Homogenization of a Transmission Problem

F. Cakoni 1 B. Guzina 2 S. Moskow 3

1Rutgers University

2University of Minnesota

3Drexel University

Optical Imaging and Inverse Problems, February 15, 2017
Periodic Scatterer

\[u = u_\varepsilon \]

\[u^i \]

\[u^s \]

\[\mathbb{R}^d \setminus \overline{D} \]
Scattering by periodic inhomogeneous media
Scattering by periodic inhomogeneous media

Most existing homogenization results pertain to periodic with no boundary or bounded domain
Scattering by periodic inhomogeneous media
Most existing homogenization results pertain to periodic with no boundary or bounded domain
Bounded domain usually Dirichlet boundary conditions
Scattering by periodic inhomogeneous media

Most existing homogenization results pertain to periodic with no boundary or bounded domain

Bounded domain usually Dirichlet boundary conditions

Scatterers in free space obey transmission boundary conditions
Scattering by periodic inhomogeneous media

Most existing homogenization results pertain to periodic with no boundary or bounded domain

Bounded domain usually Dirichlet boundary conditions

Scatterers in free space obey transmission boundary conditions

This matters; boundary layers play a large role
Model of a periodic scatterer

Scattering of time harmonic incident field u^i by periodic inhomogeneity D. Scattered field given by u^s, total field $u = u^s + u^i$.

\[
\nabla \cdot a(x/\epsilon) \nabla u + k^2 n(x/\epsilon) u = 0 \quad \text{in} \quad D \quad (1)
\]
\[
\Delta u^s + k^2 u^s = 0 \quad \text{in} \quad \mathbb{R}^d \setminus \overline{D} \quad (2)
\]
\[
(u^s + u^i) = u \quad \text{on} \quad \partial D \quad (3)
\]
\[
\nabla (u^s + u^i) \cdot \nu = a(x/\epsilon) \nabla u \cdot \nu \quad \text{on} \quad \partial D \quad (4)
\]
\[
\lim_{r \to \infty} r^{\frac{d-1}{2}} \left(\frac{\partial u^s}{\partial r} - iku^s \right) = 0 \quad (5)
\]
Model of a periodic scatterer

- Coefficients $a(y)$, $n(y)$ periodic in $y = x/\epsilon$, $y \in Y = [0, 1]^d$
Model of a periodic scatterer

- Coefficients \(a(y) \), \(n(y) \) periodic in \(y = x/\epsilon \), \(y \in Y = [0, 1]^d \)
- The period size \(\epsilon > 0 \) assumed to be very small in comparison to size of \(D \) and wavelength.
Model of a periodic scatterer

- Coefficients $a(y), n(y)$ periodic in $y = x/\epsilon$, $y \in Y = [0, 1]^d$
- The period size $\epsilon > 0$ assumed to be very small in comparison to size of D and wavelength.
- Assume $a(y)$ is positive definite symmetric matrix valued function
Model of a periodic scatterer

- Coefficients $a(y), n(y)$ periodic in $y = x/\epsilon$, $y \in Y = [0, 1]^d$
- The period size $\epsilon > 0$ assumed to be very small in comparison to size of D and wavelength.
- Assume $a(y)$ is positive definite symmetric matrix valued function
- Assume $n(x/\epsilon), a(x/\epsilon) \in C^\infty(D)$ positive
So this is the transmission problem for $u_\varepsilon := u$ in D and $u_\varepsilon := u^s$ in $\mathbb{R}^d \setminus \overline{D}$

\[
\nabla \cdot a(x/\varepsilon) \nabla u_\varepsilon + k^2 n(x/\varepsilon) u_\varepsilon = 0 \quad \text{in} \quad D
\]
\[
\Delta u_\varepsilon + k^2 u_\varepsilon = 0 \quad \text{in} \quad \mathbb{R}^d \setminus \overline{D}
\]
\[
u^+ - u^-_\varepsilon = f \quad \text{on} \quad \partial D
\]
\[
(a(x/\varepsilon) \nabla u_\varepsilon \cdot \nu)^+ - (a(x/\varepsilon) \nabla u_\varepsilon \cdot \nu)^- = g \quad \text{on} \quad \partial D
\]

where u_ε satisfies the Sommerfeld radiation condition at infinity, $f := -u^i$ and $g := -\nu \cdot \nabla u^i$ on ∂D.
Model of a periodic scatterer

\[u^i \rightarrow D \rightarrow u^s \]

\[u = u_\epsilon \]

\[\mathbb{R}^d \backslash \overline{D} \]
Bounded domains

- Well known homogenization theory
- Bensoussan, Lions, Papanicolaou ’78
- Tartar, Sanchez-Palencia
Homogenized problem (expected)

\begin{align*}
\nabla \cdot A \nabla u_0 + k^2 \bar{n} u_0 &= 0 \quad \text{in} \quad D \\
\Delta u_0 + k^2 u_0 &= 0 \quad \text{in} \quad \mathbb{R}^d \setminus \overline{D} \\
u_0^+ - u_0^- &= f \quad \text{on} \quad \partial D \\
\left(\nabla u_0 \cdot \nu\right)^+ - \left(A \nabla u_0 \cdot \nu\right)^- &= g \quad \text{on} \quad \partial D
\end{align*}

(7)

where u_0 satisfies the Sommerfeld radiation condition at infinity.
\(\bar{n} \) denotes the unit cell average of \(n \), i.e.

\[
\bar{n} = \int_Y n(y) \, dy,
\]

and \(A \) is the constant-valued homogenized matrix

\[
A_{ij} = \int_Y \left(a_{ij}(y) - a_{ik}(y) \frac{\partial \chi^j}{\partial y_k}(y) \right) \, dy,
\]

(8)

Here \(\chi^j(y) \) are the so-called cell functions which represent the \(Y \)-periodic solutions to

\[
\frac{\partial}{\partial y_i} \left(a_{ij}(y) - a_{ik}(y) \frac{\partial \chi^j}{\partial y_k}(y) \right) = 0.
\]

(9)

The additive constant for \(\chi^j \) is always chosen so that

\[
\int_Y \chi^j \, dy = 0.
\]
Standard technique which regards the solution as that depending on a “slow” variable x, and a “fast” variable $y = x/\epsilon$
How to get this

- Standard technique which regards the solution as that depending on a “slow” variable x, and a “fast” variable $y = x/\epsilon$
- Write the equation for u_ϵ inside of D as a first-order system

\[
a(x/\epsilon) \nabla u_\epsilon - v_\epsilon = 0
\]
\[
\nabla \cdot v_\epsilon + k^2 n(x/\epsilon) u_\epsilon = 0
\] (10)
How to get this

- Standard technique which regards the solution as that depending on a “slow” variable x, and a “fast” variable $y = x/\epsilon$

- Write the equation for u_ϵ inside of D as a first-order system

$$a(x/\epsilon) \nabla u_\epsilon - v_\epsilon = 0$$
$$\nabla \cdot v_\epsilon + k^2 n(x/\epsilon) u_\epsilon = 0$$ \hspace{1cm} (10)

- Write the ansatz

$$u_\epsilon = u_0(x, x/\epsilon) + \epsilon u^{(1)}(x, x/\epsilon) + \epsilon^2 u^{(2)}(x, x/\epsilon) + \ldots$$
$$v_\epsilon = v_0(x, x/\epsilon) + \epsilon v^{(1)}(x, x/\epsilon) + \epsilon^2 v^{(2)}(x, x/\epsilon) + \ldots$$ \hspace{1cm} (11)
For the bulk expansion in the exterior it suffices to use

\[u_\epsilon = u_0(x), \quad v_\epsilon = v_0(x). \]
For the bulk expansion in the exterior it suffices to use

\[u_\epsilon = u_0(x), \quad v_\epsilon = v_0(x). \]

Plug into equations using

\[\nabla = \nabla_x + \frac{1}{\epsilon} \nabla_y, \]

and equate like powers of \(\epsilon \).
This yields

\[a(y) \nabla_y u_0 = 0 \] \hspace{1cm} (12)
\[\nabla_y \cdot v_0 = 0 \] \hspace{1cm} (13)
\[a(y) \nabla_y u^{(1)} + a(y) \nabla_x u_0 - v_0 = 0 \] \hspace{1cm} (14)
\[\nabla_y \cdot v^{(1)} + \nabla_x \cdot v_0 + k^2 n(y) u_0 = 0 \] \hspace{1cm} (15)
Take the y divergence of (14) and apply (13) to yield the cell problem (9) for χ^j:

$$\nabla_y \cdot a(y) \nabla_y (\chi^j - y_j) = 0$$

to get

$$u^{(1)} = -\chi^j(y) \frac{\partial u_0}{\partial x_j}. \tag{16}$$

We then have an expression for v_0 from (14)

$$(v_0(x, y))_i = \left(a_{ij}(y) - a_{ik}(y) \frac{\partial \chi^j}{\partial y_k}(y) \right) \frac{\partial u_0}{\partial x_j}. \tag{17}$$
Homogenized problem

Taking the cell average in (15) yields the homogenized PDE in the interior of \(D \) (7).

\[
\nabla \cdot A \nabla u_0 + k^2 \nu u_0 = 0 \quad (18)
\]

Furthermore

\[
a(x/\epsilon) \nabla u_\epsilon = v_\epsilon \approx v_0
\]

where

\[
v_0 = \int_Y v_0 \, dy = A \nabla u_0.
\]
Taking the cell average in (15) yields the homogenized PDE in the interior of D (7).

$$\nabla \cdot A \nabla u_0 + k^2 \bar{n} u_0 = 0$$ \hspace{1cm} (18)
Taking the cell average in (15) yields the homogenized PDE in the interior of D (7).

$$\nabla \cdot A \nabla u_0 + k^2 \bar{n} u_0 = 0$$ \hfill (18)

Furthermore

$$a(x/\epsilon) \nabla u_{\epsilon} = v_\epsilon \approx v_0$$

where

$$\bar{v}_0 = \int_Y v_0 \, dy = A \nabla u_0.$$
We go further to find

\[u^{(2)} = \chi^{ij}(y) \frac{\partial^2 u_0}{\partial x_i \partial x_j} + k^2 \beta(y) u_0 \]

(19)

\[v^{(1)} = -a\chi^j \nabla_x \frac{\partial u_0}{\partial x_j} + a \nabla_y \chi^{ij} \frac{\partial u_0}{\partial x_i \partial x_j} + k^2 a \nabla_y \beta u_0 \]

(20)

where \(\chi^{ij} \) are defined by

\[\nabla_y \cdot (a \nabla_y \chi^{ij}) = b_{ij}(y) - \bar{b}_{ij} \]

(21)

with

\[b_{ij}(y) = -a_{ij} + a_{ik} \frac{\partial \chi^j}{\partial y_k} + \frac{\partial}{\partial y_k}(a_{ki} \chi^j), \]

(22)
and where we also have a cell function from the lower order term

$$\nabla_y \cdot (a \nabla_y \beta(y)) = \bar{n} - n(y),$$ \hspace{1cm} (23)
Corrections (first order)

- All of these bulk corrections are zero in the exterior of D.

- Correct Dirichlet transmission conditions are satisfied by u_0, but this is disturbed by $u^{(1)}$.
- Due to the presence of $a(x/\epsilon)$, Neumann transmission conditions are not satisfied by u_0. This is further disturbed by the presence of $v^{(1)}$.
- To compensate need a boundary corrector.
Corrections (first order)

- All of these bulk corrections are zero in the exterior of D.
- Correct Dirichlet transmission conditions are satisfied by u_0, but this is disturbed by $u^{(1)}$. Due to the presence of $a(x/\epsilon)$, Neumann transmission conditions are not satisfied by u_0. This is further disturbed by the presence of $v^{(1)}$. To compensate need a boundary corrector.
Corrections (first order)

- All of these bulk corrections are zero in the exterior of D.
- Correct Dirichlet transmission conditions are satisfied by u_0, but this is disturbed by $u^{(1)}$.
- Due to the presence of $a(x/\epsilon)$, Neumann transmission conditions are not satisfied by u_0.
Corrections (first order)

- All of these bulk corrections are zero in the exterior of D.
- Correct Dirichlet transmission conditions are satisfied by u_0, but this is disturbed by $u^{(1)}$.
- Due to the presence of $a(x/\epsilon)$, Neumann transmission conditions are not satisfied by u_0.
- This is further disturbed by the presence of $v^{(1)}$.
All of these bulk corrections are zero in the exterior of D.

Correct Dirichlet transmission conditions are satisfied by u_0, but this is disturbed by $u^{(1)}$.

Due to the presence of $a(x/\epsilon)$, Neumann transmission conditions are not satisfied by u_0.

This is further disturbed by the presence of $\nu^{(1)}$.

To compensate, need a boundary corrector.
First order boundary correction

The first order boundary corrector function is

\[
\nabla \cdot a(x/\epsilon) \nabla \theta_\epsilon + k^2 n(x/\epsilon) \theta_\epsilon = 0 \quad \text{in} \quad D
\]
\[
\Delta \theta_\epsilon + k^2 \theta_\epsilon = 0 \quad \text{in} \quad \mathbb{R}^d \setminus \overline{D}
\]
\[
\theta_\epsilon^+ - \theta_\epsilon^- = u^{(1)} \quad \text{on} \quad \partial D
\]
\[
(\nabla \theta_\epsilon \cdot \nu)^+ - (a(x/\epsilon) \nabla \theta_\epsilon \cdot \nu)^- = \left(\frac{v_0 - \overline{v}_0}{\epsilon} + v^{(1)} \right) \cdot \nu \quad \text{on} \quad \partial D(24)
\]

with Sommerfeld radiation conditions at infinity.
Error estimates

Theorem

Let u_ϵ be the solution to (6), u_0 the solution to (7), and the bulk and boundary corrections $u^{(1)}$ and θ_ϵ given by (16) and (24) respectively. Then for any ball B_R of radius $R > 0$ which contains D,

$$\|u_\epsilon - (u_0 + \epsilon u^{(1)} + \epsilon \theta_\epsilon)\|_{L^2(B_R)} \leq C_R \epsilon^2 \|u_0\|_{H^4(D)}$$

and

$$\|u_\epsilon - (u_0 + \epsilon u^{(1)} + \epsilon \theta_\epsilon)\|_{H^1(D)} + \|u_\epsilon - (u_0 + \epsilon \theta_\epsilon)\|_{H^1(B_R \setminus D)} \leq C_R \epsilon \|u_0\|_{H^4(D)}$$

where the constant C_R is independent of ϵ and u_0.

S. Moskow (Drexel University)
Note that the above result shows (as was done for Dirichlet and Neumann problems $n = 0$ Santosa, Vogelius ’93 Vogelius, M. ’97) that the only bulk effect at first order is $u^{(1)} = -\chi^j(y) \frac{\partial u_0}{\partial x_j}$.
Note that the above result shows (as was done for Dirichlet and Neumann problems $n = 0$, Santosa, Vogelius '93 Vogelius, M. '97) that the only bulk effect at first order is $u^{(1)} = -\chi^j(y) \frac{\partial u_0}{\partial x_j}$.

We can show this with the formal asymptotics directly- assume $u^{(1)} = -\chi^j(y) \frac{\partial u_0}{\partial x_j} + \hat{u}(x)$
Remarks-bulk mean field

One finds that \(\hat{u} \) solves

\[
\nabla \cdot A \nabla \hat{u} + k^2 \bar{n} \hat{u} =
\]

\[
- \left(- a_{ki} \chi^j + a_{kl} \frac{\partial \chi^{ij}}{\partial y_l} \right) \frac{\partial^3 u_0}{\partial x_i \partial x_j \partial x_k} - k^2 \left(a_{ki} \frac{\partial \beta}{\partial y_i} - n \chi^k \right) \frac{\partial u_0}{\partial x_k}.
\]

The source term can be shown to sum to zero by integration by parts.

So there is no mean field at order \(\epsilon \).
One finds that \(\hat{u} \) solves

\[
\nabla \cdot A \nabla \hat{u} + k^2 \bar{n} \hat{u} = \nabla \cdot \left(-a_{ki} \chi^j + a_{kl} \frac{\partial \chi^i}{\partial y_l} \right) \frac{\partial^3 u_0}{\partial x_i \partial x_j \partial x_k} - k^2 \left(a_{ki} \frac{\partial \beta}{\partial y_i} - n \chi^k \right) \frac{\partial u_0}{\partial x_k}.
\]

The source term can be shown to sum to zero by integration by parts.
Remarks-bulk mean field

One finds that \(\hat{u} \) solves

\[
\nabla \cdot A \nabla \hat{u} + k^2 \bar{n} \hat{u} = - \left(- a_{ki} \chi^j + a_{kl} \frac{\partial \chi^{ij}}{\partial y_l} \right) \frac{\partial^3 u_0}{\partial x_i \partial x_j \partial x_k} - k^2 \left(a_{ki} \frac{\partial \beta}{\partial y_i} - n \chi^k \right) \frac{\partial u_0}{\partial x_k}.
\]

The source term can be shown to sum to zero by integration by parts.

So there is no mean field at order \(\epsilon \).
However, at $O(\epsilon^2)$ one matches up with the well known work of Santosa, Symes ’91.
However, at $O(\epsilon^2)$ one matches up with the well known work of Santosa, Symes ’91.

They used Bloch decomposition to derive dispersion equations for periodic media in time domain.
However, at $O(\epsilon^2)$ one matches up with the well known work of Santosa, Symes ’91.

They used Bloch decomposition to derive dispersion equations for periodic media in time domain

They showed dispersion will appear for large times, numerically demonstrate effects at $t \sim 1/\epsilon^2$
Remarks-bulk mean field

Here we find that if we set

$$u^{(2)} = \chi \ddot{y}(y) \frac{\partial^2 u_0}{\partial x_i \partial x_j} + k^2 \beta(y) u_0 + \hat{u}^{(2)}(x)$$ \hspace{1cm} (25)
Here we find that if we set

$$u^{(2)} = \chi \ddot{y}(y) \frac{\partial^2 u_0}{\partial x_i \partial x_j} + k^2 \beta(y) u_0 + \hat{u}^{(2)}(x)$$

(25)

We get

$$A : \nabla \nabla \hat{u}^{(2)} + k^2 \hat{n} \hat{u}^{(2)} = - \left(A : \nabla \nabla \nabla \nabla u_0 + k^2 \mathcal{N} : \nabla \nabla u_0 \right),$$

(26)

where \(A\) and \(\mathcal{N}\) are respectively fourth- and second-order constant tensors and

$$A : \nabla \nabla \nabla \nabla u_0 = A_{ijkl} \frac{\partial^4 u_0}{\partial x_i \partial x_j \partial x_k \partial x_l},$$

exhibiting dispersive effects.
Remarks-Boundary effects

- The boundary corrector θ_ϵ is harder to compute than the original u_ϵ.

This makes it useless as a numerical corrector. However, the presence of θ_ϵ or something close to it is necessary to obtain a higher order approximation. We must understand its behavior to go past first order.
Remarks-Boundary effects

- The boundary corrector θ_ϵ is harder to compute than the original u_ϵ.
- This makes it useless as a numerical corrector.

S. Moskow (Drexel University)
Periodic Transmission
IMA 25 / 38
The boundary corrector θ_ϵ is harder to compute than the original u_ϵ. This makes it useless as a numerical corrector. However, the presence of θ_ϵ or something close to it is necessary to obtain a higher order approximation.
Remarks-Boundary effects

- The boundary corrector θ_ϵ is harder to compute than the original u_ϵ.
- This makes it useless as a numerical corrector.
- However, the presence of θ_ϵ or something close to it is necessary to obtain a higher order approximation.
- We must understand its behavior to go past first order.
Boundary corrector for Dirichlet problems

- Presented in BLP
- Behavior first analyzed in Santosa Vogelius ’93 and further Vogelius, M ’97. Found limit as $\epsilon \to 0$ not necessarily unique.
- Tails analyzed in Allaire, Amar ’99
Boundary corrector for Dirichlet problems

- Presented in BLP
- Behavior first analyzed in Santosa Vogelius ’93 and further Vogelius, M ’97. Found limit as $\epsilon \to 0$ not necessarily unique.
- Tails analyzed in Allaire, Amar ’99
- If boundary is flat at a rational angle with respect to the periodic structure, precise value of ϵ dictates what portion of the medium the boundary "sees".

Gerard-Varet, Masmoudi '12 show that boundary layer limit exists and is unique for smooth domains with no flat parts.
Boundary corrector for Dirichlet problems

- Presented in BLP
- Behavior first analyzed in Santosa Vogelius ’93 and further Vogelius, M ’97. Found limit as $\varepsilon \to 0$ not necessarily unique.
- Tails analyzed in Allaire, Amar ’99
- If boundary is flat at a rational angle with respect to the periodic structure, precise value of ε dictates what portion of the medium the boundary "sees".
- Gérard-Varet, Masmoudi ’12 show that boundary layer limit exists and is unique for smooth domains with no flat parts.
Still no explicit characterization of limiting boundary values.
Still no explicit characterization of limiting boundary values.
Not simply the average and depends on the normal
Still no explicit characterization of limiting boundary values.

Not simply the average and depends on the normal

For polygons limiting boundary value can be found as the limit at infinity of a function
Still no explicit characterization of limiting boundary values.
Not simply the average and depends on the normal
For polygons limiting boundary value can be found as the limit at infinity of a function
Periodic half strip for rational normals Vogelius, M ’97
Boundary corrector for Dirichlet problems

- Still no explicit characterization of limiting boundary values.
- Not simply the average and depends on the normal
- For polygons limiting boundary value can be found as the limit at infinity of a function
- Periodic half strip for rational normals Vogelius, M ’97
- Half space for irrational normals Gérard-Varet, Masmoudi ’12
Recent results for transmission problem in halfspace- Claeys, Fliss, Vinoles ’2016.

Use matched asymptotics to develop expansion which captures boundary behavior

Computable expansion gives high order approximation.
The transmission boundary corrector

The first order boundary corrector function is

\[
\nabla \cdot a(x/\epsilon) \nabla \theta_\epsilon + k^2 n(x/\epsilon) \theta_\epsilon = 0 \quad \text{in} \quad D
\]
\[
\Delta \theta_\epsilon + k^2 \theta_\epsilon = 0 \quad \text{in} \quad \mathbb{R}^d \setminus \overline{D}
\]
\[
\theta^+_\epsilon - \theta^-_\epsilon = u^{(1)} \quad \text{on} \quad \partial D
\]
\[
(\nabla \theta_\epsilon \cdot \nu)^+ - (a(x/\epsilon) \nabla \theta_\epsilon \cdot \nu)^- = \left(\frac{v_0 - \overline{v}_0}{\epsilon} + v^{(1)} \right) \cdot \nu \quad \text{on} \quad \partial D
\]

with Sommerfeld radiation conditions at infinity.
An example of a boundary layer limit

- Here we try to find its limit for a square domain $D = (0, 1) \times (0, 1)$. (or more precisely, its effective boundary values on the flat side of a smooth domain)
An example of a boundary layer limit

Here we try to find its limit for a square domain $D = (0, 1) \times (0, 1)$. (or more precisely, its effective boundary values on the flat side of a smooth domain)

Use some techniques from above works but requires new analysis due to transmission condition
An example of a boundary layer limit

- Here we try to find its limit for a square domain $D = (0, 1) \times (0, 1)$. (or more precisely, its effective boundary values on the flat side of a smooth domain)
- Use some techniques from above works but requires new analysis due to transmission condition
- Consider the boundary $\Gamma = \{(1, x_2)\}_{0 \leq x_2 \leq 1}$
An example of a boundary layer limit

- Here we try to find its limit for a square domain $D = (0, 1) \times (0, 1)$. (or more precisely, its effective boundary values on the flat side of a smooth domain)
- Use some techniques from above works but requires new analysis due to transmission condition
- Consider the boundary $\Gamma = \{(1, x_2)\}_{0 \leq x_2 \leq 1}$
- The lower order part of the Neumann transmission data $v^{(1)}$ will contribute to the limit at this order by going to its boundary weak limit $\overline{v^{(1)}_{\partial \Omega}}$.

Data is sum of oscillating functions for $j = 1, 2$ and consider each separately

S. Moskow (Drexel University) Periodic Transmission IMA 30 / 38
An example of a boundary layer limit

- Here we try to find its limit for a square domain \(D = (0, 1) \times (0, 1) \).
 (or more precisely, its effective boundary values on the flat side of a smooth domain)
- Use some techniques from above works but requires new analysis due to transmission condition
- Consider the boundary \(\Gamma = \{(1, x_2)\} \) \(0 \leq x_2 \leq 1\)
- The lower order part of the Neumann transmission data \(\nu^{(1)} \) will contribute to the limit at this order by going to its boundary weak limit \(\nu^{(1)} \partial \Omega \).
- Data is sum of oscillating functions for \(j = 1, 2 \) and consider each separately
An example of a boundary layer limit

\[\nabla \cdot a(x/\epsilon)\nabla \theta_\epsilon + k^2 n(x/\epsilon)\theta_\epsilon = 0 \quad \text{in} \quad D \]

\[\Delta \theta_\epsilon + k^2 \theta_\epsilon = 0 \quad \text{in} \quad \mathbb{R}^2 \setminus \bar{D} \]

\[\theta^+_\epsilon - \theta^-_\epsilon = \chi^1(x/\epsilon)\frac{\partial u_0}{\partial x_1} \quad \text{on} \quad \Gamma \]

\[\theta^+_\epsilon - \theta^-_\epsilon = 0 \quad \text{on} \quad \partial D \setminus \Gamma \]

\[(\nabla \theta_\epsilon \cdot \nu)^+ - (a(x/\epsilon)\nabla \theta_\epsilon \cdot \nu)^- = \frac{1}{\epsilon} g_1(x/\epsilon)\frac{\partial u_0}{\partial x_1} + \nu^{(1)} \partial \Omega \quad \text{on} \quad \Gamma \]

\[(\nabla \theta_\epsilon \cdot \nu)^+ - (a(x/\epsilon)\nabla \theta_\epsilon \cdot \nu)^- = 0 \quad \text{on} \quad \partial D \setminus \Gamma \quad (27) \]

together with the Sommerfeld radiation condition (5) at infinity, where

\[g_1(x/\epsilon) = a_{11}(x/\epsilon) - a_{1k}(x/\epsilon)\frac{\partial \chi^1}{\partial y_k}(x/\epsilon) - A_{11}. \quad (28) \]
An example of a boundary layer limit

Notice that in the above problem, the transmission data on the right side of the square depends heavily on the choice of ϵ.

Suppose that the fractional part of $1/\epsilon$ is constant, i.e.

$$1/\epsilon - \lfloor 1/\epsilon \rfloor = \delta,$$
An example of a boundary layer limit

- Notice that in the above problem, the transmission data on the right side of the square depends heavily on the choice of ϵ.
- If, for example $\epsilon_k = 1/k$ for k an integer, this boundary layer problem would see only the boundary slice of the periodic functions $\chi^1(y)$ and $g_1(y)$.
Notice that in the above problem, the transmission data on the right side of the square depends heavily on the choice of ϵ.

If, for example $\epsilon_k = 1/k$ for k an integer, this boundary layer problem would see only the boundary slice of the periodic functions $\chi^1(y)$ and $g_1(y)$.

It is for this reason that one can expect different limits of the boundary layer function for different sequences of ϵ going to zero.
An example of a boundary layer limit

- Notice that in the above problem, the transmission data on the right side of the square depends heavily on the choice of ϵ.

- If, for example $\epsilon_k = 1/k$ for k an integer, this boundary layer problem would see only the boundary slice of the periodic functions $\chi_1(y)$ and $g_1(y)$.

- It is for this reason that one can expect different limits of the boundary layer function for different sequences of ϵ going to zero.

- Suppose that the fractional part of $1/\epsilon_k$ is constant, i.e.

 $$\frac{1}{\epsilon_k} - \left\lfloor \frac{1}{\epsilon_k} \right\rfloor = \delta,$$
An example of a boundary layer limit

- Set the oscillatory boundary functions to their restrictions:

\[\chi^1(y_2) = \chi^1(\delta, y_2); \quad g_1(y_2) = g_1(\delta, y_2). \]

- Scale up boundary cell to strip,

\[G = \{ -\infty < y_1 < \infty; y_2 \in [0, 1] \} \]

with its two halves

\[G^+ = \{ y_1 > 0; y_2 \in [0, 1] \} \]

and

\[G^- = \{ y_1 < 0; y_2 \in [0, 1] \}. \]
An example of a boundary layer limit

Let \(\hat{w}(y_1, y_2) \) solve

\[
\begin{align*}
\nabla_y \cdot a(y_1 + \delta, y_2) \nabla \hat{w} &= 0 \quad \text{in } G^- \\
\Delta_y \hat{w} &= 0 \quad \text{in } G^+ \\
\hat{w}(0, y_2)^+ - \hat{w}(0, y_2)^- &= \chi^1(y_2) \\
\partial_{y_1} \hat{w}(0, y_2)^+ - a_{1i}(\delta, y_2) \partial_{y_i} \hat{w}(0, y_2)^- &= g_1(y_2) \\
\hat{w} \quad [0, 1] - \text{periodic in } y_2
\end{align*}
\]

There exists \(\gamma > 0 \) such that

\[
\begin{align*}
\ e^{\gamma y_1} \nabla \hat{w} &\in L^2(G^+) \\
\text{and} \quad e^{-\gamma y_1} \nabla \hat{w} &\in L^2(G^-).
\end{align*}
\]
An example of a boundary layer limit

- Above problem has unique solution up to additive constant across entire strip G.

Exponential decay yields that \hat{w} approaches a constant as $y_1 \to \pm \infty$.

Set $d^+ = \lim_{y_1 \to \infty} \hat{w}$ and $d^- = \lim_{y_1 \to -\infty} \hat{w}$.

We can now define our limiting boundary value

$$\chi^* = d^+ - d^- \quad (31)$$
An example of a boundary layer limit

- Above problem has unique solution up to additive constant across entire strip G.
- Exponential decay yields that \hat{w} approaches a constant as $y_1 \to \pm \infty$. Set

$$d^+ = \lim_{y_1 \to \infty} \hat{w} \quad \text{and} \quad d^- = \lim_{y_1 \to -\infty} \hat{w}.$$
An example of a boundary layer limit

- Above problem has unique solution up to additive constant across entire strip G.
- Exponential decay yields that \hat{w} approaches a constant as $y_1 \to \pm \infty$. Set
 \[d^+ = \lim_{y_1 \to \infty} \hat{w} \quad \text{and} \quad d^- = \lim_{y_1 \to -\infty} \hat{w}. \]
- We can now define our limiting boundary value
 \[\chi_1^* = d^+ - d^- \quad (31) \]
An example of a boundary layer limit

Then, we can define $w(y_1, y_2)$ similarly

$$\nabla_y \cdot a(y_1 + \delta, y_2) \nabla w = 0 \quad \text{in} \quad G^- \quad (32)$$

$$\Delta_y w = 0 \quad \text{in} \quad G^+$$

$$w(0, y_2)^+ - w(0, y_2)^- = \chi^1(y_2) - \chi^*_1$$

$$\partial_{y_1} w(0, y_2)^+ - a_{1i}(\delta, y_2) \partial_{y_i} w(0, y_2)^- = g_1(y_2)$$

w $[0, 1]$ – periodic in y_2

There exists $\gamma > 0$ such that $e^{\gamma y_1} \nabla w \in L^2(G^+)$

and $e^{-\gamma y_1} \nabla w \in L^2(G^-)$.

Now w itself also decays to zero exponentially as $|y_1| \to \infty$.

S. Moskow (Drexel University) Periodic Transmission IMA 36 / 38
An example of a boundary layer limit

Theorem

Let \(\epsilon_k \) be a sequence approaching zero such that \(\frac{1}{\epsilon_k} - \left\lfloor \frac{1}{\epsilon_k} \right\rfloor = \delta \) for all \(k \). Then if \(\theta_{\epsilon_k} \) solves (27) for \(\epsilon = \epsilon_k \), we have that \(\theta_{\epsilon_k} \to \theta^* \) strongly in \(L^2_{loc}(\mathbb{R}^2) \) where \(\theta^* \) solves

\[
\nabla \cdot A \nabla \theta^* + k^2 \bar{n} \theta^* = 0 \quad \text{in } D
\]
\[
\Delta \theta^* + k^2 \theta^* = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D}
\]
\[
(\theta^*)^+ - (\theta^*)^- = \chi_1^* \frac{\partial u_0}{\partial x_1} \quad \text{on } \Gamma
\]
\[
(\theta^*)^+ - (\theta^*)^- = 0 \quad \text{on } \partial D \setminus \Gamma
\]
\[
(\nabla \theta^* \cdot \nu)^+ - (A \nabla \theta^* \cdot \nu)^- = \frac{a_{12}(\delta, y_2)w(0, y_2)^-}{\partial x_1 \partial x_2} \frac{\partial^2 u_0}{\partial x_1} + v^{(1)} \frac{\partial \Omega}{\partial x_1} \quad \text{on } \Gamma
\]
\[
(\nabla \theta^* \cdot \nu)^+ - (A \nabla \theta^* \cdot \nu)^- = 0 \quad \text{on } \partial D \setminus \Gamma
\]
In summary

- For the scattering problem, we can show convergence estimates for two scale asymptotic expansions.
In summary

- For the scattering problem, we can show convergence estimates for two scale asymptotic expansions.
- As in other problems, the mean field correction is zero at first order but nonzero at second order.

Boundary layer effects specific to transmission problems appear at all orders. We characterize these effects for a square. Boundary layer limits difficult to characterize explicitly in general.

If a is constant (periodicity only in lower order term n), we can say more, work in progress.

For a square, its limit is not zero in general, so its effects are higher order than dispersion!
In summary

- For the scattering problem, we can show convergence estimates for two scale asymptotic expansions.
- As in other problems, the mean field correction is zero at first order but nonzero at second order.
- Boundary layer effects specific to transmission problems appear at all orders.
In summary

- For the scattering problem, we can show convergence estimates for two scale asymptotic expansions.
- As in other problems, the mean field correction is zero at first order but nonzero at second order.
- Boundary layer effects specific to transmission problems appear at all orders.
- We characterize these effects for a square.
In summary

- For the scattering problem, we can show convergence estimates for two scale asymptotic expansions.
- As in other problems, the mean field correction is zero at first order but nonzero at second order.
- Boundary layer effects specific to transmission problems appear at all orders.
- We characterize these effects for a square.
- Boundary layer limits difficult to characterize explicitly in general.
In summary

- For the scattering problem, we can show convergence estimates for two scale asymptotic expansions.
- As in other problems, the mean field correction is zero at first order but nonzero at second order.
- Boundary layer effects specific to transmission problems appear at all orders.
- We characterize these effects for a square.
- Boundary layer limits difficult to characterize explicitly in general.
- If a is constant (periodicity only in lower order term n), we can say more, work in progress.
In summary

- For the scattering problem, we can show convergence estimates for two scale asymptotic expansions.
- As in other problems, the mean field correction is zero at first order but nonzero at second order.
- Boundary layer effects specific to transmission problems appear at all orders.
- We characterize these effects for a square.
- Boundary layer limits difficult to characterize explicitly in general.
- If a is constant (periodicity only in lower order term n), we can say more, work in progress.
- For a square—its limit is not zero in general—so its effects are higher order than dispersion!