Outcome-Weighted Learning for Personalized Medicine with Multiple Treatment Options

Donglin Zeng

Department of Biostatistics
University of North Carolina
Introduction
Substantial treatment response heterogeneity observed (anti-depressant remission rate 30-40%; Trivedi et al. 2016)

Personalized Medicine: "the tailoring of medical treatment to the individual characteristics of each patient".

Need clinical, biological, or behavioral markers to distinguish in advance which treatment will benefit a patient.
Individualized treatment rules (ITRs): decision rules mapping patient’s pre-treatment variables into the space of possible treatment decisions (e.g., switch to an alternative treatment).

Example: Healing Emotion After Loss (HEAL) trial

Optimizing Treatment of Complicated Grief

A Randomized Clinical Trial

M. Katherine Shear, MD; Charles F. Reynolds III, MD; Naomi M. Simon, MD, MSc; Sidney Zisook, MD; Yuanjia Wang, PhD; Christine Mauro, PhD; Naihua Duan, PhD; Barry Lebowitz, PhD; Natalia Skritskaya, PhD

JAMA Psychiatry, 2016;73(7):685-694

ITR: Administer clinical management as the initial treatment; if a patient does not respond within 8 weeks then offer an anti-depressant (Citalopram).
Recent machine learning methods:

- Q-Learning (Qian and Murphy 2011)
- Outcome-Weighted Learning; O-learning (Zhao et al. 2012; Liu et al. 2018; Qiu et al. 2018)
- Interaction Trees (Su et al. 2009)
- Qualitative interaction trees (QUINT, Dusseldorp and Van Mechelen 2014)

Most of the existing work aims at randomized controlled trials (RCTs) with binary treatment decisions.
In many applications, more than two treatment options are considered (multiple pharmacotherapies/psychotherapies and their combinations).

Figure: HEAL Study Compared Four Treatments

Our goal: develop O-learning to estimate optimal ITR with multiple treatment options.
A Brief Review of O-learning

- R: Clinical outcome; A: treatment $\{-1, 1\}$; X: feature variables (pre-treatment covariates)

- ITR $\mathcal{D}(X)$: a function mapping X to the domain of A.

- Associated with each \mathcal{D}, O-learning maximizes a value function defined as Note

$$V(\mathcal{D}) = E_{\mathcal{D}}(R) = E \left(\frac{RI(A = \mathcal{D}(X))}{P(A|X)} \right).$$

$$\max_\mathcal{D} V(\mathcal{D}) \text{ equivalent to } \min_\mathcal{D} E \left(\frac{RI(A \neq \mathcal{D}(X))}{P(A|X)} \right).$$
A Brief Review of O-learning

- R: Clinical outcome; A: treatment $\{-1, 1\}$; X: feature variables (pre-treatment covariates)
- $\text{ITR } \mathcal{D}(X)$: a function mapping X to the domain of A.
- Associated with each \mathcal{D}, O-learning maximizes a value function defined as Note

$$\mathcal{V}(\mathcal{D}) = E_\mathcal{D}(R) = E \left(\frac{RI(A = \mathcal{D}(X))}{P(A|X)} \right).$$

$$\max_{\mathcal{D}} \mathcal{V}(\mathcal{D}) \text{ equivalent to } \min_{\mathcal{D}} E \left(\frac{RI(A \neq \mathcal{D}(X))}{P(A|X)} \right).$$

- O-learning is a weighted classification (e.g., SVM) with labels A and weights $R/P(A|X)$:
 - Subjects with high outcomes \rightarrow encourages $\mathcal{D}(X) = A$.
 - Subjects with low outcomes \rightarrow encourages $\mathcal{D}(X) = -A$.

Challenges When Generalizing to More Than Two Treatments

- Improvements to O-learning for binary treatment decisions (Liu et al.; 2018):
 - take residuals, weights $|R - m(X)|$, relabel A by $\text{Asign}(R - m(X))$
 - weight augmentation to improve efficiency (especially in small samples)

- Existing multicategory learning (e.g., one-versus-one OVO; or one-versus-all, OVA) is no longer feasible in the presence of negative weights and augmentation.
The Goal of This Work

What we will achieve:

- a new sequential algorithm is developed to extend O-learning to learn optimal treatment rules with more than 2 treatments;
- each stage is an O-learning for two treatment groups;
- the algorithm allows negative rewards or takes residuals as weights;
- the method is shown to be Fisher consistent and possesses the same convergence rate as standard binary O-learning.
Method
We assume n i.i.d observations from a randomized trial:

$$(A_i, X_i, R_i), \ i = 1, ..., n$$

where A_i denotes treatment assignment from $\{1, 2, ..., K\}$.

$\pi_a(X)$ denotes $P(A = a|X)$ and is assumed to be positive.

We aim to learn a prediction rule

$$\mathcal{D} : X \rightarrow \{1, 2, ..., K\}$$

to minimize the value function $\mathcal{V}(\mathcal{D})$:

$$\mathcal{V}(\mathcal{D}) = E \left[\frac{RI(A = \mathcal{D}(X))}{\pi_A(X)} \right].$$
Revisit 2-Treatment O-learning

- Suppose Z to denote a binary treatment. Then O-learning minimizes the following hinge-loss in an asymptotic sense:

$$ E \left[R \max(1 - Zf(X), 0)/\pi_Z(X) \right]. $$

- If R is negative or R is replaced by $R - m(X)$, O-learning minimizes

$$ E \left[|R| \max(1 - Z\text{sign}(R)f(X), 0)/\pi_Z(X) \right]. $$

- The key result is that the minimizer has the same sign as the rule:

$$ \text{sign}(f^*(X)) = \text{sign}(E[R|Z = 1, X] - E[R|Z = -1, X]). $$

That is, $f^*(x)$ gives the optimal treatment assignment that gives the higher reward.
Now, let’s consider comparing treatment $A = j_0$ vs $A = j_1, \ldots, j_m$.

This is a binary decision problem so $Z = 1$ indicates $A = j_0$ and $Z = -1$ indicates the competing treatment group.

Since it is unfair to compare one treatment vs more than one treatments, intuitively, we need to give weights m to $Z = 1$.

This motivates the following modification of the O-learning:

$$
\min \mathbb{E} \left[\frac{w_Z R \max(1 - Z f(X), 0)}{\pi_A(X)} \right],
$$

where $w_1 = m$ and $w_{-1} = 1$.
What is the optimal decision rule:

\[
\text{sign}(f^*(X)) = \text{sign} \left\{ E[R|A = j_0, X] - \frac{1}{m} \sum_{l=1}^{m} E[R|A = j_l, X] \right\}.
\]

We compare the reward from treatment \(j_0\) with the average reward from the group of treatments!
Sequential O-Learning

Consider an ordered treatment sequence, \{1, 2, 3, ..., K\}.

- **Step 1.** Perform a binary treatment O-learning to compare treatment 1 vs \{2, 3, ..., K\} and assign weight \((K - 1)\) to treatment 1.

- **Step 2.** Perform a binary treatment O-learning to compare treatment 2 vs remaining \{3, ..., K\}:
 - exclude subjects with observed \(A = 1\);
 - exclude subjects whose predicted better treatment is 1 \((f_{1}^{*}(X) > 0)\) based on Step 1;
 - assign weight \((K - 2)\) to treatment 2.

- From Step 3 to Step \(K\), continue the same procedure to compare a treatment with the remaining choices.
Rationale of the Sequential O-learning

Sufficient condition: *In the sequential O-learning, subjects who pass all steps must have the largest conditional outcome when \(A = K \).

- If a subject passes step 1, the optimal treatment is not 1

\[
E[R|A = 1, X] < \frac{1}{K-1} \sum_{j=2}^{K} E[R|A = j, X].
\]

- If he/she passes steps \(l = 2, \ldots, K - 2 \), then

\[
E[R|A = l, X] < \frac{1}{K-l} \sum_{j=l+1}^{K} E[R|A = j, X].
\]

- The last inequality is \(E[R|A = K - 1, X] < E[R|A = K, X] \).
Permuted Sequences to Identify All Subjects with K as Optimal Treatment

- Not all subjects with $E[R|A = K, X]$ as the maximum outcome will pass all steps for a fixed order.
 - If $E[R|A = 1, X]$ is larger than the average of $E[R|A = j, X]$ for $j \geq 2$ → does not pass the first step.
- However, consider order $j_1, j_2, ..., j_{K-1}, K$ such that

\[
E[R|A = j_1, X] < E[R|A = j_2, X] < \cdots < E[R|A = K, X],
\]

then this subject will pass all steps.

Necessary condition: For a subject whose $E[R|A = K, X]$ is the largest, there always exists a sequential O-learning using one permutation of $\{1, 2, ..., K - 1\}$ so that this subject passes all steps.
SOM forward learning for K as the optimal treatment:

- Consider all permutations of $\{1, 2, \ldots, K - 1\}$ and K being the last treatment group.
- For each permuted sequence, apply the sequential binary O-learning.
- Any subject who passes at least one of the permuted sequences should have optimal treatment as K.

Sequential Outcome-Weighted Multicategory (SOM) Learning
SOM backward elimination for other treatments $1, \cdots, K - 1$:

- exclude subjects with observed $A = K$;
- exclude subjects whose predicted better treatment is K ($f_K^*(X) > 0$);
- apply forward learning on the remaining data with only treatments $\{1, 2, \ldots, K - 1\}$ for optimal treatment $(K - 1)$;
- repeat this process to learn optimal treatments $(K - 2), (K - 3)$, in turn.
Each step of SOM is a weighted SVM, so existing binary O-learning (Liu et al. 2018) can be applied.

Because of the sequential data elimination, the size of the input dataset decreases in each step, reducing computational burden.
Asymptotic Results

Theorem 1. SOM is Fisher consistent: SOM-derived ITR converges to the true optimal ITR such that $D^*(X) = a^*$ if and only if

$$E(R|X = x, A = a^*) = \arg\max_{l=1,...,K} E(R|X = x, A = l).$$

Theorem 2. Under regularity conditions, for any $\epsilon_0 > 0$, $d/(d + \tau) < p \leq 2$, there exists a constant C such that for any $\epsilon > 1$, with probability at least $1 - e^{-\epsilon}$,

$$V(D^*) - V(\hat{D}) \leq C \left\{ \left(\lambda_n^{\frac{\tau}{2+\tau}} \sigma_n^{\frac{d\tau}{d+\tau}} + \sigma_n^{-\beta} + \epsilon \left(n\lambda_n^p \sigma_n^{\frac{1-p}{1+\epsilon_0 d}} \right) - \frac{q+1}{q+2-p} \right)^{\frac{q}{1+q}} \right\}.$$
Simulations and Real World Data Application
Simulation Settings

- We generate 20 feature variables from a multivariate normal distribution, where the first 10 variables X_1, X_2, \ldots, X_{10} have a pairwise correlation of 0.8, the remaining 10 variables are uncorrelated.
- We consider 3 treatments and they are assigned randomly with equal probabilities.
We consider

- **Setting 1.** $R = X_4 + (X_1 + X_2)I\{A = 2\} + (-X_1 + X_3)I\{A = 3\} + 0.5 \times N(0, 1)$
- **Setting 2.**
 \[R = X_4 + (X_2^2 - X_1^2)I\{A = 2\} + X_3^3I\{A = 3\} + 0.5 \times N(0, 1)\]
- **Setting 3.**
 \[R = (X_1 - 0.2) \times (I\{A = 1\} - I\{X_1 > 0.3\})^2 + (X_2 + 0.3) \times (I\{A = 2\} - I\{X_2 > -0.5\})^2 + (X_3 + 0.5) \times (I\{A = 3\} - I\{X_3 > 0\})^2 + 0.5 \times N(0, 1).\]
Sample size was 300, 600 or 900.
We compared with the results from one vs all, one vs one and Q-learning method.
We considered both linear kernel and Gaussian kernel in the estimation.
For testing data, we generated 3×10^6 independent observations to compute the values.
Fig. 1: Box plots of the optimal treatment mis-allocation rates and estimated value functions of SOM, Q-learning, OVA and OVO for setting 1 with sample size of 300, 600 and 900. The optimal value is 0.9245.
Results for Setting 2

![Box plots](image)

Fig. 2: See Fig. 1. The optimal value of setting 2 is 1.0585.
Results for Setting 3

Fig. 3: See Fig. 1. The optimal value of setting 3 is 1.1438.
REVAMP Study

▶ It is a randomized trial aiming to evaluate the efficacy of adjunctive psychotherapy in treating patients with chronic depression who failed in initial treatment (Phase I) with an antidepressant medication.

▶ There were 491 patients randomized to (1) continued pharmacotherapy and augmentation with brief supportive psychotherapy (MEDS+BSP), (2) continued pharmacotherapy and augmentation with cognitive behavioral analysis system of psychotherapy (MEDS+CBASP), or (3) continued pharmacotherapy (MEDS) alone, and were followed for 12 weeks.

▶ The primary outcome was the Hamilton Scale for Depression (HAM-D) scores at the end of 12-week follow-up.
Patient’s characteristics

There were 17 baseline feature variables including

- participants’ demographics,
- patient’s expectation of treatment efficacy,
- social adjustment scale, mood and anxiety symptoms, and depression experience,
- phase I depressive symptom measures such as rate of change in HAM-D score over phase I, HAM-D score at the end of phase I, rate of change of Quick Inventory of Depression Symptoms (QIDS) scores during phase I, and QIDS at the end of phase I.
Results: Value Function

Table: Value function (mean, sd) of the HAM-D under universal “one-size-fits-all” rule and ITR (2-fold cross-validation procedure with 500 repetitions)

<table>
<thead>
<tr>
<th>Treatment†</th>
<th>MEDS+BSP</th>
<th>MEDS+CBASP</th>
<th>MEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value*</td>
<td>12.90 (0.04)</td>
<td>10.62 (0.04)</td>
<td>12.53 (0.11)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITR Method</th>
<th>SOM learning</th>
<th>Q-learning</th>
<th>OVA</th>
<th>OVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value*</td>
<td>9.95 (2.09)</td>
<td>12.64 (2.01)</td>
<td>11.97 (1.15)</td>
<td>11.15 (1.46)</td>
</tr>
</tbody>
</table>

†: Non-personalized, “one-size-fits-all” assignment rule.
*: Value function is the average HAM-D score at the end of phase II for patients following an estimated optimal treatment (smaller HAM-D indicates a better outcome) in the testing samples.
Results: Feature Variables and Optimal Treatment

Figure: 17 standardized feature variables on all patients grouped by predicted optimal treatment. Row corresponds to feature variables and column corresponds to patients stratified by predicted optimal treatment.
Conclusion
Concluding Remarks

- SOM extends O-learning for binary treatments to learn optimal rules for K treatments ($K \geq 2$) by solving sequential SVMs.
- SOM is Fisher consistent: When n is infinity, SOM identifies the optimal treatment among K options.
- Limitation: When the number of treatments is large, grouping is necessary.
- Extensions:
 - multi-stage SOM
 - other binary classifiers and weighting scheme in each step
 - parallel computing to speed up computation