A Truck Parking Availability Notification System Based on Computer Vision

T. Morris, D. Cook, V. Morellas, and N. Papanikolopoulos
Dept. of CS, University of Minnesota

Supported by the Minnesota DOT & USDOT/FHWA Truck Parking Facilities Program, #MNDOT/9908 WO 24-USDOT/TFAC8812-056
TPAS Overview

- Motivation
- System principle of operation
- Sites deployed
- Detection performance results
- Upcoming expansion and deployments
- Operations and Maintenance Requirements
System Implementation Requirements and Scope

- Non-intrusive
- Complete 24/7 automation of direct detection of parking space status
- Accurate and scalable
- Requiring no human intervention or re-zeroing
- Cannot interfere with facility during installation or maintenance
- Develop architecture to aggregate, archive, and broadcast information to Roadside, Web, and in-cab mechanisms
Automated counting of occupied parking spaces is not a straightforward problem

- ‘Entrance/Exit ‘Trip-wire’ count detection: Small detection error bias will cause occupancy count errors to accumulate at an unacceptable rate (Martin, 2012, 2011; Gentler & Murray, 2011; Fallon & Howard, 2011)
- Count errors affected by: trailer drops, gas fill-up, vehicle classification and counting axles
• *Ingress-Egress counts may not indicate parking space availability*
Persistent Accuracy

- Accuracy = Usability

- Recent studies (ATRI) suggest drivers will ignore parking status notifications if wrong just 2 times

- Above 95% indicated by carriers and drivers to consider it useful (FHWA, ATRI)
Key Idea for Detection

• Multiple camera views reconstruct the scene in 3D.

• 3D reconstruction: Measures space occupancy directly by ‘seeing’ the vehicles present or absent in a way similar to the way people do, in 3D.

• Remains robust to problems with sharp shadows, partial occlusion, and other lighting changes that traditionally confound ‘non-3D’ image processing techniques

• No recalibration or ‘re-zeroing’.
Detection Steps

1. Multi-view PTZ HD Images Acquisition

2. 3D Reconstruction and alignment

3. 3D background removal and occupancy classification
Implemented State Sponsored Facilities

- Rest Areas accessible for East Bound traffic on Interstate 94
- All within 100 miles of Minneapolis/Saint Paul, MN

- Elm Creek
 - 15 stalls
 - Mile 215.0

- Big Spunk Lake
 - 16 stalls
 - Mile 151.7

- Enfield
 - 18 stalls
 - Mile 187.0

- Elm Creek
 - 15 stalls
 - Mile 215.0
Site Installations

- 35’ tall crank-down camera poles with up to 3 COTS PTZ cameras
- Power and communication paths from visitor building to poles
- Cellular Service for remote monitoring and real-time data transfer
- To date (May 2016) all sites in operation for 2 to 3 years
Site Installations

Indoor consumer desktop PCs, backup power, and comm hardware
Elm Creek

- Installed January 2013
Big Spunk Lake

- Installed November 2013
Enfield

- Installed March 2014
Parking Status Validation Data

- 21,588 parking events 20 days of varied environmental conditions in Feb - June 2013
- Per space detection accuracy of 97.87%
Video Demonstration

An Automated System For Persistent Real-Time Truck Parking Detection And Information Dissemination

Doug Cook, Ted Morris, Vassilios Morellas, Nikolaos Papanikolopoulos
Department of Computer Science, University of Minnesota
Parking Space Detection Performance

517,017 parking events across 95,252 time samples
Conflict Detection Examples

Missed vehicles

Maneuvers

Lane encroachment

University of Minnesota
Quick Summary

• Persistent per space parking status greater than 95% accurate
• Persistent count accuracy without re-zeroing or recalibration operational maintenance requirement
• In continuous operation at 3 public truck parking facilities between 3 and 4 years (as of May 2017).
Expansion : Wisconsin Integration (2016-2018)

- Implemented and evaluated a regional truck parking notification architecture with TPAS computer vision detection approach
- Deployed at Menomonie WISDOT Public Rest Area
- Parking Notification Integration Using Truck Smart Parking Services (TSPS) TPIMS architecture
- Document guidelines for continued maintenance, site hardware and software configuration
Wisconsin DOT Truck Smart Parking Services (TSPS)
TPIMS Architecture

TRUCK REST AREA 30 MI. 3 SPACES

Big Spunk Lake Rest Area, Mile 152
Enfield Rest Area, Mile 187
Elm Creek Rest Area, Mile 215
Menomonie Rest Area #61, Mile 43

JSON TSPS Reports

WisDOT implemented Rest area det. tech.

HTTPS Stateless RESTful API

**TSPS/ATMS Server

WisDOT 511 System

WisDOT CMS

3rd Party Data Requests

WisDOT 511 Web

**Management TBD: TOPS Lab or WisDOT

University of Minnesota
Site Installation and Design

• Installation costs and effort are site dependent
 – Number of spaces to monitor
 – Geometric layout of parking spaces
 – Existing infrastructure (poles, electricity, comm)
 – Agency/organization equipment requirements
 – Number of sites implemented

• Design and Site Engineering
 – Camera location and system configuration critical
 – Potentially UMN might serve as lead or consultant
Operations and Maintenance

• Site preventative maintenance
 – Clean camera domes & hardware inspection
 – System contains self-monitoring tools to check communications, camera related operations
 – No regular re-zeroing or re-calibrations necessary

• Software updates and maintenance
 – Repository upgrades managed by UMN and private company (in negotiation)
 – Train and build user base community to perform installation and site specific configurations
Future Enhancements and Upgrades

- Use fewer cameras
- Expand to other states (Kansas with 22 rest areas)
- Further relax camera placement constraints
- Key requirement: no regular ‘re-zeroing’ or re-calibration

2-camera 3D reconstruction in development
Kansas Day Scenario

22.44m

41.26m

50.62m

115.52m
Kansas Night Scenario

11.28m 8.42m 20.23m 23.24m
14.96m 19.73m 28.56m
End: Questions?

Contact info: Ted Morris, tmorris@umn.edu, (612) 626-8499

Supported by the Minnesota DOT & USDOT/FHWA Truck Parking Facilities Program, #MNDOT/9908 WO 24-USDOT/TFAC8812-056
Parking Facilities Performance Measures

• Support parking facilities usability and cost/benefit studies

Trucks Database & Data Distrib. Node (.NET & PostgreSQL)

• Capacity trends
• Dwell times
• Per-space usage
 • Weekly
 • Daily
 • Hourly
 • Seasonal
Hourly Space Utilization 08/30/2013 – 09/08/2013

Manually Observed

Detected

Trailer drop