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How do I 
compare to my 
competitors? 

Bonacich Centrality Rank Centrality Pagerank 



3 
Bonacich Centrality Rank Centrality Pagerank 

Stationary distribution of Markov chain 

Q: Do I need to compute the entire 
solution vector in order to get an 
estimate of my centrality and the 
centrality of my competitors? 

Eek, too expensive!! 

Solution to Linear System 



Q: How do we efficiently compute the solution 
for a single coordinate within a large network? 
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(1) Stationary distribution of Markov chain 

(2) Solution to Linear System of Equations 

Å G = P (i.e. a stochastic matrix), z = 0 
Å Sample short random walks, 

relies on sharp characterization of ̄i 

Å If A positive definite, then we can choose G, z 
s.t. spectral radius G < 1, and x = Gx + z equivalent 

Å Expand computation in local neighborhood, 
use sparsity of G to bound size of neighborhood 

²ƻǳƭŘ ƭƛƪŜ ŀ άƭƻŎŀƭέ ƳŜǘƘƻŘΣ ƛΦŜΦ ŎƘŜŀǇŜǊ ǘƘŀƴ ŎƻƳǇǳǘƛƴƎ Ŧǳƭƭ ǾŜŎǘƻǊΦ 



Overview of Literature 
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Stationary Distribution  
of Markov Chain 

x = Gx + z, 
spectral radius(G) < 1 

Probabilistic 
Monte Carlo 

MCMC methods Ulam von  Neumann 

Samples long random walks 
Good if G has good spectral properties 
Challenge is to control the variance of estimator 
Naturally parallelizable 
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Stationary Distribution  
of Markov Chain 

x = Gx + z, 
spectral radius(G) < 1 

Probabilistic 
Monte Carlo 

MCMC methods Ulam von  Neumann 

Iterative  
Algebraic 

Power  method Linear iterative update, 
Jacobi, Gauss-Seidel 

Iterative matrix-vector multiplication 
Good if G is sparse, and has good spectral properties 
Distributed, but synchronous 
Each multiplication O(n2) 



Overview of Literature 
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Stationary Distribution  
of Markov Chain 

x = Gx + z, 
spectral radius(G) < 1 

Probabilistic 
Monte Carlo 

MCMC methods Ulam von  Neumann 

Other SVD Gaussian elimination 

Not designed for single component computation 
Requires global computation 

What if we specifically thought about solving for a single component? 

Iterative  
Algebraic 

Power  method Linear iterative update, 
Jacobi, Gauss-Seidel 
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Å New Monte Carlo method which uses 
Å{ŀƳǇƭŜǎ άƭƻŎŀƭέ ǘǊǳƴŎŀǘŜŘ ǊŜǘǳǊƴƛƴƎ ǊŀƴŘƻƳ ǿŀƭƪǎ 
Å Convergence is a function of mixing time 
Å Estimate always guaranteed to be an upper bound 
Å Suggest and analyze specific termination criteria 

which gives multiplicative error bounds for high ̄i, 
and thresholds low ̄i 

[L., Ozdaglar, Shah NIPS 2013] 
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Å Can be implemented asynchronously 
Å Maintains sparse intermediate vectors 
Å Provides invariant which track progress of method 

[L., Ozdaglar, Shah ArXiv 1411.2647 2014] 
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Both methods are inspired by previous algorithms designed for computing PageRank 

[JW03, H03, FRCS05, ALNO07, 
BCG10, BBCT12] 

[ABCHMT07] 



Computing Stationary Probability 

ÅConsider a Markov chain  

ïFinite state space 

ïTransition matrix 

ïIrreducible, positive recurrent 

ÅGoal: compute stationary probability 
focusing on nodes with higher values 
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Node-Centric Monte Carlo 

ÅStandard Monte Carlo method samples long 
random walks until it converges to stationarity 
 ergodic theorem 

ÅOur method is based on the property 
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Intuition 

Estimate: 
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i 

Algorithm 

Gather Samples (i, N, ̒ ) 

 Sample N truncated return paths to i 

 
    = fraction of samples truncated 

 

 
 

  

i i i i 

Returned to i !  

i i i 

YŜŜǇ ǿŀƭƪƛƴƎ Χ  

i i 
Path length exceeded   

i 

Q: How do we choose appropriate N, ?̒ 
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Gather Samples (i, N(k), ̒ (k)) 

Terminate if Satisfied 

Compute ̒ (k+1) and N(k+1) 

 Double ̒ : ̒ (k+1) = 2*̒ (k) 

 Increase N such that by /ƘŜǊƴƻŦŦΩǎ bound: 

 
  

  

Algorithm 
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Convergence 

vΥ /ŀƴ ǿŜ ŘŜǎƛƎƴ ŀ άǎƳŀǊǘέ ǘŜǊƳƛƴŀǘƛƻƴ ŎǊƛǘŜǊƛŀΚ 
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Gather Samples (i, N(k), ̒ (k)) 

Terminate if Satisfied(ɲ) 

 Output current estimate if 

  (a) Stationary prob. is small 

   
  (b) Fraction of truncated samples is small 

  
Compute ̒ (k+1) and N(k+1) 

Algorithm 
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Results for Termination Criteria 

18 Results extend to countable state space Markov chains. 

Termination condition 1 guarantees ̄i small 

Termination condition 2 guarantees multiplicative error bound 

Dependent on algorithm parameters, not input Markov chain 
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Simulation - Pagerank 

Nodes sorted by stationary probability 

Stationary 

probability Random graph using configuration model  
and power law degree distribution 



Random graph using configuration model  
and power law degree distribution 

Obtain close estimates 
for important nodes 
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Simulation - Pagerank 

Nodes sorted by stationary probability 

Stationary 

probability 



Random graph using configuration model  
and power law degree distribution 

Obtain close estimates 
for important nodes 
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Simulation - Pagerank 

Nodes sorted by stationary probability 

Stationary 

probability   corrects for the bias! Fraction 
samples not 
truncated 

  corrects for the bias! 
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Rank Centrality Pagerank 

Compute Stationary Probability 
by sampling local random walks 
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Pagerank Bonacich Centrality 

When spectral radius of G < 1,  
 
 

Å Importance sampling, sample walks and 
reweight Ҧ unbiased estimator 

Å If                     , may not exist sampling 
matrix such that variance is finite 

Å Does not exploit sparsity 

Q: Extend to solving linear system? 
     Ulam von Neumann algorithm 
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[JW03, H03, FRCS05, ALNO07, 
BCG10, BBCT12] 

[ABCHMT07] 



Synchronous Algorithm 

ÅStandard stationary linear iterative method 
 

ÅRelies upon Neumann series representation 
 

 

ÅSolving for a single coordinate 
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Sparsity pattern is k-hop neighborhood of i 

x(t) as dense as z 


