Graph structure and algorithm complexity

Puck Rombach (joint w/ Christopher Purcell)

University of Vermont

puck.rombach@uvm.edu

IMA Theory and Algorithms in Graph-based Learning,
September 16, 2020
We are interested in problems on graphs, such as

- Graph coloring,
- Shortest paths/spanning trees,
- Isomorphism testing,
- Largest independent sets/matchings,
- ...

We can sort problems into types, based on the complexity of solving them on a general graph.
The class of all problems for which there exists an algorithm with run time $f(n) < n^c$ for some constant c is called P: problems solvable in polynomial time.

There is a wider class of problems that are solvable in polynomial time if we have nondeterministic computers that can make “lucky” guesses. This is the class NP: problems nondeterministically solvable in polynomial time.
For a given problem that is \textbf{NP}-complete on graphs in general, there may be sets of graphs for which the problem is in \textbf{P}.

Example: given two graphs G and H, is there an \textbf{isomorphism} $\sigma : V(G) \rightarrow V(H)$?

The Graph Isomorphism problem is in \textbf{NP}, but is not known to be \textbf{NP}-complete or in \textbf{P}. (Although it is close to \textbf{P}.)

However, if we restrict ourselves to \textbf{planar} graphs, the problem can be solved in $O(n)$ time.
Forbidden pattern characterizations

We often characterize important classes of graphs in terms of forbidden substructures, such as

- induced subgraphs (hereditary class)
 obtained by: vertex deletion
- subgraphs (monotone class)
 obtained by: vertex deletion, edge deletion
- minors (minor-closed class)
 obtained by: vertex deletion, edge deletion, edge contraction
Forbidden pattern characterizations

Both forbidden-minor and forbidden-subgraph characterizations may be useful in applications.

For example:

- **forbidden subgraphs:**

 \(k \)-partite graphs, bounded degree, bounded girth, comparability graphs, triangle-free or bounded triadic closures, co-graphs, . . .

- **forbidden minors:**

 planar graphs (and other topological surfaces), bounded crossing numbers, graphs of bounded treewidth/treedepth, . . .
Forbidden pattern characterizations

Finite set of forbidden subgraphs \rightarrow local properties.

Finite set of forbidden minors \rightarrow global properties.
Theorem (Robertson-Seymour theorem)

*If \mathcal{F} is a minor-closed class of graphs, it has the nice property that there is a finite set of minor-minimal graphs X that is not in \mathcal{F}.***
Minor-closed classes

Theorem (Robertson-Seymour theorem)

*If \mathcal{F} is a minor-closed class of graphs, it has the nice property that there is a finite set of minor-minimal graphs X that is not in \mathcal{F}.***

For example, the planar graphs are the $\{K_5, K_{3,3}\}$-minor-free graphs.
Minor-closed classes

Theorem (Robertson-Seymour theorem)

If \(\mathcal{F} \) is a minor-closed class of graphs, it has the nice property that there is a finite set of minor-minimal graphs \(X \) that is not in \(\mathcal{F} \).

For example, the planar graphs are the \(\{K_5, K_{3,3}\} \)-minor-free graphs.

Consequently, every set of minor-closed classes is well-quasi-ordered with respect to the containment relation:

- must have a minimal element (finitely many),
- no infinite descending chains,
- no infinite anti-chains.
Treewidth

Graph treewidth is intricately connected to both computational complexity and graph minors. Intuitively, the treewidth of a graph tells you how hard you have to squeeze to make it look like a tree.
Graph treewidth is intricately connected to both computational complexity and graph minors. Intuitively, the treewidth of a graph tells you how hard you have to squeeze to make it look like a tree.
Treewidth

Graph treewidth is intricately connected to both computational complexity and graph minors. Intuitively, the treewidth of a graph tells you how hard you have to squeeze to make it look like a tree.
Treewidth

Many \textbf{NP}-complete graph problems are in \textbf{P} for graphs of bounded treewidth:

- independent set,
- clique,
- proper coloring,
- max-cut,
- vertex covers,
- cycle packing,
- ...
Minor-closed classes

For such problems, in terms of minor-closed classes of graphs, the result that the problem is NP-hard for planar graphs is “best possible”:
Minor-closed classes

For such problems, in terms of minor-closed classes of graphs, the result that the problem is \(NP \)-hard for planar graphs is “best possible”:

If \(Y \) is a minor-closed class of graphs, restricting the independent set problem to \(Y \) is in \(P \) if and only if at least one planar graph is not in \(Y \).
Minor-closed classes

For such problems, in terms of minor-closed classes of graphs, the result that the problem is \(NP \)-hard for planar graphs is “best possible”:

If \(Y \) is a minor-closed class of graphs, restricting the independent set problem to \(Y \) is in \(P \) if and only if at least one planar graph is not in \(Y \).

Because: planar graphs are the unique minimal minor-closed class of graphs of unbounded treewidth.
Hereditary classes

How does this work for hereditary classes?
Hereditary classes

How does this work for hereditary classes?

They are not well-quasi-ordered with respect to the containment relation.
Hereditary classes

How does this work for hereditary classes?

They are not well-founded with respect to the containment relation.

To tackle this, Alekseev1 introduced the notion of a \textit{boundary class}.

1V.E. Alekseev. \textit{On easy and hard hereditary classes of graphs with respect to the independent set problem}. Discrete Applied Mathematics, 132:17–26, 2003
Boundary classes

Let \mathcal{F} be a family of hereditary classes closed under taking subclasses.

Suppose $Y_1 \supseteq Y_2 \supseteq Y_3 \supseteq \ldots$ is an infinite descending anti-chain of hereditary graph classes outside \mathcal{F} and let $Y = \bigcap_n Y_n$.

Then Y is a limit class for \mathcal{F}, and a minimal limit class is a boundary class.

A finitely defined hereditary graph class X is outside \mathcal{F} if and only if it contains a boundary class for \mathcal{F}.
Boundary classes

Example:

Let \mathcal{F} be the family of hereditary graph classes for which the independent set problem is in P.

Let Y_j be the class of (C_3, \ldots, C_j)-free graphs, and let $Y = \bigcap Y_j$.

Then, Y_k is the class of graphs with no cycles of length $\leq k$, and Y is the class of trees, which is a limit class for 3-coloring.

Note that, in this case, $Y \in \mathcal{F}$.
Coupon coloring

A k-coupon coloring of a graph is a vertex k-coloring, such that every vertex sees at least one vertex of each color in their neighborhood.

For example\(^2\): large multi-robot network with local communication. Each robot has a single sensor that measures either temperature, light, or humidity, and it collects remaining data from its neighbors.

3-coupon coloring \Rightarrow every robot is fully informed!

\(^2\)W. Abbas, M. Egerstedt, Chun-Hung Liu, Robin Thomas, and Peter Whalen, *Deploying Robots with two sensors in $K_{1,6}$-free graphs*. arxiv.org/abs/1308.5450.
Coupon coloring

\mathcal{F}_k: forests of degree $\leq k$.

Theorem

For prime k, \mathcal{F}_k is a boundary class for the k-coupon coloring problem.

Coupon coloring

Proof idea: “graph implantation”.

\[\text{Diagram 1}\]

\[\text{Diagram 2}\]
Coupon coloring

Proof idea: “graph implantation”.

![Diagram of coupon coloring proof idea]
Coupon coloring

Proof idea: “graph implantation”.

Every k-regular graph yields an arbitrarily high-girth k-regular graph with equivalent coupon-coloring.
Theorem

For prime k, there exists a family of bipartite, high-girth, k-regular, k-coupon colorable graphs.

This implies the k-coupon coloring problem is NP-hard for $(K_{1,k+1}, C_3, C_4, \ldots, C_j)$-free graphs.

If we call this class Y_j, then

$$\mathcal{F}_k = \bigcap_j Y_j,$$

is a limit class.

Recap

Hereditary and monotone graph classes are of interest in algorithmic settings (as well as minor-closed classes).

It is natural to characterize forbidden graph classes by their minimal forbidden subclasses, but this is only guaranteed in the minor-closed case.

Boundary classes give us minimal forbidden subclasses for the finitely defined classes in a family.

These provide new ways to characterize polynomially solvable cases for NP-hard graph problems.
THANK YOU!