix of elements whose row and column indices are not reduced. Hence \(R = \text{det}(A)/\text{det}(M) \).

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>J.E. Dunn & Roger Fosdick</td>
<td>The Weierstrass condition for a special class of elastic materials</td>
</tr>
<tr>
<td>1051</td>
<td>Bei Hu & Jianhua Zhang</td>
<td>A free boundary problem arising in the modeling of internal oxidation of binary alloys</td>
</tr>
<tr>
<td>1052</td>
<td>Eduard Feireisl & Enrique Zuazua</td>
<td>Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent</td>
</tr>
<tr>
<td>1053</td>
<td>I-Heng McCom & Chjan C. Lim</td>
<td>Stability of equilibria for a class of time-reversible, $D_2xO(2)$-symmetric homogeneous vector fields</td>
</tr>
<tr>
<td>1054</td>
<td>Ruben D. Spies</td>
<td>A state-space approach to a one-dimensional mathematical model for the dynamics of phase transitions in pseudoelastic materials</td>
</tr>
<tr>
<td>1055</td>
<td>H.S. Dumas, F. Golse, and P. Lochak</td>
<td>Multiphase averaging for generalized flows on manifolds</td>
</tr>
<tr>
<td>1056</td>
<td>Bei Hu & Hong-Ming Yin</td>
<td>Global solutions and quenching to a class of quasilinear parabolic equations</td>
</tr>
<tr>
<td>1057</td>
<td>Zhangxin Chen</td>
<td>Projection finite element methods for semiconductor device equations</td>
</tr>
<tr>
<td>1058</td>
<td>Peter Guttorp</td>
<td>Statistical analysis of biological monitoring data</td>
</tr>
<tr>
<td>1059</td>
<td>Wensheng Liu & Héctor J. Sussmann</td>
<td>Abnormal sub-Riemannian minimizers</td>
</tr>
<tr>
<td>1060</td>
<td>Chjan C. Lim</td>
<td>A combinatorial perturbation method and Arnold’s whiskered Tori in vortex dynamics</td>
</tr>
<tr>
<td>1061</td>
<td>Yong Liu</td>
<td>Axially symmetric jet flows arising from high speed fiber coating</td>
</tr>
<tr>
<td>1062</td>
<td>Li Qiu & Tongwen Chen</td>
<td>H_2 and H_∞ designs of multirate sampled-data systems</td>
</tr>
<tr>
<td>1063</td>
<td>Eduardo Casas & Jiongmin Yong</td>
<td>Maximum principle for state-constrained optimal control problems governed by quasilinear elliptic equations</td>
</tr>
<tr>
<td>1064</td>
<td>Suzanne M. Lenhart & Jiongmin Yong</td>
<td>Optimal control for degenerate parabolic equations with logictic growth</td>
</tr>
<tr>
<td>1065</td>
<td>Suzanne Lenhart</td>
<td>Optimal control of a convective-diffusive fluid problem</td>
</tr>
<tr>
<td>1066</td>
<td>Enrique Zuazua</td>
<td>Weakly nonlinear large time behavior in scalar convection-diffusion equations</td>
</tr>
<tr>
<td>1067</td>
<td>Caroline Fabre, Jean-Pierre Puel & Enrique Zuazua</td>
<td>Approximate controllability of the semilinear heat equation</td>
</tr>
<tr>
<td>1068</td>
<td>M. Escobedo, J.L. Vazquez & Enrike Zuazua</td>
<td>Entropy solutions for diffusion-convection equations with partial diffusivity</td>
</tr>
<tr>
<td>1069</td>
<td>M. Escobedo, J.L. Vazquez & Enrike Zuazua</td>
<td>A diffusion-convection equation in several space dimensions</td>
</tr>
<tr>
<td>1070</td>
<td>F. Fagnani & J.C. Willems</td>
<td>Symmetries of differential systems</td>
</tr>
<tr>
<td>1071</td>
<td>Zhangxin Chen, Bernardo Cockburn, Joseph W. Jerome & Chi-Wang Shu</td>
<td>Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation</td>
</tr>
<tr>
<td>1072</td>
<td>M.E. Bradley & Suzanne Lenhart</td>
<td>Bilinear optimal control of a Kirchhoff plate</td>
</tr>
<tr>
<td>1073</td>
<td>Héctor J. Sussmann</td>
<td>A cornucopia of abnormal subriemannian minimizers. Part I: The four-dimensional case</td>
</tr>
<tr>
<td>1074</td>
<td>Marek Rakowski</td>
<td>Transfer function approach to disturbance decoupling problem</td>
</tr>
<tr>
<td>1075</td>
<td>Yuncheng You</td>
<td>Optimal control of Ginzburg-Landau equation for superconductivity</td>
</tr>
<tr>
<td>1076</td>
<td>Yuncheng You</td>
<td>Global dynamics of dissipative modified Korteweg-de Vries equations</td>
</tr>
<tr>
<td>1077</td>
<td>Mario Taboada & Yuncheng You</td>
<td>Nonuniformly attracting inertial manifolds and stabilization of beam equations with structural and Balakrishnan-Taylor damping</td>
</tr>
<tr>
<td>1078</td>
<td>Michael Böhm & Mario Taboada</td>
<td>Global existence and regularity of solutions of the nonlinear string equation</td>
</tr>
<tr>
<td>1079</td>
<td>Zhangxin Chen</td>
<td>BDM mixed methods for a nonlinear elliptic problem</td>
</tr>
<tr>
<td>1080</td>
<td>J.J.L. Velázquez</td>
<td>On the dynamics of a closed thermosyphon</td>
</tr>
<tr>
<td>1081</td>
<td>Frédéric Bonnans & Eduardo Casas</td>
<td>Some stability concepts and their applications in optimal control problems</td>
</tr>
<tr>
<td>1082</td>
<td>Hong-Ming Yin</td>
<td>$L^{2,\infty}(Q)$-estimates for parabolic equations and applications</td>
</tr>
<tr>
<td>1083</td>
<td>David L. Russell & Bing-Yu Zhang</td>
<td>Smoothing and decay properties of the solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation</td>
</tr>
<tr>
<td>1084</td>
<td>J.E. Dunn & K.R. Rajagopal</td>
<td>Fluids of differential type: Critical review and thermodynamic analysis</td>
</tr>
<tr>
<td>1085</td>
<td>Mary Elizabeth Bradley & Mary Ann Horn</td>
<td>Global stabilization of the von Kármán plate with boundary feedback acting via bending moments only</td>
</tr>
<tr>
<td>1086</td>
<td>Mary Ann Horn & Irena Lasiecka</td>
<td>Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback</td>
</tr>
<tr>
<td>1087</td>
<td>Vilmos Komornik</td>
<td>Decay estimates for a petrovski system with a nonlinear distributed feedback</td>
</tr>
<tr>
<td>1088</td>
<td>Jesse L. Barlow</td>
<td>Perturbation results for nearly uncoupled Markov chains with applications to iterative methods</td>
</tr>
<tr>
<td>1089</td>
<td>Jong-Shenq Guo</td>
<td>Large time behavior of solutions of a fast diffusion equation with source</td>
</tr>
<tr>
<td>1090</td>
<td>Tongwen Chen & Li Qiu</td>
<td>H_∞ design of general multirate sampled-data control systems</td>
</tr>
<tr>
<td>1091</td>
<td>Satyanad Kichenassamy & Walter Littman</td>
<td>Blow-up surfaces for nonlinear wave equations, I</td>
</tr>
<tr>
<td>1092</td>
<td>Nahum Shimkin</td>
<td>Asymptotically efficient adaptive strategies in repeated games, Part I: certainty equivalence strategies</td>
</tr>
<tr>
<td>1093</td>
<td>Caroline Fabre, Jean-Pierre Puel & Enrique Zuazua</td>
<td>On the density of the range of the semigroup for semilinear heat equations</td>
</tr>
</tbody>
</table>
Robert F. Stengel, Laura R. Ray & Christopher I. Marrison, Probabilistic evaluation of control system robustness

H.O. Fattorini & S.S. Sritharan, Optimal chattering controls for viscous flow

Kathryn E. Lenz, Properties of certain optimal weighted sensitivity and weighted mixed sensitivity designs

Gang Bao & David C. Dobson, Second harmonic generation in nonlinear optical films

Avner Friedman & Chaocheng Huang, Diffusion in network media

Xinfu Chen, Avner Friedman & Tsuyoshi Kimura, Nonstationary filtration in partially saturated porous media

Walter Littman & Baisheng Yan, Rellich type decay theorems for equations $P(D)u = f$ with f having support in a cylinder

Satyanad Kichenassamy & Walter Littman, Blow-up surfaces for nonlinear wave equations, II

Nahum Shimkin, Extremal large deviations in controlled I.I.D. processes with applications to hypothesis testing

A. Narain, Interfacial shear modeling and flow predictions for internal flows of pure vapor experiencing film condensation

Andrew Teel & Laurent Praly, Global stabilizability and observability imply semi-global stabilizability by output feedback

Karen Rudie & Jan C. Willems, The computational complexity of decentralized discrete-event control problems

John A. Burns & Ruben D. Spies, A numerical study of parameter sensitivities in Landau-Ginzburg models of phase transitions in shape memory alloys

Gang Bao & William W. Symes, Time like trace regularity of the wave equation with a nonsmooth principal part

Lawrence Markus, A brief history of control

Richard A. Brualdi, Keith L. Chavey & Bryan L. Shader, Bipartite graphs and inverse sign patterns of strongly sign nonsingular matrices

A. Kersch, W. Morokoff & A. Schuster, Radiative heat transfer with quasi-monte carlo methods

Jianhua Zhang, A free boundary problem arising from swelling-controlled release processes

Walter Littman & Stephen Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points and applications to boundary control

Srdjan Stojanovic & Thomas Svobodny, A free boundary problem for the Stokes equation via nonsmooth analysis

Bronislaw Jakubczyk, Filtered differential algebras are complete invariants of static feedback

Boris Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions

Bei Hu & Hong-Ming Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition

Jin Ma & Jiongmin Yong, Solvability of forward-backward SDEs and the nodal set of Hamilton-Jacobi-Bellman Equations

Chaocheng Huang & Jiongmin Yong, Coupled parabolic and hyperbolic equations modeling age-dependent epidemic dynamics with nonlinear diffusion

Jiongmin Yong, Necessary conditions for minimax control problems of second order elliptic partial differential equations

Eitan Altman & Nahum Shimkin, Worst-case and Nash routing policies in parallel queues with uncertain service allocations

Nahum Shimkin & Adam Shwartz, Asymptotically efficient adaptive strategies in repeated games, part II: Asymptotic optimality

M.E. Bradley, Well-posedness and regularity results for a dynamic Von Kármán plate

Zhangxin Chen, Finite element analysis of the 1D full drift diffusion semiconductor model

Gang Bao & David C. Dobson, Diffractive optics in nonlinear media with periodic structure

Steven Cox & Enrique Zuazua, The rate at which energy decays in a damped string

Anthony W. Leung, Optimal control for nonlinear systems of partial differential equations related to ecology

H.J. Sussmann, A continuation method for nonholonomic path-finding problems

Yung-Jen Guo & Walter Littman, The null boundary controllability for semilinear heat equations

Q. Zhang & G. Yin, Turnpike sets in stochastic manufacturing systems with finite time horizon

I. Györi, F. Hartung & J. Turi, Stability in delay equations with perturbed time lags

F. Hartung & J. Turi, On the asymptotic behavior of the solutions of a state-dependent delay equation

Pierre-Alain Gremaud, Numerical optimization and quasiconvexity

Jie Tai Yu, Resultants and inversion formula for N polynomials in N variables

Avner Friedman & J.L. Velázquez, The analysis of coating flows in a strip

Scott W. Hansen, Boundary control of a one-dimensional, linear, thermal system with distributed and boundary noise