On-Site and Off-Site Bound States of the Discrete Nonlinear Schrödinger Equation and the Peierls-Nabarro Barrier

Michael Jenkinson
Rensselaer Polytechnic Institute

Joint work with Michael I. Weinstein
Columbia University

November 3, 2016
Mathematical and Physical Models of Nonlinear Optics
IMA
Nonlinear Schrödinger Equation (NLS) with cubic nonlinearity:

\[i \partial_t u(x, t) = -\Delta u(x, t) - |u(x, t)|^2 u(x, t), \quad x \in \mathbb{R}, \]

Conserved quantities:

\[\mathcal{N}[u] = \|u\|_{L^2(\mathbb{R})}^2 = \int_{\mathbb{R}} |u|^2 \, dx, \]

\[\mathcal{H}[u] = \int_{\mathbb{R}} |\nabla u|^2 \, dx - \frac{1}{2} \int_{\mathbb{R}} |u|^4 \, dx \]

Hamiltonian system:

\[i \partial_t u = \frac{\delta \mathcal{H}}{\delta u^*} \]

Additional symmetries / invariances:

- Continuous translational
- Galilean \[u(x, t) \mapsto \tilde{u}(x, t) = u(x - 2ct, t) \, e^{ic(x-ct)} \]
Several variational approaches on $H^1(\mathbb{R}^d)$ [e.g. Strauss ‘77, Berestycki and Lions ‘83] generate standing wave solutions (bound states), $1 \leq d \leq 3$:

$$u(x, t) = e^{-i\omega t} \psi(x) \implies \omega \psi(x) = -\Delta \psi(x) - \psi(x)^3, \quad \omega < 0$$

Lowest energy state is unique, positive, unimodal ground state [Kwong ‘89; Gidas, Ni, and Nirenberg, ‘81].

E.g. Cazenave and Lions, ‘81 for $d = 1$

$$\inf_{u \in H^1(\mathbb{R})} \mathcal{H}[u] \quad \text{subject to} \quad \mathcal{N}[u] = \text{const}$$

attains unique, *orbitally stable* ground state

$$\psi(x) = \sqrt{2\omega} \operatorname{sech}(\sqrt{\omega}x), \quad d = 1$$
Galilean invariance (boost) leads to soliton \(\tilde{u}(x, t) : \)
\[
\tilde{u}(x, t) = \sqrt{2\omega} \text{sech} (x - 2ct) \ e^{ic(x-ct)} e^{-i\omega t}
\]

However - Sobolev embedding and compactness govern

1. Well-posedness (\(\implies \) \(L^2 \) and \(H^1 \) criticality)
2. Existence and stability of bound state solutions of
\[
\omega u = -\Delta u - u^p; \ i.e. \ Pohozaev \ identities, \ 1 \leq d \leq 3 \ when \ p = 3.
\]
Discretize spatial variable:

\[x \rightarrow nh, \quad u(t) = \{u_n(t)\}_{n \in \mathbb{Z}^d}. \]

Discrete second order difference operator:

\[\Delta_x u(x, t) \rightarrow \frac{1}{h^2} \left(\delta^2 u \right)_n(t) \equiv \frac{1}{h^2} \sum_{|m-n|=1} u_m - 2du_n \]

NLS becomes the discrete nonlinear Schrödinger equation:

DNLS:

\[i\partial_t u_n(t) = -\frac{1}{h^2} \left(\delta^2 u \right)_n(t) - |u_n(t)|^2 u_n(t), \quad n \in \mathbb{Z}^d. \]

(Infinite system of coupled discrete nonlinear oscillators)
Discrete Nonlinear Schrödinger Equation

\textbf{DNLS} : \quad i \partial_t u_n(t) = - \frac{1}{\hbar^2} (\delta^2 u)_n(t) - |u_n(t)|^2 u_n(t), \quad n \in \mathbb{Z}^d.

Conserved quantities:

\[\mathcal{N}[G] = \| G \|_{\ell^2(\mathbb{Z})}^2 = \sum_{n \in \mathbb{Z}^d} |G_n|^2, \]

\[\mathcal{H}[G] = \sum_{j=1}^{d} \sum_{n \in \mathbb{Z}^d} |G_{n+e(j)} - G_n|^2 - \frac{1}{2} \sum_{n \in \mathbb{Z}^d} |G_n|^4, \]

\[i \partial_t u = \frac{\delta \mathcal{H}}{\delta u^*}. \]

- No continuous translation invariance.
- No Galilean invariance.

Question: What effect does discretization have on dynamics?
Discrete Nonlinear Schrödinger Equation

Global well-posedness for since \(\| f \|_{l^\infty(\mathbb{Z}^d)} \lesssim \| f \|_{l^2(\mathbb{Z}^d)}. \)

\[
\mathcal{N}[G] = \| G \|_{l^2(\mathbb{Z}^d)}^2 = \sum_{n \in \mathbb{Z}^d} |G_n|^2,
\]

\[
\mathcal{H}[G] = \sum_{j=1}^{d} \sum_{n \in \mathbb{Z}^d} |G_{n+e(j)} - G_n|^2 - \frac{1}{2} \sum_{n \in \mathbb{Z}^d} |G_n|^4,
\]

Variational approach [Weinstein ‘99]

\[
\inf \mathcal{H}[u] \quad \text{subject to} \quad \mathcal{N}[u] = \text{const}
\]

generates orbitally stable standing wave solutions (ground states):

\[
u_n(t) = e^{-i\omega t} g_n \quad \Rightarrow \quad \omega g_n = -\frac{1}{\hbar^2} (\delta^2 g)_n - (g_n)^3.
\]

No restriction on dimensionality (criticality).

\textit{However, at best, we can show positivity and unimodality (i.e. near symmetry)} [\textit{e.g.} Mckenna and Reichel, ‘07]
Seek symmetric, positive, and unimodal standing wave solutions (bound states) to DNLS numerically ($d = 1$):

$$u_n(t) = e^{-i\omega t}g_n \implies \omega g_n = -\frac{1}{\hbar^2} \left(\delta^2 g\right)_n - (g_n)^3.$$
Bound states for $d = 2$:

- Vertex-centered
- Bond-centered
- Bond-centered
- Cell-centered
Long term goal: understand how on-site and off-site waves participate in general dynamics

What if we attempt to produce a localized traveling wave on the lattice $(d = 1)$?

Consider initial conditions for DNLS which generate a traveling soliton for continuum NLS:

\[(I.C.) \quad u_n(0) = \psi(nh)e^{icnh} = \sqrt{2|\omega|} \text{sech}(|\omega|nh)e^{icnh}\]
Initial condition:

\[u_n(0) = \psi(nh)e^{icnh} = \sqrt{2|\omega|} \text{sech}(|\omega|nh) e^{icnh} \]
Discrete Pulse Dynamics

Initial condition:

\[u_n(0) = \psi(nh)e^{icnh} = \sqrt{2|\omega|} \text{sech}(|\omega|nh) \ e^{icnh} \]
Discrete Pulse Dynamics

Initial condition:

\[u_n(0) = \psi(nh)e^{i cnh} = \sqrt{2|\omega|} \text{sech}(|\omega| nh) e^{i cnh} \]
Initial condition: Gaussian
Large initial condition \((d = 2)\)
Small initial condition \((d = 2)\)
Discrete Pulse Dynamics

- Localization propagates along the lattice and deforms.
- Mass radiates outward in both directions in the form of low amplitude oscillations.
- Pulse slows as it loses mass until stopping at a single lattice point and oscillates as a stable (peaked) standing wave.
Peak Position Dynamics

Plotting $\max_{n \in \mathbb{Z}} |u_n(t)|$:
The two (on-site and off-site) standing wave solutions are “transition states.”

Peierls-Nabarro (PN) Barrier: difference in energy between two states

\[E_{PN} = E[g^{\text{off}}] - E[g^{\text{on}}] > 0, \]

is energy required to translate wave by one lattice site.

Moving from site \(n \) to site \(n + 1 \):

- loss of energy \(\Delta E \) to lattice vibrations (continuum modes) which radiate to infinity.
- effective dissipation.
- discrete wave relaxes to on-site standing wave (radiation damping).
First, we show...

DNLS: \(\omega g_n = -\frac{1}{\hbar^2} (\delta^2 g)_n - |g_n|^2 g_n, \quad n \in \mathbb{Z}^d. \)

Theorem: In dimensions \(d = 1, 2, \) and \(3, \) there exist localized symmetric vertex-, bond-, face-, and cell-centered standing wave solutions to DNLS.

Theorem: Bound on Peierls-Nabarro Barrier:

\[
|\mathcal{E}_{PN}| \lesssim (\hbar \sqrt{|\omega|})^{2-d} e^{-c/\hbar \sqrt{|\omega|}}, \quad C > 0.
\]
Physical Example

- Nonlinear optics: arrays of optical waveguides where nonlinearity is a function of intensity (Kerr effect) [Silberberg et. al. ‘98].

\[
i \partial_z \psi = -\partial_x^2 \psi + V(x) \psi - |\psi|^2 \psi \quad \Rightarrow \quad i \partial_z \psi_n = -\frac{1}{\hbar^2} \delta^2 \psi_n - |\psi_n|^2 \psi_n
\]

Nonlinear optics: arrays of optical waveguides where nonlinearity is a function of intensity (Kerr effect) [Silberberg et. al. ‘98].
Existence of breathers:

- Existence in the anti-continuum (very discrete, $h \to \infty$) limit [Aubry-McKay ’94].
- Variational characterization of ground states/excitation thresholds [Weinstein ’99].
- Finite elements / variational construction of on-site and off-site solutions [Bambusi-Penati ’09].
- Variational construction of on-site and off-site waves as limit of periodic solutions [Hermann ’11].
- Construction of on-site and off-site waves near variational approximations in the anti-continuum limit [Chong-Pelinovsky-Schneider ’12].
Connections to PN Barrier and radiation damping:

- Discussion of breathers in the limit of modified Ablowitz-Ladik DNLS [Campbell-Kivshar ’93].
- Dynamical behavior of kinks in discrete sine-Gordon and ϕ^4 equations [Kevrekidis-Weinstein ’00].
- Evans function calculation of (exponentially small) eigenvalues of linear stability problem in Ablowitz-Ladik limit [Kapitula-Kevrekidis ’01].
- Examination of traveling waves in DNLS for various nonlinearities [Pelinovsky-Rothos ’05, Pelinovsky-Melvin-Champneys ’07].
- Calculation of radiation amplitude for DNLS pulses using asymptotics beyond all orders [Oxtoby-Barashenkov ’07].
- Analogous bifurcation problem for Gross-Pitaevskii equation [Ilan-Weinstein ’10].
- Various results on radiation damping and settling to a ground state [Soffer-Weinstein, Tsai-Yau, Buslaev-Perelman, Buslaev-Sulem, Cuccagna, Cuccagna-Tarulli, etc.].
Approach: construct discrete standing waves as bifurcations from the continuous spectrum of the linear operator (discrete Laplacian)

\[
\omega \ g_n = -\frac{1}{h^2} (\delta^2 g)_n - |g_n|^2 g_n.
\]

Rescale

\[
G_n \equiv h \ g_n, \quad \omega \equiv -\epsilon^2, \quad \alpha \equiv h\epsilon.
\]

\[
- \alpha^2 G_n = - (\delta^2 G)_n - |G_n|^2 G_n,
\]

Two limits contained in one emergent parameter \(\alpha \):

- Physical (homogenized) limit for low amplitude/long wavelength: fix \(h \), take \(\epsilon \to 0 \).
- Continuum limit for small grid spacing (numerical analysis): fix \(\epsilon \), take \(h \to 0 \).
How do we compare function on lattice with function defined on continuous space? \((d = 1)\)

Discrete Fourier Transform (DFT):

\[
\mathcal{F}_D[G](q) = \hat{G}(q) \equiv \sum_{n \in \mathbb{Z}} G_n e^{-i q n}, \quad \mathcal{F}_D^{-1}[\hat{G}]_n = G_n \equiv \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{G}(q) e^{i q n} dq,
\]

Note: \(\hat{G}(q + 2\pi) = \hat{G}(q)\).

Periodic Convolution:

\[
\hat{F} \ast_s \hat{G}(q) \equiv \int_{-\pi/s}^{\pi/s} \hat{F}(q_1) \hat{G}(q - q_1) dq_1.
\]

Continuous Fourier Transform:

\[
\mathcal{F}_C[u](q) = U(q) \equiv \int_{\mathbb{R}} u(x) e^{-i q x}, \quad \mathcal{F}_C^{-1}[U](x) = u(x) \equiv \frac{1}{2\pi} \int_{\mathbb{R}} U(q) e^{i q x} dq,
\]

Standard Convolution:

\[
U \ast V(q) \equiv \int_{\mathbb{R}} U(q_1) V(q - q_1) dq_1.
\]
Heuristic discussion: where is the bifurcation?

We seek small amplitude ($\sim \alpha$) waves of low frequency ($\sim \alpha^2$):

Apply the DFT to DNLS:

$$-\alpha^2 G_n = -(G_{n+1} + G_{n-1} - 2G_n) - (G_n)^3 = 0,$$

to get

$$[\alpha^2 + 4 \sin^2(q/2)] \hat{G}(q) - (2\pi)^{-2} \hat{G} \ast_1 \hat{G} \ast_1 \hat{G}(q) = 0.$$

Expect solution to be concentrated near low frequencies $q \sim 0$.
Heuristic discussion: where is the bifurcation?

For $|q| \ll 1$, rescale $Q = q/\alpha$ and set $\hat{G}(q) = \hat{\Phi}(q/\alpha) = \hat{\Phi}(Q)$. Then

$$4 \sin^2(q/2) = 4 \sin^2(\alpha Q/2) \sim \alpha^2 |Q|^2,$$

$$\hat{G} \ast_1 \hat{G} \ast_1 \hat{G}(q) = \alpha^2 \hat{\Phi} \ast_\alpha \hat{\Phi} \ast_\alpha \hat{\Phi}(Q) \sim \alpha^2 \hat{\Phi} \ast \hat{\Phi} \ast \hat{\Phi}(Q).$$

giving

$$\left[1 + (4/\alpha^2) \sin^2(\alpha Q/2) \right] \hat{\Phi}(Q) - (2\pi)^{-2} \hat{\Phi} \ast_\alpha \hat{\Phi} \ast_\alpha \hat{\Phi}(Q)$$

$$= (1 + |Q|^2) \hat{\Phi}(Q) - (2\pi)^{-2} \hat{\Phi} \ast \hat{\Phi} \ast \hat{\Phi}(Q) + \mathcal{O}(\alpha^2) = 0.$$
Bifurcation of States, $d = 1$

\[
\text{NLS : } \Lambda \psi(x) = -\partial_x^2 \psi(x) - \psi(x)^3,
\]
\[
\text{DNLS : } \Omega \ G_n = - (\delta^2 G)_n - G_n^3
\]

W.R.T. square of $\| \cdot \|_2$ norm (for $\Omega = -\alpha^2$ and $\Lambda = -\alpha^2$):

- Bifurcations from the zero state $\sim \alpha$.
- Deviation from leading order continuum solution $\sim \alpha^5$.
- Difference in size of bifurcations $\sim \alpha \ e^{-C/\alpha}$.
Theorem 1 (Existence for $d = 1$):

Let $\psi(x)$ be the soliton solution to NLS: $\psi(x) - \partial_x^2 \psi(x) - \psi(x)^3 = 0$. Consider the DNLS equation

$$-\alpha^2 G_n = -\left(\delta^2 G\right)_n - (G_n)^3, \quad n \in \mathbb{Z}$$

Fix $J \geq 0$. There exist mappings $G_j : L^2(\mathbb{R}) \to L^2(\mathbb{R})$, for $j = 0, 1, \ldots, J$ and a positive constant $\alpha_0 = \alpha_0[J] > 0$ such that for all $0 < \alpha < \alpha_0$, there exist two families of real-valued symmetric solutions to DNLS:

On-site symmetric (vertex-centered):

$$G_{n}^{\alpha, \text{on}} = \alpha \sum_{j=0}^{J} \alpha^{2j} G_j[\psi](\alpha n) + \mathcal{E}_n^{\alpha, J, \text{on}},$$

where $\|G_j[\psi](\alpha n)\|_{\ell^2(\mathbb{Z}_n)} \sim \alpha^{-1/2}$, $\|\mathcal{E}^{\alpha, J, \text{on}}\|_{\ell^2(\mathbb{Z})} \lesssim \alpha^{2J+5/2}$.

Off-site symmetric (bond-centered):

$$G_{n}^{\alpha, \text{off}} = \alpha \sum_{j=0}^{J} \alpha^{2j} G_j[\psi](\alpha[n - 1/2]) + \mathcal{E}_n^{\alpha, J, \text{off}},$$

where $\|G_j[\psi]\left(\alpha[n - \frac{1}{2}]\right)\|_{\ell^2(\mathbb{Z}_n)} \sim \alpha^{-1/2}$, $\|\mathcal{E}^{\alpha, J, \text{off}}\|_{\ell^2(\mathbb{Z})} \lesssim \alpha^{2J+5/2}$.
Proof Outline (Existence for $d = 1$)

Discrete FT of DNLS:

$$[\alpha^2 + 4 \sin^2(q/2)] \hat{G}(q) - (2\pi)^{-2} \hat{G} \ast_1 \hat{G} \ast_1 \hat{G}(q) = 0,$$

$$\hat{G}(q + 2\pi) = \hat{G}(q).$$

Fix $\sigma = 0, 1/2$. Decompose and project onto Brillouin zone $B = [-\pi, \pi]$:

$$\hat{G}(q) = e^{-iq\sigma} \sum_{m \in \mathbb{Z}} \chi_B(q - 2m\pi) \hat{\phi}(q - 2m\pi).$$

Seek $\hat{\phi}$ even:

$$\left[\alpha^2 + 4 \sin^2(q/2)\right] \hat{\phi}(q) - \frac{\chi_B(q)}{(2\pi)^2} \left(\hat{\phi} \ast \hat{\phi} \ast \hat{\phi}\right)(q) + \mathcal{R}_I[\hat{\phi}](q) = 0.$$

with

$$\mathcal{R}_I[\alpha, \hat{\phi}] \sim e^{\pm 2\pi i\sigma} \chi_B(q) \hat{\phi} \ast \hat{\phi} \ast \hat{\phi}(q \pm 2\pi).$$
Proof Outline (Existence for $d = 1$)

Rescale

$$Q = \frac{q}{\alpha} \quad \text{and} \quad \hat{\Phi}(Q) = \hat{\Phi}(q/\alpha) = \hat{\phi}(q)$$

to get

$$\left[1 + \frac{4}{\alpha^2} \sin^2 \left(\frac{Q\alpha}{2} \right) \right] \hat{\Phi}(Q) - \frac{\chi[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}](Q)}{(2\pi)^2} \left(\hat{\Phi} \ast \hat{\Phi} \ast \hat{\Phi} \right)(Q)$$

$$+ \mathcal{R}_2^g[\alpha, \hat{\Phi}](Q) = 0.$$

with

$$\mathcal{R}_2^g[\alpha, \hat{\Phi}] \sim e^{\pm 2\pi i \sigma} \chi[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}](Q) \hat{\Phi} \ast \hat{\Phi} \ast \hat{\Phi}(Q \pm 2\pi/\alpha) \sim e^{-C/\alpha},$$

due to exponential decay of solitary wave $\hat{\Phi} \sim e^{-C/\alpha}$

[proof similar to Bona and Li, ‘97; Frank and Lenzmann, ‘10].
Proof Outline (Existence for $d = 1$)

Expand (e.g. to leading order):

$$\hat{\Phi}(Q) \simeq \psi(Q) + \hat{E}^\sigma(Q).$$

Equation for error:

$$\left[1 + \frac{4}{\alpha^2} \sin^2 \left(\frac{Q\alpha}{2} \right) \right] \hat{E}(Q) - \frac{3}{(2\pi)^2} \chi_{[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}]} \left(\psi \ast \psi \ast \hat{E} \right)(Q) = R^\sigma_3[\alpha, \hat{E}](Q).$$

Solvable via Lyapunov-Schmidt reduction: project onto $|Q| \leq \alpha^{r-1}$ and $|Q| > \alpha^{r-1}$, with $0 < r < 1$:

$$\hat{E}_{lo}(Q) \equiv \chi_{\{ |Q| \leq \alpha^{r-1} \}} \hat{E}(Q), \quad \hat{E}_{hi}(Q) \equiv \chi_{\{ |Q| > \alpha^{r-1} \}} \hat{E}(Q).$$

We obtain weakly coupled system for $\hat{E}_{lo}(Q)$ and $\hat{E}_{hi}(Q)$ (two equations supported on low and high frequencies respectively)
Proof Outline (Existence for \(d = 1\))

Obtain \(\widehat{E}_{hi} = \left[\alpha, \widehat{E}_{lo} \right] \) via IFT (since \(\frac{4}{\alpha^2} \sin^2 \left(\frac{Q\alpha}{2} \right) \geq C \ |Q|^2 \)):

\[
\widehat{E}_{hi} \sim \chi_{\left\{ \alpha^{r-1} < |Q| \leq \frac{\pi}{\alpha} \right\}} \left[\begin{array}{c} 1 + \frac{4}{\alpha^2} \sin^2 \left(\frac{Q\alpha}{2} \right) \end{array} \right]^{-1} \left(\psi * \psi * \widehat{E}_{lo} \right)(Q)
\]

\[
\sim \alpha^{2-2r} \widehat{E}_{lo} \quad \text{in} \quad L^2, \text{a} (\mathbb{R}),
\]

Next, since \(\frac{4}{\alpha^2} \sin^2 \left(\frac{Q\alpha}{2} \right) \sim |Q|^2 \) on \(|Q| \leq \alpha^{r-1}\), obtain closed equation for \(\widehat{E}_{lo}\); solution exists via fixed point argument:

\[
\hat{L}_+ \hat{E}_{lo} = \mathcal{R}_4^{\sigma} [\alpha, \hat{E}_{lo}] \sim \alpha^{4r-2} \in L^2, \text{a} (\mathbb{R})
\]

\[
\Rightarrow \quad \hat{E}_{lo} = \left(\hat{L}_+ \right)^{-1} \mathcal{R}_4^{\sigma} [\alpha, \hat{E}_{lo}] \in L^2, \text{a}+2 (\mathbb{R})
\]

Linearized continuum operator:

\[
\hat{L}_+ = 1 + |Q|^2 - \frac{3}{(2\pi)^2} \psi \ast \psi \ast, \quad \ker \hat{L}_+ = \text{span} \ Q\psi
\]
Proof Outline (Existence for $d = 1$)

Remark:

Algebraically small terms:

$$\frac{4}{\alpha^2} \sin^2 \left(\frac{Q\alpha}{2} \right) = |Q|^2 + \sum_{j=1}^{\infty} \alpha^{2j} M_j(Q)$$

Exponentially small terms (σ dependent!):

$$\mathcal{R}_2^{\sigma}[\alpha, \hat{\Phi}] \sim e^{\pm 2\pi i \sigma} \chi_{[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}]}(Q) \hat{\Phi} \ast \hat{\Phi} \ast \hat{\Phi} (Q \pm 2\pi/\alpha) \sim e^{-C/\alpha},$$

Note also

$$e^{\pm 2\pi i \sigma} = (-1)^{2\sigma} = \pm 1$$
Theorem 2 (Generalization to $d = 1, 2, 3$):

Let $\psi(x), \ x \in \mathbb{R}^d$ be the ground state solution to NLS:

$$-\psi(x) = -\Delta \psi(x) - \psi(x)^3.$$
Consider the DNLS equation

$$-\alpha^2 G_n = - (\delta^2 G)_n - (G_n)^3, \quad n \in \mathbb{Z}^d$$

Let $\sigma \in \{0, 1/2\}^d$ and $J \geq 0$. There exist mappings $G_j : L^2(\mathbb{R}^d) \rightarrow L^2(\mathbb{R}^d)$, for $j = 0, 1, \ldots, J$ and a positive constant $\alpha_0 = \alpha_0[J] > 0$ such that for all $0 < \alpha < \alpha_0$, there exist $d + 1$ families of symmetric solutions to DNLS:

$$G_n^{\alpha, \sigma} = \alpha \sum_{j=0}^{J} \alpha^{2j} G_j[\psi](\alpha[n - \sigma]) + \mathcal{E}_n^{\alpha, J, \sigma}, \quad \text{where}$$

$$\|G_j[\psi](n - \sigma)\|_{\ell^2(\mathbb{Z}^d_n)} \sim \alpha^{-d/2}, \quad \|\mathcal{E}_n^{\alpha, J, \sigma}\|_{\ell^2(\mathbb{Z}^d)} \lesssim \alpha^{2J+3-d/2}.$$
Theorem 3 (PN Barrier):

Let G_n^{α,σ_1} and G_n^{α,σ_2} be two solutions with respective centering σ_1 and σ_2 from Theorem 2 of DNLS:

$$-\alpha^2 G_n = -(\delta^2 G)_n - (G_n)^3, \quad n \in \mathbb{Z}^d.$$

Then there exists $\alpha_0 > 0$ such that the following holds: for all $0 < \alpha < \alpha_0$,

$$\left| \mathcal{N}[G^{\alpha,\sigma_1}] - \mathcal{N}[G^{\alpha,\sigma_2}] \right| \lesssim \alpha^{2-d} e^{-C/\alpha},$$

$$\left| \mathcal{H}[G^{\alpha,\sigma_1}] - \mathcal{H}[G^{\alpha,\sigma_2}] \right| \lesssim \alpha^{2-d} e^{-C/\alpha},$$

where

$$\mathcal{N}[G] = \|G\|_{\ell^2(\mathbb{Z}^d)}^2 = \sum_{n \in \mathbb{Z}^d} |G_n|^2,$$

$$\mathcal{H}[G] = \sum_{j=1}^d \sum_{n \in \mathbb{Z}^d} |G_{n+e(j)} - G_n|^2 - \frac{1}{2} \sum_{n \in \mathbb{Z}^d} |G_n|^4.$$
Main Idea \((d = 1)\)

- Know:

\[
\hat{G}^{on}(q) \simeq \hat{\Phi}^{on} \left(\frac{q}{\alpha} \right),
\]

\[
\hat{G}^{off}(q) \simeq e^{-i q/2} \hat{\Phi}^{off} \left(\frac{q}{\alpha} \right),
\]

- Using Plancherel theorem and an energy identity for bound states, we find

\[
\left| \mathcal{N}[G^{off}] - \mathcal{N}[G^{on}] \right| \lesssim \alpha \| \hat{\Phi}^{off} - \hat{\Phi}^{on} \|_{L^2\left(\left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}\right]\right)},
\]

\[
\left| \mathcal{H}[G^{off}] - \mathcal{H}[G^{on}] \right| \lesssim \alpha \| \hat{\Phi}^{off} - \hat{\Phi}^{on} \|_{L^2\left(\left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}\right]\right)}.
\]

- Seek equation for \(\hat{\Phi}^{off} - \hat{\Phi}^{on}\) (again even) and find that it’s driven by shifted terms:

\[
\sim \chi_{\left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}\right]}(Q) \ \hat{\Phi}^{\sigma} \ast \hat{\Phi}^{\sigma} \ast \hat{\Phi}^{\sigma} (Q \pm 2\pi/\alpha)
\]

\[
\implies \| \hat{\Phi}^{off} - \hat{\Phi}^{on} \|_{L^2\left(\left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}\right]\right)} \lesssim e^{-C/\alpha}.
\]
Theorem (Extension to Nonlocal DNLS):

(Motivated by Kirkpatrick-Lenzmann-Staffilani ‘13, Frank-L ’10, F-L-Silvestre ’15)

Let $\psi_p(x)$ be the ground state solution to fractional NLS:

$$-\psi_p(x) = (-\Delta)^p \psi_p(x) - \psi_p(x)^3, \quad 1/4 < p \leq 1.$$

Fix $1/4 < s < \infty$, let $p = \min(1, s)$, and consider the DNLS equation

$$-\kappa(\alpha) G_n = -\frac{1}{C_s} \sum_{m \in \mathbb{Z}, m \neq n} \frac{(G_m - G_n)}{|m - n|^{1+2s}} - (G_n)^3, \quad n \in \mathbb{Z},$$

$$\kappa(\alpha) = \begin{cases} \alpha^{2p} & : s \neq 1 \\ (-\log(\alpha)) \alpha^2 & : s = 1 \end{cases}$$

Fix $\sigma = 0, 1/2$. Then there exists a positive constant $\alpha_0 = \alpha_0[s] > 0$ such that for all $0 < \alpha < \alpha_0$, there exists a real-valued symmetric solution to nonlocal DNLS:

$$G_n^{\alpha, \sigma} = \kappa_s(\alpha)^{1/2} \psi_p (\alpha[n - \sigma]) + \mathcal{E}_n^{\alpha, \sigma}.$$
Local Stability: Bifurcation in Higher Dimensions

\(d = 1\)

\(d = 2\)

\(d = 3\)
Local Stability Conditions

\[-\alpha^2 \sigma G_n = - (\delta^2 G^\sigma)_n - (G_n^\sigma)^3, \quad \sigma \in \{0, 1/2\}^d.\]

Conditions for the orbital stability of solitary wave:

1. **Morse index:** linearized operator

 \[L^\text{disc}_+ = \alpha^2 - (\delta^2 \cdot)_n - 3 (G_n^\sigma)^2\]

 has only one negative eigenvalue.

2. **Slope condition:**

 \[\frac{d}{d\alpha} \mathcal{N} \left[G^\sigma[\alpha] \right] = \frac{d}{d\alpha} \| G^\sigma[\alpha] \|_{\ell^2(\mathbb{Z})}^2 = - \frac{1}{\alpha^2} \frac{d}{d\alpha} \mathcal{H} \left[G^\sigma[\alpha] \right] > 0.\]

 (Vakhitov-Kolokolov ’72: slope > 0 implies linear stability; Weinstein ’86, Grillakis-Shatah-Strauss ’87: slope > 0 implies stability; Jones ’88, Grillakis ’88: Morse index ≥ 2 implies instability)
Local Stability \((d = 1)\)

Linearized NLS operator, \(d = 1\):

\[
\hat{L}_+ = 1 + |Q|^2 - \frac{1}{(2\pi)^2} \psi \ast \psi
\]

has one negative eigenvalue and \(\text{ker } \hat{L}_+ = \text{span } Q\psi(Q)\).

Consider rescaled, linearized DNLS operator:

\[
\hat{L}_+^{\text{disc}} \hat{V}(Q)
\]

\[
\equiv \left[1 + \frac{4}{\alpha^2} \sin^2 \left(\frac{Q\alpha}{2}\right)\right] \hat{V}(Q) - \frac{3}{(2\pi)^2} \chi_{\left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}\right]}(Q) \left(\hat{\Phi} \ast \hat{\Phi} \ast \hat{V}\right)(Q)
\]

\[
- \frac{3}{(2\pi)^2} \chi_{\left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}\right]}(Q) \sum_{m = \pm 1} e^{2m\pi i \sigma} \left(\hat{\Phi} \ast \hat{\Phi} \ast \hat{V}\right)(Q - 2m\pi/\alpha)
\]

as \(O(\alpha^2)\) perturbation of \(\hat{L}_+\).
Local Stability ($d = 1$)

Spectra of \hat{L}_+ and \hat{L}^disc_+:

NLS: $0, 1$

DNLS: $\alpha^2, \alpha^2, 0$

Test function $\hat{\Phi}$ gives

$$\left\langle \hat{L}^\text{disc}_+ \hat{\Phi}, \hat{\Phi} \right\rangle = -2 \sum_n \| \Phi_n \|^4 \sim 1 + O(\alpha^2) < 0.$$

We expect zero eigenvalue of \hat{L}_+ to perturb:

1. negatively for off-site state (instability)
2. positively for on-site state (stability)
Local Stability \((d = 1)\)

Key observation: consider “auxiliary equation:"

\[
\left[1 + \frac{4}{\alpha^2} \sin^2 \left(\frac{Q\alpha}{2} \right) \right] \hat{A} (Q) - \frac{\chi \left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha} \right] (Q)}{(2\pi)^2} \left(\hat{A} \ast \hat{A} \ast \hat{A} \right) (Q) = 0.
\]

where

\[
\frac{4}{\alpha^2} \sin^2 \left(\frac{Q\alpha}{2} \right) \iff \sum_{k=1}^{\infty} c_k \alpha^{2k-2} \partial_x^{2k}
\]

Linearization:

\[
\hat{L}^A_+ = \left[1 + \frac{4}{\alpha^2} \sin^2 \left(\frac{Q\alpha}{2} \right) \right] - \frac{3\chi \left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha} \right] (Q)}{(2\pi)^2} \hat{A} \ast \hat{A}^*
\]

Zero eigenstate (translation invariance) is preserved at all polynomial orders:

\[
\hat{L}^A_+ (Q\hat{A}) = 0
\]

\(\implies\) perturbation of \(DNLS\) eigenvalue from zero is ± exponentially small (e.g. Evan’s function calculation of Kapitula & Kevrekidis ‘01)
Local Stability \((d = 1)\)

We seek exponentially small perturbation theory about kernel of \(\hat{L}_A\) for discrete eigenvalue problem.

Need:
- For instability / stability: \(\ker\hat{L}_A = \text{span} Q\hat{A}\)

Proof: Use Lyapunov-Schmidt reduction argument about \(\hat{L}_A\) to show that

\[
(\hat{L}_A - \lambda I) \hat{f}(Q) = \hat{G}(Q), \quad \mu \in [-C\alpha^2, C\alpha^2]
\]

has unique solution on \(\langle \hat{f}, Q\hat{\psi} \rangle = 0\). Therefore, \(Q\hat{A}\) corresponds to simple zero eigenvalue.

- For stability: \(\hat{L}_A\) has one negative \(O(1)\) eigenvalue

Proof: Same argument as above.
Local Stability \((d = 1)\)

Discrete EVP:

\[
\hat{L}_{\text{disc}} \hat{V} = \lambda \hat{V}
\]

Expand:

\[
\begin{align*}
\hat{L}_{\text{disc}} & = \hat{L}^A + \hat{L}^\text{pert} \\
\hat{V}(Q) & = Q\hat{A}(Q) + \hat{E}(Q) + \ldots \\
\lambda & = 0 + \lambda_1 + \ldots
\end{align*}
\]

Here,

\[
\hat{L}^\text{pert}_+ f(Q) \simeq -\frac{3}{\pi} \chi_{\left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}\right]}(Q) \left(\sum_{m=\pm1} e^{2m\pi i\sigma} \left(\hat{\Phi} \ast \hat{\Phi} \ast \hat{f}\right)(Q - 2m\pi/\alpha)\right)
\]

We obtain

\[
\hat{L}^A_+ \hat{E} + \hat{L}^\text{pert}_+ Q\hat{A} + \hat{L}^\text{pert}_+ \hat{E} + \ldots = \lambda_1 Q\hat{A} + \lambda_1 \hat{E} + \ldots
\]
Local Stability ($d = 1$): Formal Calculation

"Leading order" terms:

$$\hat{L}_+^A\hat{E} + \hat{L}_+^{\text{pert}}QA + \hat{L}_+^{\text{pert}}\hat{E} + \ldots = \lambda_1 QA + \lambda_1 \hat{E} + \ldots$$

i.e.

$$\hat{L}_+^A\hat{E} = -\hat{L}_+^{\text{pert}}QA + \lambda_1 QA$$

Solvability condition, RHS $\perp \ker \hat{L}_+^A$, gives (after some manipulation)

$$\lambda_1 = \frac{\left\langle \hat{L}_+^{\text{pert}}QA, QA \right\rangle}{\| QA \|_{L^2}^2}$$

$$\sim (-1)^{2\sigma} \tilde{\psi} * \tilde{\psi} * \left[Q \tilde{\psi} \right] * \left[Q \tilde{\psi} \right] \left(\frac{2\pi}{\alpha} \right) + \mathcal{O} \left(e^{-2C\pi/\alpha} \right)$$

$$\sim (-1)^{2\sigma} \frac{(1 - \alpha^4)}{\alpha^5} \text{csch} \left(\frac{\pi^2}{\alpha} \right) + \mathcal{O} \left(e^{-2C\pi/\alpha} \right)$$
“Leading order” terms:

\[\hat{L}_+^A \hat{E} + \hat{L}_+^{\text{pert}} Q \hat{A} + \hat{L}_+^{\text{pert}} \hat{E} + \ldots = \lambda_1 Q \hat{A} + \lambda_1 \hat{E} + \ldots \]

i.e.

\[\hat{L}_+^A \hat{E} = -\hat{L}_+^{\text{pert}} Q \hat{A} + \lambda_1 Q \hat{A} \]

Solvability condition, RHS \(\perp \ker \hat{L}_+^A \), gives (after some manipulation)

\[\lambda_1 = \frac{\langle \hat{L}_+^{\text{pert}} Q \hat{A}, Q \hat{A} \rangle}{\|Q \hat{A}\|_{L^2}^2} \]

\[\sim (-1)^{2\sigma} \hat{\psi} \star \hat{\psi} \star \left[Q \hat{\psi} \right] \star \left[Q \hat{\psi} \right] \left(\frac{2\pi}{\alpha} \right) + \mathcal{O} \left(e^{-\pi^2/\alpha} \right) \]

\[\sim (-1)^{2\sigma} \frac{1 - \alpha^4}{\alpha^5} \text{csch} \left(\frac{\pi^2}{\alpha} \right) + \mathcal{O} \left(e^{-\pi^2/\alpha} \right) \]