Highway traffic smoothing via trajectory control of connected and automated vehicles

Xiaopeng (Shaw) Li
Assistant Professor
Civil & Environmental Engineering
University of South Florida
5/15/2017

Smart Urban Transportation Forum
University of Minnesota
Stop-and-Go Traffic — Freeway
Stop-and-Go Traffic – Arterial

- Stop-and-go waves
Impacts of Stop-and-Go Traffic

- Traffic congestion in US
 - 42 hours of delay per car commuter
 - Costs $960 per auto commuter

Tampa: 11th most congested cities
http://mobility.tamu.edu/ums/report/
Energy Consumption & Emissions

- In US
 - Congestion wastes 3.1 billion gallons of fuel /year
 - 70% petroleum fuel consumption
 - 30% greenhouse gas emission

Beijing, China

Mexico City, Mexico
Traffic Safety

- In US
 - 2,200,000 injuries
 - 33,000 fatalities
Why Stop-and-Go

- Limitations of human drivers
 - Disconnected
 - Uncooperative
 - Unpredictable
 - Slow
 - Erroneous
 - …
Connected Vehicles

- Vehicle connection = Information sharing
Automated Vehicles

- Human drivers → Robot drivers
Cure: Connection + Automation

- Connected automated vehicles (CAVs)
- Enable trajectory-level vehicle control and coordination
- The fundamental highway traffic problem
 - Past – accommodating human drivers
 - Future - designing robot drivers
Objectives of This Study

- Efficient and parsimonious algorithm to smooth a stream of CAVs along a road
- Applicable to various road facilities
Infrastructure

- Single lane highway segment \([0, L]\)
- Fixed signal timing \(G, R, G, \ldots\) at location \(L\)
Entry Boundary Condition

- Indexed by $n = 1, 2, \ldots, N$
- Entry time t_n^-, speed v_n^-, known a priori
Physical Bounds

- Trajectory $p_n(t)$
- Speed $\dot{p}_n(t) \in [0, \bar{v}]$, acc. $\ddot{p}_n(t) \in [a, \bar{a}]$
Exit Boundary Constraint

- Exit during green time:
 \[\text{mod}(p_n^{-1}(L), G + R) \leq G \]
Vehicle Following Safety

- Two consecutive vehicles $n-1$ and n
- Shadow trajectory $p_{n-1}^s(t) = p_{n-1}(t + \tau) - s$
- Reaction time τ
- Safety spacing s
- **Safety constraint:**
 \[p_n(t) \leq p_{n-1}^s(t) \]
Travel Time MOE

\[T := \sum_{n \in \mathcal{N}} \left(p_n^{-1}(L) - t_n^- \right) / N, \]
Fuel Consumption MOE

- E.g., VT-micro, CMEM, MOVES

\[E := \sum_{n=1}^{N} \int_{t_n^-}^{p_{n}^{-1}(L)} e\left(p_{n}(t), \dot{p}_{n}(t), \ddot{p}_{n}(t)\right) dt / N \]
Safety MOE

- Surrogate measure – Inverse Time-To-Collision (iTTC)

\[S := \sum_{n=1}^{N} \int_{t_n^-}^{p_{n-1}(L)} \left(h^{iTTC} - \frac{\dot{p}_n(t) - \dot{p}_{n-1}(t)}{p_{n-1}(t) - p_n(t) - l} \right) dt / N \]
Trajectory Optimization (TO)

\[
\min_{\{p_n(t)\}} M(\{p_n(t)\}) := \alpha T + \beta E + \gamma S
\]

subject to

- Infinite dimension
- High nonlinearity
- Differential equations
- Non-convexity
- Vehicle interactions

\[
p_n(t^-) = 0; \quad \forall n \text{ (entry)}
\]

\[
\dot{p}_n(t^-) = \nu_n^- \quad \forall n \text{ (entry)}
\]

\[
0 \leq \dot{p}_n(t) \leq \nu; \quad \forall n, t \text{ (kinematics)}
\]

\[
a \leq \ddot{p}_n(t) \leq \ddot{a}, \quad \forall n, t \text{ (kinematics)}
\]

\[
\text{mod}(p_n^{-1}(L), G + R) \leq G, \quad \forall n \text{ (exit)}
\]

\[
p_n(t) \leq p_{n-1}(t + \tau) - s, \quad \forall n \neq 1 \text{ (safety)}
\]
New Thoughts

- Dimensionality reduction
 - Trajectory \rightarrow A small number of sections
 - Each section with a constant acceleration \rightarrow Analytical parabola

- Parsimony
 - Trajectory smoothness \rightarrow Optimality of all MOEs
 - A few variables on acceleration levels \rightarrow Trajectory smoothness
Shooting Heuristic (SH) Outcome

- A small number of analytical sections
- four variables: \(\bar{a}^f, \bar{a}^b \in [0, \bar{a}], a^f, a^b \in [0, a] \)
Forward Shooting Process \((n = 1)\)

- Accelerate with rate \(\bar{a}^f\) up to speed \(\bar{v}\)
- 1st variable: forward acc. \(\bar{a}^f \in [0, \bar{a}]\)
Forward Shooting Process ($n = 1$)

- Then maintain speed \bar{v} all the way
- Hit the red light?
Backward Shooting Process \((n = 1)\)

- Shift the section above location \(L\) rightwards to the next green phase
Backward Shooting Process \((n = 1)\)

- Back up with acceleration \(\bar{a}^b\) down
- 2\(^{nd}\) variable: backward acc. \(\bar{a}^b \in [0, \bar{a}]\)
Backward Shooting Process \((n = 1)\)

- Merge with deceleration \(a^b\)
- 3rd variable: backward dec. \(a^b \in [0, \bar{a}]\)
Backward Shooting Process \((n = 1)\)

- Merge the forward and backward trajectories
- Obtain a feasible trajectory \(p_1\)
Forward Shooting Process \((n > 1) \)

- The same till blocked by \(p_{n-1}^s \) (\(p_{n-1} \)'s shadow)
- Pause at a proper place
Forward Shooting Process \((n > 1)\)

- Merge into \(p_{n-1}^s\) with deceleration \(a_f^\)
- 4th variable: forward dec. \(a_f^\in [0, a]\)
Forward Shooting Process \((n > 1)\)

- Then exactly follow \(p_{n-1}^s\)
Backward Shooting Process \((n > 1)\)

- The same as that for \(n = 1\)
Shooting Heuristic (SH) Outcome

- A *small* number of *analytical* sections
- *four* variables: $\bar{a}^f, \bar{a}^b \in [0, \bar{a}], \underline{a}^f, \underline{a}^b \in [0, a]$
Gradient – Based Algorithm

Initialization

Acceleration values $a^f, \bar{a}^f, a^b, \bar{a}^b$

Update

Search an improvement gradient

Shooting heuristic (SH)

Trajectory set $P^{SH}(a^f, \bar{a}^f, a^b, \bar{a}^b)$

Are terminal criteria met?

Evaluation MOEs $M(P^{SH})$

No

Yes

Return P^{SH}
Benchmark (Top) vs. SH (Bottom)

time (sec): 30.00

space (m)

0 500 1000

v (m/s)

0 10 20

space (m)

0 500 1000

v (m/s)

0 10 20
Benchmark vs. SH

<table>
<thead>
<tr>
<th>C(s)</th>
<th>L(m)</th>
<th>f^s</th>
<th>ΔT</th>
<th>ΔE</th>
<th>ΔS</th>
<th>ΔM</th>
<th>Solution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1500</td>
<td>0.9</td>
<td>35.22%</td>
<td>32.78%</td>
<td>66.36%</td>
<td>41.23%</td>
<td>12.14</td>
</tr>
<tr>
<td>60</td>
<td>1500</td>
<td>1.5</td>
<td>34.23%</td>
<td>33.86%</td>
<td>66.43%</td>
<td>40.00%</td>
<td>9.44</td>
</tr>
<tr>
<td>60</td>
<td>2500</td>
<td>0.9</td>
<td>41.86%</td>
<td>46.96%</td>
<td>77.79%</td>
<td>50.78%</td>
<td>9.63</td>
</tr>
<tr>
<td>60</td>
<td>2500</td>
<td>1.5</td>
<td>41.72%</td>
<td>48.07%</td>
<td>80.21%</td>
<td>51.01%</td>
<td>13.05</td>
</tr>
<tr>
<td>80</td>
<td>1500</td>
<td>0.9</td>
<td>40.11%</td>
<td>32.06%</td>
<td>62.94%</td>
<td>43.07%</td>
<td>9.16</td>
</tr>
<tr>
<td>80</td>
<td>1500</td>
<td>1.5</td>
<td>38.73%</td>
<td>40.10%</td>
<td>62.26%</td>
<td>44.28%</td>
<td>12.26</td>
</tr>
<tr>
<td>80</td>
<td>2500</td>
<td>0.9</td>
<td>32.29%</td>
<td>45.91%</td>
<td>74.00%</td>
<td>43.22%</td>
<td>8.89</td>
</tr>
<tr>
<td>80</td>
<td>2500</td>
<td>1.5</td>
<td>29.59%</td>
<td>37.96%</td>
<td>46.49%</td>
<td>34.20%</td>
<td>7.29</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>36.72%</td>
<td>39.71%</td>
<td>67.06%</td>
<td>43.47%</td>
<td>10.2</td>
</tr>
</tbody>
</table>
Quadratic Time Geography (QTG)

- Speed limits \([0, \bar{v}]\) + acceleration limits \([a, \bar{a}]\),
- Quadratic space-time cone & prism
- Feasible region of a trajectory for TO
Feasibility

- **Theorem**: if the signal is ignored (or always green), SH (with $a^f = a^b = \bar{a}, a^f = a^b = a$) is feasible if and only if the original problem is feasible

- **Theorem**: if $L \geq \bar{v}^2 / (2\bar{a})$, SH is feasible if and only if the subset of solutions to the original problem with all exit speeds of \bar{v} is feasible

- **Theorem**: if $L \geq \bar{v}^2 / \bar{a} + \bar{v}^2 / (-2\bar{a}) + s(N -$
Optimality – Time & Throughput

• **Theorem**: When $L \geq \bar{v}^2 / (2\bar{a})$, if SH yields a feasible solution, then this solution always achieves the theoretically minimum travel time,

$$T := \sum_{n \in N} \left(t^+_n - t^-_n \right) / N$$

$$t^+_n := \begin{cases}
G \left(\bar{p}^{-1}_{0v_n \bar{t}_n} (L) \right), & \forall n = 1. \\
G \left(\max \left\{ \bar{p}^{-1}_{0v_n \bar{t}_n} (L), \frac{t^+_n + s}{\bar{v}} + \tau \right\} \right) & \forall n = 2, \ldots, N.
\end{cases}$$

It also achieves theoretically maximum throughput

$$\bar{R} := N / (t^+_n - t^-_n)$$
Optimality – Energy

- Based on the optimal control (Minimum Pontryagin Principle & Bang-Bang Control), for certain simple objective functions (e.g., acceleration magnitude), trajectories adapted from the SH results are the optimal.
- Numerical comparisons show that the heuristic solutions are clos to exact solutions
Connection to Classic Traffic Models

- Earlier finding: Cellular automata = Kinematic wave = Newell’s car following model (Daganzo 2006)
- **Theorem:** As $\bar{a} \to \infty$ and $\bar{a} \to -\infty$, $SH =$ Newell’s model
Insights Into Queue Back Spill

- Slower acceleration may not necessarily yield longer queue!
Trajectory Control + Signal Timing

\[
\min_{R_1, R_2} Z := \sum_i (D_i + wF_i)
\]

Delay Fuel consumption
Marginal Fuel Consumption

- Homogenous Setting
- Marginal fuel consumption (MFC) = Fuel consumption difference before and after signal-caused delay
- Numerical results show MFC is well approximated by a linear function of the red time

\[R^2 = 0.9916 \]
Trajectory Control + Signal Timing

\[
\min_{R_1, R_2} Z := \sum_i (D_i + wF_i)
\]

\[
= \frac{R_1^2 \gamma_2 + R_2^2 \gamma_1}{2 \gamma_1 \gamma_2 (R_1 + R_2 - L)} + \frac{w}{(R_1 + R_2 - L)} \sum_{i=1}^{2} \beta \left(\frac{R_i^2}{2} + \frac{R_i l_i}{\bar{v}} \right)
\]

Delay

Marginal fuel consumption
Freeway Speed Harmonization in Mixed Traffic

1) Prediction problem
2) Shooting heuristic problem

Sensors

Queuing

Queue dissipation time

Space

Time

Traffic Sensor M

Traffic Sensor m

Traffic Sensor 1

$p(t)$

$c(t)$

CAV

HV
Field Tests

FHWA Turner Fairbank Testbed

Chang’an University Test Track, China
Acknowledgements

- Fang Zhou, Leidos Inc.
- Jiaqi Ma, Leidos Inc.
- Amir Giahsi, PhD Student, USF
- Omar Hussain, PhD Student, USF
- Zhigang Xu, Chang’an University
- Jia Hu, FHWA
- Brian Park, UVA
Thank You
xiaopengli@usf.edu

References:
Li, X., Ghiasi, A. and Xu, Z. “A piecewise trajectory optimization model for connected automated vehicles: Exact optimization algorithm and queue propagation analysis” under review
Xu, Z., Wang, Y., Li, X., Zhao, X., “An Exact Model for Trajectory Optimization and Comparison with Shooting Heuristics” working paper