
Optimal Asset Allocation with Stochastic Interest
Rates in Regime-switching Models

Ruihua Liu

Department of Mathematics
University of Dayton, Ohio

Joint Work With Cheng Ye and Dan Ren
To appear in International Journal of Theoretical and Applied Finance (IJTAF)

IMA Workshop on Financial and Economic Applications
University of Minnesota, Minneapolis, June 11 - 15, 2018



Outline of Presentation

I Problem Formulation

I A Stock Portfolio Problem and Solution

I A Stock and Bond Portfolio Problem and Solution

I Theoretical Results. A class of stochastic optimal control
problems with regime-switching.

I Numerical Results

I On-going Work



Problem Formulation

I Regime-switching is modeled by a continuous-time Markov
chain α(t) ∈M := {1, . . . ,m0} with m0 > 0 fixed.

I The intensity matrix of α(t), Q = (qij)m0×m0 is given.

I The interest rate follows a regime-switching Vasicek model:

dr(t) = [a(α(t))− b(t)r(t)]dt + σr (α(t))dW b(t). (1)

I The risky asset (stock) follows a regime-switching geometric
Brownian motion (GBM) model:

dS(t) = S(t)
(
[r(t) + λs(α(t))]dt + σs(α(t))dW s(t)

)
, (2)

where λs(α(t)) is the risk premium of the stock.

I A savings account follows dB(t) = B(t)r(t)dt, B(0) = 1.

I W s(t) and W b(t) are standard Brownian motions.
dW s(t)dW b(t) = ρdt.

I We assume that α(t) is independent of W s(t) and W b(t).



A Stock Portfolio Problem

I Optimal allocation of wealth between S(t) and B(t).

I Let πs(t) be the percentage of wealth in the stock, then the
percentage in the savings account is 1− πs(t).

I Let X (t) denote the wealth at time t. Then

dX (t) = X (t)πs(t)λs(α(t))dt+X (t)r(t)dt+X (t)πs(t)σs(α(t))dW s(t).
(3)

I Given 0 ≤ t < T , (x(t), r(t), α(t)) = (x , r , i), an admissible
control u(·) := πs(·), the objective is

J(t, x , r , i ; u(·)) = E txri [U(X u(T ), α(T ))] , (4)

where U(x , i) is a regime-dependent utility function.

I Let Atxri be the collection of admissible controls w.r.t
(x(t), r(t), α(t)) = (x , r , i). The value function is

V (t, x , r , i) = sup
u(·)∈Atxri

J(t, x , r , i ; u(·)). (5)



A Stock and Bond Portfolio Problem

I Optimal allocation of wealth among the stock S(t), the
saving account B(t), and a bond P(t) given by :

dP(t) = P(t)
(

[r(t) + λb(t, α(t))]dt + σb(t, α(t))dW b(t)
)
,

(6)
where λb(t, α(t)) is the risk premium of the bond price.

I Let πs(t) be the percentage of wealth in the stock, πb(t) the
percentage in the bond, then the percentage in the savings
account is 1− πs(t)− πb(t).

I Two-dimensional control process u(·) = (πs(·), πb(·))T .
I The wealth X (t) follows:

dX (t) =X (t)[r(t) + πs(t)λs(α(t)) + πb(t)λb(t, α(t))]dt

+ X (t)[πs(t)σs(α(t))dW s(t) + πb(t)σb(t, α(t))dW b(t)].
(7)

I Consider the same objective (4) and value function (5).



Existing Result and Our Contribution

I Korn and Kraft (SICON, 2001) considered the optimal asset
allocation problems with stochastic interest rate. However,
regime-switching was not incorporated in their models.

I Due to the presence of the unbounded interest rate process,
the wealth equations (3) and (7) do not satisfy the usual
Lipschitz continuity conditions as assumed in the classical
verification theorems of stochastic optimal control (e.g,
Fleming and Soner, 2006, Springer).

I By exploring the special structure of the wealth equation with
stochastic interest rate, Korn and Kraft modified the standard
verification arguments from Fleming and Soner and provided a
verification theorem for the optimal control problem under
their consideration.

I In this work we study the same problems using
regime-switching models. Our results extend Korn and Kraft
to the more complicated regime-switching cases.



A Stock Portfolio Problem - Solution

The HJB is given by a system of m0 PDEs:

Vt(t, x , r , i) + xrVx (t, x , r , i) + [a(i)− b(t)r ]Vr (t, x , r , i) +
1

2
σ2
r (i)Vrr (t, x , r , i)+

sup
πs∈R

{
xπsλs(i)Vx (t, x , r , i) +

1

2
x2π2

s σ
2
s (i)Vxx (t, x , r , i) + ρxπsσs(i)σr (i)Vxr (t, x , r , i)

}
+
∑
j 6=i

qij [V (t, x , r , j)− V (t, x , r , i)] = 0, i = 1, . . . ,m0,

(8)

with the boundary condition:

V (T , x , r , i) = U(x , i), i = 1, . . . ,m0. (9)

The maximizer of (8) is given by:

πs
∗(t, i) = − λs(i)Vx

xσ2
s (i)Vxx

− ρσr (i)Vxr

xσs(i)Vxx
. (10)



A Stock Portfolio Problem - Solution

Consider the power utility U(x , i) = λ(i)xγ . We have

V (t, x , r , i) = g(t, i)xγeβ(t)r , i = 1, . . . ,m0, (11)

where

β′(t)− b(t)β(t) + γ = 0, β(T ) = 0, (12)

and

gt(t, i) + h(t, i)g(t, i) +
∑
j 6=i

qij [g(t, j)− g(t, i)] = 0, (13)

with g(T , i) = λ(i) for i = 1, . . . ,m0, where

h(t, i) = a(i)β(t)+
1

2
σ2
r (i)β2(t)+

γ

2(1− γ)

[
λs(i)

σs(i)
+ ρσr (i)β(t)

]2

.

(14)



A Stock Portfolio Problem - Solution

I Using (11), the maximizer (10) becomes

π∗s (t, i) =
λs(i)

(1− γ)σ2
s (i)

+
ρσr (i)

(1− γ)σs(i)
β(t). (15)

I The verification arguments show that π∗s (t) := π∗s (t, α(t))
given in (15) is an optimal control of the considered
optimization problem.



A Stock and Bond Portfolio Problem - Solution

The HJB:

Vt(t, x , r , i) + xrVx (t, x , r , i) + [a(i)− b(t)r ]Vr (t, x , r , i) +
1

2
σ2
r (i)Vrr (t, x , r , i)

+ sup
(πs ,πb)

{
1

2
x2σ2

s (i)Vxx (t, x , r , i)π2
s + x[λs(i)Vx (t, x , r , i) + ρσs(i)σr (i)Vxr (t, x , r , i)]πs

+
1

2
x2σ2

b(t, i)Vxx (t, x , r , i)π2
b + x[λb(t, i)Vx (t, x , r , i) + σb(t, i)σr (i)Vxr (t, x , r , i)]πb

+ x2ρσs(i)σb(t, i)Vxx (t, x , r , i)πsπb

}
+
∑
j 6=i

qij [V (t, x , r , j)− V (t, x , r , i)] = 0,

(16)

for i = 1, . . . ,m0. The maximizer of (16) is given by:

π∗s (t, i) = −
[

λs(i)

(1− ρ2)σ2
s (i)
− ρλb(t, i)

(1− ρ2)σb(t, i)σs(i)

]
Vx

xVxx
,

π∗b (t, i) = −
σr (i)

σb(t, i)

Vxr

xVxx
−
[

λb(t, i)

(1− ρ2)σ2
b(t, i)

− ρλs(i)

(1− ρ2)σs(i)σb(t, i)

]
Vx

xVxx
,

(17)



A Stock and Bond Portfolio Problem - Solution

For the power utility U(x , i) = λ(i)xγ ,

V (t, x , r , i) = g(t, i)xγeβ(t)r , i = 1, . . . ,m0, (18)

where

gt(t, i) +h(t, i)g(t, i) +
∑
j 6=i

qij [g(t, j)−g(t, i)] = 0, i = 1, . . . ,m0,

(19)
where

h(t, i) = a(i)β(t) +
1

2
σ2
r (i)β2(t)

+
γ

2(1− γ)

[(
λb(t, i)

σb(t, i)
+ σr (i)β(t)

)2

+
1

1− ρ2

(
λs(i)

σs(i)
− ρλb(t, i)

σb(t, i)

)2
]
.

(20)



A Stock and Bond Portfolio Problem - Solution

I The maximizer (17) is:

π∗s (t, i) =
1

(1− ρ2)(1− γ)σs(i)

(
λs(i)

σs(i)
− ρ

λb(t, i)

σb(t, i)

)
,

π∗b (t, i) =
1

(1− ρ2)(1− γ)σb(t, i)

(
λb(t, i)

σb(t, i)
− ρ

λs(i)

σs(i)
+ (1− ρ2)σr (i)β(t)

)
.

(21)

I The verification arguments show that
(π∗s (t), π∗b(t)) := (π∗s (t, α(t)), π∗b(t, α(t))) as given in (21) is
an optimal control for the stock and bond portfolio problem.



Theoretical Results

I A class of stochastic optimal control problems with Markovian
regime-switching is formulated.

I A verification theorem is presented.

I Our results extend Korn and Kraft to the regime-switching
models.

I The theory is applied to verify the optimality of the two
portfolio problems considered in this work.



A Control Problem with Regime-Switching

I We consider a controlled process
{Y (t) = (Y1(t), . . . ,Yn(t))T ∈ Rn, t ≥ 0} that depends on
another process {z(t) ∈ R, t ≥ 0} which is uncontrollable.

I The control process is
{u(t) = (u1(t), . . . , ud(t))T ∈ U ⊂ Rd , t ≥ 0}, where U is a
closed subset of Rd .

I The dynamic of (Y (t), z(t)) is given by:

dY (t) = µ(t,Y (t), z(t), u(t), α(t))dt + σ(t,Y (t), z(t), u(t), α(t))dW (t), (22)

dz(t) = µz (t, z(t), α(t))dt + σz (t, z(t), α(t))dW z (t), (23)

where W (t) = (W1(t), . . . ,Wm(t))T ∈ Rm is an
m-dimensional BM, W z(t) ∈ R is an one-dimensional BM,
and for each j ∈ {1, . . . ,m}, dWj(t)dW z(t) = ρjdt.

I We assume that the Markov chain α(t) is independent of the
Brownian motions W (t) and W z(t).



A Control Problem with Regime-Switching

I Suppose that the SDE (23) admits a unique strong solution
z(t) that satisfies the condition:

E

[
sup

0≤t≤T
|z(t)|k

]
<∞ for all k ∈ N, (24)

where T > 0 is the fixed time-horizon for the optimal control
problem.

I In addition, we assume that σz satisfies the condition:

E

(∫ T

0
σ2
z (t, z(t), α(t))dt

)
<∞. (25)

I A special case. µz and σz in (23) satisfy the Lipschitz
continuous and linear growth conditions.



A Control Problem with Regime-Switching

The coefficients µ and σ in (22) take the form:

µ(t,Y (t), z(t), u(t), α(t)) = Y (t)[AT
1 (t, z(t), α(t))u(t) + A2(t, z(t), α(t))],

σ(t,Y (t), z(t), u(t), α(t)) = Y (t)[B1(t, z(t), α(t))u(t) + B2(t, z(t), α(t))]
T ,

(26)
where

A1(t, z(t), α(t)) =
(
A

(1)
1 (t, z(t), α(t)), . . . ,A

(d)
1 (t, z(t), α(t))

)T ∈ Rd ,

A2(t, z(t), α(t)) ∈ R,

B1(t, z(t), α(t)) =
(
B

(i,j)
1 (t, z(t), α(t))

)
m×d
∈ Rm×d ,

B2(t, z(t), α(t)) =
(
B

(1)
2 (t, z(t), α(t)), . . . ,B

(m)
2 (t, z(t), α(t))

)T ∈ Rm,

and A
(j)
1 , B

(i ,j)
1 , B

(i)
2 (i = 1, . . . ,m, j = 1, . . . , d), and A2 are

progressively measurable processes satisfying the following
integrability conditions:



A Control Problem with Regime-Switching∫ T

0

|A2(t, z(t), α(t))|dt <∞ a.s.,∫ T

0

[ d∑
j=1

(A
(j)
1 (t, z(t), α(t)))2 +

m∑
i=1

(B
(i)
2 (t, z(t), α(t)))2

]
dt <∞ a.s.,

∫ T

0

m∑
i=1

d∑
j=1

(B
(i,j)
1 (t, z(t), α(t)))4dt <∞ a.s..

(27)

I Korn and Kraft used “linear controlled SDE” for such systems
(without regime-switching).

I We may call Y (t) defined by the SDE (22) with coefficients
(26) a linear controlled regime-switching diffusion process.

I For each control process u(·) satisfying (28) given below, the
SDE (22) with (26) admits a Lebesgue⊗P unique solution.



Admissible Control

A process u(·) = {u(t), 0 ≤ t0 ≤ t ≤ T} is admissible w.r.t. the
initial data Y (t0) = y0, z(t0) = z0, and α(t0) = i if u(·) is
progressively measurable and satisfies the following conditions:

1.

E t0y0z0i

[∫ T

t0

|u(t)|k dt

]
<∞ for all k ∈ N; (28)

2. The corresponding state process Y u(·) satisfies

E t0y0z0i

[
sup

t0≤t≤T
|Y u(t)|k

]
<∞ for all k ∈ N. (29)

Let At0y0z0i denote the collection of admissible controls w.r.t. the
initial data Y (t0) = y0, z(t0) = z0, and α(t0) = i .



A Control Problem with Regime-Switching

I Given an open set O ⊂ Rn+1. Let Q = [t0,T )× O. For
(t, y , z , i) ∈ Q ×M, let

τ = inf{s ≥ t : (s,Y (s), z(s)) /∈ Q} (30)

be the first exit time of (s,Y (s), z(s)) from Q

I Consider functions f : Q ×U ×M→ R and g : Q ×M→ R.
Assume that f and g are continuous functions for each i ∈M
and satisfy the following polynomial growth conditions:

|f (t, y , z , u, i)| ≤ C [1 + |y |k + |z |k + |u|k ], (t, y , z , u) ∈ Q × U,
|g(t, y , z , i)| ≤ C [1 + |y |k + |z |k ], (t, y , z) ∈ Q,

(31)

for some constant C > 0 and some integer k ∈ N.



A Control Problem with Regime-Switching

I Given (t, y , z , i) ∈ Q ×M, u(·) ∈ Atyzi .
I Define the objective functional by

J(t, y , z, i ; u(·)) = E tyzi

[∫ τ

t
f (s,Y (s), z(s), u(s), α(s)) ds + g(τ,Y (τ), z(τ), α(τ))

]
,

(32)

where τ is defined by (30).

I The value function is defined by

V (t, y , z , i) = sup
u(·)∈Atyzi

J(t, y , z , i ; u(·)). (33)

I In addition, the boundary condition for V is :

V (t, y , z , i) = g(t, y , z , i) for (t, z , y) ∈ ∂∗Q and i ∈M,
(34)

where
∂∗Q = ([t0,T ]× ∂O) ∪ ({T} × O). (35)



Hamilton-Jacobi-Bellman (HJB) equation
I Given v ∈ C 1,2(Q ×M) and u ∈ U, define the operator Lu by

Luv(t, y , z, i) = vt(t, y , z, i) +
n∑

j=1

µj (t, y , z, u, i)vyj (t, y , z, i) + µz (t, z, i)vz (t, y , z, i)

+
1

2

n∑
j=1

n∑
k=1

(σσT )jk (t, y , z, u, i)vyj yk (t, y , z, i) +
1

2
σ2
z (t, z, i)vzz (t, y , z, i)

+
n∑

j=1

(
m∑

k=1

ρkσjk (t, y , z, u, i)

)
vyj z (t, y , z, i) +

∑
j 6=i

qij [v(t, y , z, j)− v(t, y , z, i)].

(36)

I The HJB equation is a system of m0 coupled PDEs:

sup
u∈U

{
Luv(t, y , z , i)+f (t, y , z , u, i)

}
= 0, (t, y , z , i) ∈ Q×M

(37)
with the boundary condition

v(t, y , z , i) = g(t, y , z , i), for (t, y , z) ∈ ∂∗Q and i ∈M.
(38)



Verification Theorem

Under the assumption (24), (25), (27) and (31), let
v ∈ C 1,2(Q ×M)

⋂
C (Q ×M) be a solution of the HJB equation

(37) with the boundary condition (38). In addition, assume that
for all (t, y , z , i) ∈ Q ×M and all admissible controls u(·) ∈ Atyzi ,

E tyzi

[
sup

s∈[t,T ]
|v(s,Y (s), z(s), α(s))|

]
<∞. (39)

Then we have the following results:

(a) v(t, y , z , i) ≥ J(t, y , z , i ; u(·)) for any initial data
(t, y , z , i) ∈ Q ×M and any admissible control
u(·) ∈ Atyzi .

(b) For (t, y , z , i) ∈ Q ×M, if there exists an admissible
control u∗(·) ∈ Atyzi such that



Verification Theorem — Cont.

u∗(s) ∈ argmax
u∈U

[ n∑
j=1

µj(s,Y
∗(s), z(s), u, α(s))vyj (s,Y

∗(s), z(s), α(s))

+
1

2

n∑
j=1

n∑
k=1

(σσT )jk(s,Y
∗(s), z(s), u, α(s))vyj yk (s,Y

∗(s), z(s), α(s))

n∑
j=1

(
m∑

k=1

ρkσjk(s,Y
∗(s), z(s), u, α(s))

)
vyj z(s,Y

∗(s), z(s), α(s))

+ f (s,Y ∗(s), z(s), u, α(s))

]
(40)

for Lebesgue
⊗

P almost all (s, ω) ∈ [t, τ∗(ω)]× Ω, then
v(t, y , z , i) = V (t, y , z , i) = J(t, y , z , i ; u∗(·)). Here Y ∗(s) is the
unique solution of the SDE (22) when the control u∗(·) is being
used, with Y ∗(t) = y , α(t) = i , z(s) is the unique solution of (23)
with z(t) = z , α(t) = i , and τ∗ is the first exit time of
(s,Y ∗(s), z(s)) form Q as defined in (30).



Numerical Results

I We consider a market with two regimes (m0 = 2).

I The generator of α(·) is given by

Q =

(
−q12 q12

q21 −q21

)
,

where q12 is the switching rate from regime 1 to regime 2 and
q21 is the switching rate from regime 2 to regime 1.

I We set q12 = 3 and q21 = 4. That implies, on average the
market switches three times per year from regime 1 to regime
2 and four times from regime 2 to regime 1.

I Moreover, the stationary distribution of α(·) is p = ( 4
7 ,

3
7 ).



Numerical Results

I The model parameters used in the numerical study are:

I For the stock price model (2), λs(1) = 0.04, λs(2) = 0.07,
σs(1) = 0.3, σs(2) = 0.5. Note that 0 < λs(1) < λs(2),

0 < σs(1) < σs(2), and λs(2)
σ2
s (2)

< λs(1)
σ2
s (1)

. So we may consider

regime 1 as a bull market and regime 2 a bear market.

I For the interest rate model (1), a(1) = 0.16, a(2) = 0.08,
b = 2, σr (1) = 0.03, σr (2) = 0.05.

I For the bond price model (6), λb(t, α(t)) = λb(α(t)) where
λb(1) = 0.006, λb(2) = 0.015, σb(t, α(t)) = σb(α(t)) where
σb(1) = 0.1, σb(2) = 0.15.

I The utility functions for the two regimes are U(x , 1) = 6x0.5

and U(x , 2) = 2x0.5. The correlation coefficient between the
stock and the bond is ρ = 0.3 and the investment horizon is
T = 1(year).



Numerical Results

I For comparison, we consider the averaged problems for which
the parameters are replaced by their probabilistic averages
over all regimes.

I Let p = (p1, . . . pm0) denote the stationary distribution of α(·)
which is specified by the unique solution of the equation
pQ = 0,

∑m0
i=1 pi = 1, pi > 0 for i = 1, . . .m0.

I Let ā =
∑m0

i=1 pia(i), σ̄r =
√∑m0

i=1 piσ
2
r (i),

λ̄s =
∑m0

i=1 piλs(i), σ̄s =
√∑m0

i=1 piσ
2
s (i), λ̄b =

∑m0
i=1 piλb(i),

and σ̄b =
√∑m0

i=1 piσ
2
b(i).

I Replacing a(α(t)), σr (α(t)), λs(α(t)), σs(α(t)), λb(t, α(t)),
σb(t, α(t)) with ā, σ̄r , λ̄s , σ̄s , λ̄b, σ̄b, respectively in (1), (2),

and (6), and using an averaged utility function Ū(x) = λ̄
γ x

γ

where λ̄ =
∑m0

i=1 piλ(i), then the optimization problems
reduce to the single-regime problems studied in Korn and
Kraft (SICON, 2001).



Numerical Results

I Solutions of the two averaged problems.

I A stock portfolio problem. The optimal percentage invested in
stock, denoted by π̄∗s , is given by

π̄∗s (t) =
λ̄s

(1− γ)σ̄2
s

+
ρσ̄r

(1− γ)σ̄s
β(t), (41)

and the value function, denoted by V̄ , is given by
V̄ (t, x , r) = ḡ(t)xγeβ(t)r , where β(t) is given by (12), and
ḡ(t) is given by

ḡ(t) =
1

γ
δ̄e
∫ T
t h̄(s)ds , (42)

where

h̄(t) = āβ(t) +
1

2
σ̄2
r β

2(t) +
γ

2(1− γ)

[
λ̄s
σ̄s

+ ρσ̄rβ(t)

]2

. (43)



Numerical Results

I A stock and bond portfolio problem. The optimal control
(π̄∗s , π̄

∗
b) is given by

π̄∗s =
1

(1− ρ2)(1− γ)σ̄s

(
λ̄s
σ̄s
− ρλ̄b

σ̄b

)
, (44)

π̄∗b(t) =
1

(1− ρ2)(1− γ)σ̄b

(
λ̄b
σ̄b
− ρλ̄s

σ̄s
+ (1− ρ2)σ̄rβ(t)

)
.

(45)

I The value function is V̄ (t, x , r) = ḡ(t)xγeβ(t)r , where ḡ(t) is
given in (42) with a new h̄(t) defined by

h̄(t) = āβ(t) +
1

2
σ̄2
r β

2(t)

+
γ

2(1− γ)

[(
λ̄b
σ̄b

+ σ̄rβ(t)

)2

+
1

1− ρ2

(
λ̄s
σ̄s
− ρλ̄b

σ̄b

)2
]
.

(46)



Numerical Results

I Numerical results for the stock portfolio problem.

I Fig. 1 shows the optimal stock percentage π∗s (t, 1) and
π∗s (t, 2) for the two regimes, together with the stock
percentage π̄∗s (t) for the averaged problem.

I Fig. 2 (upper panel) displays the surfaces of the value
functions V (t, x , r , 1), V (t, x , r , 2), and the averaged value
function V̄ (t, x , r) at a fixed initial wealth x = 1. Fig. 3
(upper panel) displays the three value functions V (t, x , r , 1),
V (t, x , r , 2), and V̄ (t, x , r) at a fixed initial interest rate
r = 0.05. We can clearly see that the value functions are
different in different market regimes.



Figure 1: Optimal percentages of wealth in stock (two regimes).



Figure 2: Value functions for fixed wealth x (two regimes).



Figure 3: Value functions for fixed interest rate r (two regimes).



Numerical Results

I Numerical results for the stock and bond portfolio problem.

I Fig. 4 shows the optimal control for the mixed stock and
bond problem. The stock percentages for regime 1, regime 2
and the averaged problem are displayed in the left panel of
Fig. 4, while the optimal percentages in bond are shown in
the right panel of Fig. 4.

I Similarly, we plot in Fig. 2 (lower panel) the value functions
V (t, x , r , 1), V (t, x , r , 2), and the averaged value function
V̄ (t, x , r) at a fixed initial wealth x = 1, and in Fig. 3 (lower
panel) the three value functions at a fixed initial interest rate
r = 0.05.



Figure 4: Optimal percentages of wealth in stock and in bond (two
regimes).



On-going Work

I Consider other interest rate models, e.g., Using a
regime-switching CIR model for the stochastic interest rate:

dr(t) = [a(α(t))−b(t)r(t)]dt+σr (α(t))
√
r(t)dW b(t). (47)

I We have V (t, x , r , i) = xγf (t, r , i), where

f (t, r , i)ft(t, r , i) + A(t, r , i)f 2(t, r , i) + B(t, r , i)f (t, r , i)fr (t, r , i)

+ C (t, r , i)f (t, r , i)frr (t, r , i) + D(t, r , i)f 2
r (t, r , i)

+ f (t, r , i)
∑
j 6=i

qij [f (t, r , j)− f (t, r , i)] = 0,

f (T , r , i) = λ(i), i = 1, . . . ,m0,
(48)

where A, B, C and D are deterministic functions.

I Study the the PDE system (48).



Thank You!


