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Radar Imaging Basics

JAll -weather

3Day and night operation

P SN J Superposition of response

G- B from scattererst tomographic
&’ measurements

3 Synthetic aperture radar (SAR)
3 Computational imaging problem:
Obtain a spatial map of reflectivity from radar returns
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Outline

3 Sparsity-driven radar imaging

Point-enhanced and region-enhanced imaging

ADMM & proximal operators in the case of complex -valued fields
Wide-angle imaging and anisotropy characterization

Model errors and autofocusing

Moving -object imaging

- A e s

3 Machine learning for radar imaging

t Dictionary learning
t Deep learning-based priors
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Initial motivation for our work ( circa 19995

Some challenges for automatic decisionmaking from SAR images:

J Accurate localization of dominant scatterers
T { Limited resolution
t Clutter and artifact energy

3 Region separability
t Speckle
t Object boundaries

J Limited or sparse apertures

* This slide was found in an archaeological excavation site and is believe@@®baleedearning -years old.
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How | got attracted to sparsityo

J. R, Sratist. Soc. B (1992)
54, No. I, pp. 41-El

Maximum Entropy and the Nearly Black Object

By DAVID L. DONOHO, IAIN M, JOHNSTONE?, JEFFREY C. HOCH and ALAN 5. STERN

University of California, Stranford University, USA Rowland Institute for Science,
Rerkeley, UUSA Cambridge, U5A

[ Read before The Roval Statistical Society af @ meeting organized by the Research Section
on Wednesday, April 17th, 1991, Dr F. Critchley in the Chair]

SUMMARY
Maximum entropy (ME) inversion is a non-linear inversion technique for inverse problems
where the object to be recovered is known to be positive, It has been applied in areas ranging
from radio astronomy to various forms of spectroscopy, sometimes with dramatic success.
In some cases, ME has attained an order of magnitude finer resolution and/or an order
of magnitude smaller noise level than that obtainable by standard linear methods. The
dramatic successes all seem to occur in cases where the object to be recovered is ‘nearly
black’: essentially zero in the vast majority of samples. We show that near-blackness 1s
required, both for signal-to-noise enhancements and for superresolution. However, other

methods—in particular, minimum /-norm reconstruction—may exploit near-blackness to
an even greater extent.

Kevwords: DIFFRACTION-LIMITED IMAGING; INVERSE PROBLEMS; MAGNETIC RESONANCE
SPECTROSCOPY; MINIMAX DECISION THEORY; NON-LINEAR RECOVERY; POSITIVITY
CONSTRAINTS; SUPERRESOLUTION
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SAR Ground-plane Geometry

qe(u)

3 Scalar 2D complex-valued reflectivity field f(x,¥)
3 Transmitted chirp signal: s(t) = ® [e/(<ot+at] |t < 2
3 Received, demodulated return from circular patch:

Band-limited Fourier transform of gy(u)

~

] 2 2R
ro(t) = / go(u)  exp {—j— [wo + 2a (t — —)] u} du
lu|<L Projection of ¢ ¢

field f(z,y)

Mujdat Cetin IMA Computational Imaging Workshop, October 14 -18, 2019



UNIVERSITY of

OCHESTER

trz
‘\ﬁ /4

SAR Observation Model

J Observations are related to projections of the field:

2 2R
ro(t) = ex —q — 2 t — - d
o(t) / | C]Q(U) | P ]\c [wO + a( . )] w y du
|u|< L Projection of field
f(z,y) at angle 0

7

Qv(t)
Spatial frequency
3 SAR observations are bandlimited slices from the 2-D Fourier

transform of the reflectivity field: .
ro(t) = // flx,y)exp {—7Q(t) (xcosh + ysinh)} dx dy
:132—|-y2§L2 i $3e
= F[Q(t)cosh, Q(t)sinb]

J Discrete tomographic /Ly :/Af;_|_ n

SAR observation model:

(combining all measurements) CloSEiEe) el / \ Noise

SARForward _
Model Unknown field
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Conventional Image Formation

3 Given SAR returns, create an estimate of the reflectivity field f

__Support of observed data Sample conventional image
in the spatial frequency domain (reflectivity magnitudes?

Polar format algorithm:
3 Each pulse gives slice of 2-D Fourier transform of field

3 Polar to rectangular resampling
3 2-Dinverse DFT
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Sparsity-Driven Radar Imaging ¢ basic version
J(£) = lly — AflI3 + AlILIf[|I}

J Bayesian mterpretatlon MAP estimation problem with
heavy-tailed priors pP(f|y)"~ p(y|f) p(f)
3 Complex-valued data and image

3 Magnitude of complex -valued field admits sparse
representation

3 No informative prior on reflectivity phase

3 Typical choices for L:
t identity ( point -enhanced imaging) e
{ gradient (region-enhanced imaging

J Here focus on ADMM -based solutions
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Setting up with a generic reqgularizer

J Discretized SAR observation model:

0 AH I
J Retrieve "Hising a regularized cost function:

H AOCI E'H _ pcH
'H

where (CH |6 AW andp sH is the regularizer

A Will describe two versions of ADMM

Mujdat Cetin IMA Computational Imaging Workshop, October 14 -18, 2019



UNIVERSITY o

B ROCHESTER

Taking into account the complex-valued nature

3 Rewrite 'H [|'Hwhere is a diagonal matrix
containing the phaseof "Hn the form Q "

J Cost function becomes:

{(th} AOCIHETA I'H _PI'H
pa "R

Reflectivity Reflectivity

Magnitudes Phases
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Variable Splitting and ADMM

3 Introduce an auxiliary variable with a constraint :
("th i} AOCHETA 'H _ i)
I'ith h
1&FH | T
3 Augmented Lagrangian (in scaled form):
Uth AR} AOCIHIETA I'H  _ Hi)
"th h Al

~d
|||, | ’ "I || ||!’I ||
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Variables involved - detalls

J Let PN E be a vector containing the diagonal
elements of the phase matrix

3 Invoke the constraint that the magnitudes of the
elements of P should be 1, since they contain phases

in the form @ H

3 Let 'Abe a matrix whose diagonal elements contain
the reflectivity magnitudes

JLet’H i “landi [|H "I
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ADMM for Complex-valued Imaging
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3 Each iteration of the ADMM algorithm performs the following
stepsenabling the use of aPlug-and-Play (PnP) prior approach:

Data |P AOCIHOETANR| _B |P| p
P

] [ AQCHETA [H  *H i

Prior i A O CIL_Ei) al | [ | All real-valued
|

~
"| uI | !|| | 7

where _ is ahyperparameter
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Alternative way to set up ADMM

3 Introduce an auxiliary variable with a constraint :
(H} AQCIH®ETA™H _ A9
(&8H | T
3 Augmented Lagrangian (in scaled form):
(Hfl} AOCHETAH _Hd9
~IFH© i =1l

~

JLetHi “landi "H "l
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ADMM -II for Complex -valued Imaging

3 Each iteration of the ADMM algorithm performs the following
stepsenabling the use of aPlug-and-Play (PnP) prior approach:

Daia | "4 AOCIHETAH =|'™H Y
'H
. ) A c oz Z ) Complexvalued
Prior I AOCLEgy =i I ” with
i regularization on
. . - , magnitudes
|1 H I

where _ is ahyperparameter
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Proximal Mappings for Complex -Valued Problems

3 Consider total variation (TV) regularization.
3 Proximal mapping for standard TV can be computed by efficient algorithms

proxpy (v) = argmin TV (x) + %HX —v|2

3 We want to penalize TV of the magnitude of a complex-valued field

VIxlli, j] = \/ (Difx])? + (Dafx])?
TV (|x]) =) VIx|[i, ] (Dufx]) = |xli + 1,41 = |x[i, j]].
i (D2|x[) = [x[i, 7 + ]| = |x[i, 5]]-

3 Proximal mapping operator for TV-magnitude:

proxpy ).y (V)[i, 3] = proxpy ([v])[z, 5] - exp{iZ(v[i, j]) }

3 Similarly, proximal mapping operator of a linear transformation (Wavelet trf.,
# " 3 O of deumagnitude of the complex field:

PLOX | w|x|[|, (V) = Prox|wy, (|V]) - exp{jL(v)}
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Proximal Mapping for |,t norm-basedRegularizers

3 Proximal mapping for Ip-norm
: H
proxy, (v) = argmin [[x|[7 + Z[x = v|;

3 Canbe computed through a series of iteratively reweighted soft
thresholding operations:

1

i SOE Wl x viil.p/n)

proxy., (v)l[i]

(vli] + B)-P

w|i]
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Sparsity-Driven SAR Imaging Results
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Sparsity-Driven SAR Imaging Results

Conventional Sparsity -driven, ADMM -based
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Non-Traditional Apertures:
Wide-Angle Data

TSR 9 g

Wide Angle Phase History Supporl

3 lrregular PSF

3 Anisotropic scattering
A Conventional imaging produces

o

= inaccurate reflectivities
A Conventional imaging does not
T characterize aspect dependence

I {GHE)
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3 Much reflection from one angle

Anisotropic Scattering in SAR

-"'.—.5‘_ \~\— jl

US. AR FORCE
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Anisotropic Scattering in SAR

J Little reflection from another angle

—

B \-xh {;

US. AR FORCE
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Composite Image Formation
J, EQAwWUEEUUI Ul UUwPOOZUwxI U
3 Form a composite wide-angle image from narrow -
angle subaperture images:

Subaperture

-

A\

f.. = arg max,, f~

Index

1 Pixel
I J Indices

N\

Composite image

k-th subaperture
Image

3 Preservation of anisotropic scatterers with short persistence
3 Partial characterization of aspect dependence

U t
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3

N

kz (GHz)

kx (GHz) ky (GHz)

ventional Sparsity-driven

J Angular range = 110°

3 Composite images
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