Power concave functions and Borell-Brascamp-Lieb inequalities

SALANI PAOLO
Università di Firenze

IMA - University of Minneapolis, May 1st, 2015
Notations: p-means of non-negative numbers

Let $p \in [-\infty, +\infty]$ and $\mu \in (0, 1)$. Given two real numbers $a > 0$ and $b > 0$, the quantity

\[
M_p(a, b; \mu) = \begin{cases}
\max\{a, b\} & p = +\infty \\
((1 - \mu)a^p + \mu b^p)^{\frac{1}{p}} & \text{for } p \neq -\infty, 0, +\infty \\
a^{1-\mu}b^\mu & p = 0 \\
\min\{a, b\} & p = -\infty.
\end{cases}
\]

is the (μ-weighted) p-mean of a and b.

For $a, b \geq 0$, we set $M_p(a, b; \mu) = 0$ if $ab = 0$ and $p \in \mathbb{R}$.
Let \(\Omega \) be a convex set in \(\mathbb{R}^n \) and \(p \in [\infty, \infty] \). A nonnegative function \(u \) defined in \(\Omega \) is said \(p \)-concave if

\[
u((1 - \lambda)x + \lambda y) \geq \mathcal{M}_p(u(x), u(y); \lambda)\]

for all \(x, y \in \Omega \) and \(\lambda \in (0, 1) \). In the cases \(p = 0 \) and \(p = -\infty \), \(u \) is also said log-concave and quasi-concave in \(\Omega \), respectively.
Let Ω be a convex set in \mathbb{R}^n and $p \in [-\infty, \infty]$. A nonnegative function u defined in Ω is said p-concave if

$$u((1 - \lambda)x + \lambda y) \geq M_p(u(x), u(y); \lambda)$$

for all $x, y \in \Omega$ and $\lambda \in (0, 1)$. In the cases $p = 0$ and $p = -\infty$, u is also said log-concave and quasi-concave in Ω, respectively.

In other words, a non-negative function u, with convex support Ω, is p-concave if:
- it is a non-negative constant in Ω, for $p = +\infty$;
- u^p is concave in Ω, for $p > 0$;
- $\log u$ is concave in Ω, for $p = 0$;
- u^p is convex in Ω, for $p < 0$;
- it is quasi-concave, i.e. all of its superlevel sets are convex, for $p = -\infty$.

For $p = 1$ corresponds to usual concavity. From Jensen’s inequality it follows that if u is p-concave, then u is q-concave for every $q \leq p$.
Let $0 < \lambda < 1$, $-\frac{1}{n} \leq p \leq \infty$. Let u_0, u_1, h be nonnegative integrable functions defined on \mathbb{R}^n, satisfying

$$h((1 - \lambda)x + \lambda y) \geq M_p(u_0(x), u_1(y), \lambda)$$

for all $x \in \mathbb{R}^n$. Then

$$\int_{\mathbb{R}^n} h(x) \, dx \geq M_q \left(\int_{\mathbb{R}^n} u_0(x) \, dx, \int_{\mathbb{R}^n} u_1(x) \, dx, \lambda \right)$$

where

$$q = \begin{cases}
\frac{1}{n} & p = +\infty \\
\frac{p}{pn + 1} & p \in (-1/n, +\infty) \\
-\infty & p = -1/n.
\end{cases}$$
Let $0 < \lambda < 1$, $-\frac{1}{n} \leq p \leq \infty$. Let u_0, u_1, h be nonnegative integrable functions defined on \mathbb{R}^n, satisfying

$$h((1 - \lambda)x + \lambda y) \geq M_p(u_0(x), u_1(y), \lambda)$$

for all $x \in \mathbb{R}^n$. Then

$$\int_{\mathbb{R}^n} h(x) \, dx \geq M_q \left(\int_{\mathbb{R}^n} u_0(x) \, dx, \int_{\mathbb{R}^n} u_1(x) \, dx, \lambda \right)$$

where

$$q = \begin{cases}
\frac{1}{n} & p = +\infty \\
\frac{p}{pn + 1} & p \in (-1/n, +\infty) \\
-\infty & p = -1/n.
\end{cases}$$

Henstock-Macbeath (1953), Dinghas (1957)
Borell (1975), Brascamp-Lieb (1976)
The case $p = 0$

Prékopa-Leindler inequality

Let $0 < \lambda < 1$ and let u_0, u_1 and h be nonnegative integrable functions on \mathbb{R}^n satisfying

$$h((1 - \lambda)x + \lambda y) \geq u_0(x)^{1-\lambda}u_1(y)^\lambda,$$

for all $x, y \in \mathbb{R}^n$. Then

$$\int_{\mathbb{R}^n} h(x) \, dx \geq \left(\int_{\mathbb{R}^n} u_0(x) \, dx \right)^{1-\lambda} \left(\int_{\mathbb{R}^n} u_1(x) \, dx \right)^\lambda.$$

PL is a functional version of the Brunn-Minkowski inequality (in fact, the same could be said for BBL for any p).

The Brunn-Minkowski inequality

For measurable sets K_0, K_1 and $\lambda \in [0, 1]$, $K_\lambda = (1 - \lambda)K_0 + \lambda K_1$ and $+$ is the Minkowski addition, then

$$|K_\lambda| \geq M_{1/n}(|K_0|, |K_1|; \lambda) = \left[(1 - \lambda)|K_0|^{\frac{1}{n}} + \lambda|K_1|^{\frac{1}{n}}\right]^n \quad (0.1)$$

provided K_λ is measurable as well.
PL is a functional version of the Brunn-Minkowski inequality (in fact, the same could be said for BBL for any p).

The Brunn-Minkowski inequality

K_0, K_1 measurable sets, $\lambda \in [0, 1]$, $K_{\lambda} = (1 - \lambda)K_0 + \lambda K_1$ and $+$ is the Minkowski addition, then

$$|K_{\lambda}| \geq M_{1/n}(|K_0|, |K_1|; \lambda) = \left[(1 - \lambda)|K_0|^{1/n} + \lambda |K_1|^{1/n}\right]^n$$

(0.1)

provided K_{λ} is measurable as well.

Multiplicative form of BM

$$|K_{\lambda}| \geq |K_0|^{1-\lambda}|K_1|^\lambda$$
PL is a functional version of the Brunn-Minkowski inequality (in fact, the same could be said for BBL for any p).

The Brunn-Minkowski inequality

If K_0, K_1 measurable sets, $\lambda \in [0, 1]$, $K_\lambda = (1 - \lambda)K_0 + \lambda K_1$ and $+$ is the Minkowski addition, then

$$|K_\lambda| \geq M_{1/n}(|K_0|, |K_1|; \lambda) = \left[(1 - \lambda)|K_0|^{\frac{1}{n}} + \lambda|K_1|^{\frac{1}{n}}\right]^n$$ \hspace{1cm} (0.1)

provided K_λ is measurable as well.

Multiplicative form of BM

$$|K_\lambda| \geq |K_0|^{1-\lambda}|K_1|^\lambda$$

The BM inequality has strong and unexpected relations with many other fundamental analytic and geometric inequalities.
PL is a functional version of the Brunn-Minkowski inequality (in fact, the same could be said for BBL for any p).

The Brunn-Minkowski inequality

k_0, k_1 measurable sets, $\lambda \in [0, 1]$, $k_\lambda = (1 - \lambda)k_0 + \lambda k_1$ and $+$ is the Minkowski addition, then

$$|k_\lambda| \geq M_{1/n}(|k_0|, |k_1|; \lambda) = \left((1 - \lambda)|k_0|^{\frac{1}{n}} + \lambda |k_1|^{\frac{1}{n}}\right)^n$$

(0.1)

provided k_λ is measurable as well.

Multiplicative form of BM

$$|k_\lambda| \geq |k_0|^{1-\lambda}|k_1|^\lambda$$

The BM inequality has strong and unexpected relations with many other fundamental analytic and geometric inequalities.

For references and a nice presentation, see R. J. Gardner (2002)
What happens if equality is achieved in one of the above mentioned inequalities?
What happens if equality is achieved in one of the above mentioned inequalities?

BM

Equality holds in BM if and only if K_0 and K_1 are convex and homothetic.
What happens if equality is achieved in one of the above mentioned inequalities?

BM

Equality holds in BM if and only if K_0 and K_1 are convex and homothetic.

Equality conditions in BBL - Dubuc (1977)

Equality holds in BBL for some $p \in [-1/n, \infty)$ if and only if

h is p-concave

and there exist suitable $A, B, m, n > 0$ and $x_1, x_\lambda \in \mathbb{R}^n$ such that

$$u_0(x) = A h(mx + x_1), \quad u_1(x) = B h(nx + x_\lambda).$$
What happens if we are close to equality in one of the above mentioned inequalities?

(All for log-concave functions)
Stability/Improvements

What happens if we are close to equality in one of the above mentioned inequalities? Are the involved sets/functions close to be homothetic?
Stability/Improvements

What happens if we are close to equality in one of the above mentioned inequalities? Are the involved sets/functions close to be homothetic? In other words: is it possible to improve the above mentioned inequality in terms of some distance from the "rigid situation"?

(All for log-concave functions)
Stability/Improvements

What happens if we are close to equality in one of the above mentioned inequalities? Are the involved sets/functions close to be homothetic? In other words: is it possible to improve the above mentioned inequality in terms of some distance from the "rigid situation"?

There are stability/quantitative results for the Brunn-Minkowski inequality for convex sets.

(All for log-concave functions)

Paolo Salani (DiMal - Università di Firenze)
Stability/Improvements

What happens if we are close to equality in one of the above mentioned inequalities? Are the involved sets/functions close to be homothetic? In other words: is it possible to improve the above mentioned inequality in terms of some distance from the "rigid situation"?

Stability/Improvements

What happens if we are close to equality in one of the above mentioned inequalities? Are the involved sets/functions close to be homothetic? In other words: is it possible to improve the above mentioned inequality in terms of some distance from the "rigid situation"?

There are only three results about PL to my knowledge!
Stability/Improvements

What happens if we are close to equality in one of the above mentioned inequalities? Are the involved sets/functions close to be homothetic? In other words: is it possible to improve the above mentioned inequality in terms of some distance from the "rigid situation"?

There are only three results about PL to my knowledge!

Stability/Improvements

What happens if we are close to equality in one of the above mentioned inequalities? Are the involved sets/functions close to be homothetic? In other words: is it possible to improve the above mentioned inequality in terms of some distance from the "rigid situation"?

There are only three results about PL to my knowledge!

What happens if we are close to equality in one of the above mentioned inequalities? Are the involved sets/functions close to be homothetic? In other words: is it possible to improve the above mentioned inequality in terms of some distance from the "rigid situation"?

There are only three results about PL to my knowledge!

Stability/Improvements

What happens if we are close to equality in one of the above mentioned inequalities? Are the involved sets/functions close to be homothetic? In other words: is it possible to improve the above mentioned inequality in terms of some distance from the "rigid situation"?

There are only three results about PL to my knowledge!

(All for log-concave functions)
The Ball-Böröczky [1] result is for log-concave functions in dimension 1 and it is written as a stability result: if \(\int_{\mathbb{R}} h \, dx \leq (1 + \epsilon) \sqrt{\int_{\mathbb{R}} u_0 \, dx \int_{\mathbb{R}} u_1 \, dx} \), then there exist \(a > 0 \) and \(b \in \mathbb{R}^n \) such that

\[
\int_{\mathbb{R}^n} |a(-1)^i u_i(x + (-1)^i b) - h(x)| \, dx \leq \gamma \epsilon^{1/6} |\log \epsilon|^{2/3} \int_{\mathbb{R}^n} h \, dx.
\]

This is extended to dimension \(n > 1 \) in [2], but only for log-concave even functions.
The Ball-Böröczky [1] result is for log-concave functions in dimension 1 and it is written as a stability result: if $\int_{\mathbb{R}} h \, dx \leq (1 + \epsilon) \sqrt{\int_{\mathbb{R}} u_0 \, dx \int_{\mathbb{R}} u_1 \, dx}$, then there exist $a > 0$ and $b \in \mathbb{R}^n$ such that

$$\int_{\mathbb{R}^n} |a^{(-1)^i} u_i(x + (-1)^i b) - h(x)| \, dx \leq \gamma \epsilon^{1/6} |\log \epsilon|^{2/3} \int_{\mathbb{R}^n} h \, dx.$$

This is extended to dimension $n > 1$ in [2], but only for log-concave even functions.

Bucur-Fragalà [3] use the 1-dimensional result by Ball-Böröczky to write a quantitative version of the PL for log-concave functions in terms of some (a little bit involved) distance between u_0 and u_1, that is

$$\int_{\mathbb{R}^n} h \, dx \geq [1 + \psi_{\lambda,n}(d_n(u_0, u_1))] \left(\int_{\mathbb{R}^n} u_0 \, dx \right)^{1-\lambda} \left(\int_{\mathbb{R}^n} u_1 \, dx \right)^{\lambda}$$

where d_n measure the distance of u_0 and u_1 from coinciding up to an homothety.
Joint work with D. Ghilli (Università di Padova).
Joint work with D. Ghilli (Università di Padova).

Let H denotes the Hausdorff distance between sets in \mathbb{R}^n, we set

$$H_0(K, L) = H(\tau_0 K, \tau_1 L),$$

(0.2)

where τ_1, τ_0 are two homotheties (i.e. translation plus dilation) such that $|\tau_0 K| = |\tau_1 L| = 1$ and such that the centroids of $\tau_0 K$ and $\tau_1 L$ coincide.

Theorem 1 (Ghilli-S. 2015)

Let $p > 0$ and assume that u_0 and u_1 are L_1^p-concave functions, with convex compact supports Ω_0 and Ω_1 respectively. Then, if $H_0(\Omega_0, \Omega_1)$ is small enough, it holds

$$\int_{\Omega_0} \lambda h(x) \, dx \geq M_{np+1}(I_0, I_1, \lambda) \left[1 + \beta H_0(\Omega_0, \Omega_1)(n+1)(p+1) \right]$$

(0.3)

where β is a constant depending on n, λ, $M_{np+1}(I_0, I_1, \lambda)$ and the diameters and the measures of Ω_0 and Ω_1.
Quantitative BBL for \(p \)-concave functions with \(p > 0 \)

Joint work with D. Ghilli (Università di Padova).
Let \(H \) denotes the Hausdorff distance between sets in \(\mathbb{R}^n \), we set

\[
H_0(K, L) = H(\tau_0 K, \tau_1 L),
\]

(0.2)

where \(\tau_1, \tau_0 \) are two homotheties (i.e. translation plus dilation) such that \(|\tau_0 K| = |\tau_1 L| = 1 \) and such that the centroids of \(\tau_0 K \) and \(\tau_1 L \) coincide.

Theorem 1 (Ghilli-S. 2015)

Let \(p > 0 \) and assume that \(u_0 \) and \(u_1 \) are \(L^1 \) \(p \)-concave functions, with convex compact supports \(\Omega_0 \) and \(\Omega_1 \) respectively. Then, if \(H_0(\Omega_0, \Omega_1) \) is small enough, it holds

\[
\int_{\Omega_0} h(x) \, dx \geq M_{np+1}^p \left(\lambda (l_0, l_1, \lambda) \left[1 + \beta H_0(\Omega_0, \Omega_1)^{(n+1)(p+1)} \right] \right)
\]

(0.3)

where \(\beta \) is a constant depending on \(n, \lambda, p, M_{np+1}^p (l_0, l_1, \lambda) \) and the diameters and the measures of \(\Omega_0 \) and \(\Omega_1 \).
Joint work with D. Ghilli (Università di Padova).

\[A(K, L) := \inf_{x \in \mathbb{R}^n} \left\{ \frac{|K \Delta (x + \lambda F)|}{|K|}, \lambda = \left(\frac{|K|}{|L|}\right)^{\frac{1}{n}} \right\}, \quad (0.4) \]

where \(\Delta \) denotes the operation of symmetric difference, i.e. \(\Omega \Delta B = (\Omega \setminus B) \cup (B \setminus \Omega) \).

Theorem 2 (Ghilli-S. 2015)

In the same assumptions and notation of Theorem 1, if \(A(\Omega_0, \Omega_1) \) is small enough it holds

\[\int_{\Omega} \lambda h(x) \, dx \geq M_{np+1} \left[1 + \delta A(\Omega_0, \Omega_1)^2 (p+1)^p \right], \quad (0.5) \]

where \(\delta \) is a constant depending only on \(n, \lambda, p, M_{np+1} \) and on the measures of \(\Omega_0 \) and \(\Omega_1 \).
Quantitative BBL for p-concave functions with $p > 0$

Joint work with D. Ghilli (Università di Padova).

Let A denote the *relative asymmetry* of two sets, that is

$$A(K, L) := \inf_{x \in \mathbb{R}^n} \left\{ \frac{|K \Delta (x + \lambda F)|}{|K|}, \lambda = \left(\frac{|K|}{|L|} \right)^{\frac{1}{n}} \right\},$$

(0.4)

where Δ denotes the operation of symmetric difference, i.e.

$$\Omega \Delta B = (\Omega \setminus B) \cup (B \setminus \Omega).$$
Quantitative BBL for p-concave functions with $p > 0$

Joint work with D. Ghilli (Università di Padova).

Let A denote the relative asymmetry of two sets, that is

$$A(K, L) := \inf_{x \in \mathbb{R}^n} \left\{ \frac{|K \Delta (x + \lambda F)|}{|K|} \right\}, \quad \lambda = \left(\frac{|K|}{|L|} \right)^{1/n}, \quad (0.4)$$

where Δ denotes the operation of symmetric difference, i.e. $\Omega \Delta B = (\Omega \setminus B) \cup (B \setminus \Omega)$.

Theorem 2 (Ghilli-S. 2015)

In the same assumptions and notation of Theorem 1, if $A(\Omega_0, \Omega_1)$ is small enough it holds

$$\int_{\Omega_0} h(x) \, dx \geq M^{\frac{p}{np+1}} (l_0, l_1, \lambda) \left[1 + \delta A(\Omega_0, \Omega_1)^{\frac{2(p+1)}{p}} \right], \quad (0.5)$$

where δ is a constant depending only on $n, \lambda, p, M^{\frac{p}{np+1}} (l_0, l_1, \lambda)$ and on the measures of Ω_0 and Ω_1.
Quantitative BBL for p-concave functions with $p > 0$

Remarks. 0. Case $p = 1$ is easy! (In fact the same can be said for $p = 1/k$, $k \in \mathbb{N}$)
Quantitative BBL for p-concave functions with $p > 0$

Remarks. 0. Case $p = 1$ is easy! (In fact the same can be said for $p = 1/k, \ k \in \mathbb{N}$)

1. In both theorems it is not necessary that all the involved functions are p-concave, it is just sufficient that h only is p-concave.
Remarks. 0. Case $p = 1$ is easy! (In fact the same can be said for $p = 1/k, \ k \in \mathbb{N}$)

1. In both theorems it is not necessary that all the involved functions are p-concave, it is just sufficient that h only is p-concave.

2. We in fact prove more than what stated above and the support sets Ω_0 and Ω_1 could be replaced by any couple of level sets of u_0 and u_1, suitably related.
Remarks. 0. Case $p = 1$ is easy! (In fact the same can be said for $p = 1/k$, $k \in \mathbb{N}$)

1. In both theorems it is not necessary that all the involved functions are p-concave, it is just sufficient that h only is p-concave.

2. We in fact prove more than what stated above and the support sets Ω_0 and Ω_1 could be replaced by any couple of level sets of u_0 and u_1, suitably related. However, for the application we have in mind (quantitative BM inequalities for variational functionals), we are mainly interested in the support sets.

Main theorem

If for some (small enough) $\epsilon > 0$ it holds

$$\int_{\Omega} \lambda h(x) \, dx \leq M p^n p + 1 \left(\int_{\Omega_0} u_0(x) \, dx, \int_{\Omega_1} u_1(x) \, dx; \lambda \right) + \epsilon,$$

then

$$|\Omega_\lambda| \leq M 1 n \left(|\Omega_0|, |\Omega_1|, \lambda \right) \left[1 + \eta \epsilon p p + 1 \right].$$
Quantitative BBL for \(p \)-concave functions with \(p > 0 \)

Remarks.

0. Case \(p = 1 \) is easy! (In fact the same can be said for \(p = 1/k, \ k \in \mathbb{N} \))

1. In both theorems it is not necessary that all the involved functions are \(p \)-concave, it is just sufficient that \(h \) only is \(p \)-concave.

2. We in fact prove more than what stated above and the support sets \(\Omega_0 \) and \(\Omega_1 \) could be replaced by any couple of level sets of \(u_0 \) and \(u_1 \), suitably related. However, for the application we have in mind (quantitative BM inequalities for variational functionals), we are mainly interested in the support sets.

3. The proof of both theorems essentially amounts to proving the following and then applying existing quantitative results for the classical BM inequality.

Main theorem

If for some (small enough) \(\epsilon > 0 \) it holds

\[
\int_{\Omega_\lambda} h(x) \, dx \leq M \frac{p}{np+1} \left(\int_{\Omega_0} u_0(x) \, dx, \int_{\Omega_1} u_1(x) \, dx ; \lambda \right) + \epsilon, \tag{0.6}
\]

then

\[
|\Omega_\lambda| \leq M_1 (|\Omega_0|, |\Omega_1|, \lambda) \left[1 + \eta \epsilon \frac{p}{p+1} \right]. \tag{0.7}
\]
Sketch of the proof

Let

\[I_i = \int_{\Omega_i} u_i \, dx \quad i = 0, 1, \]

\[I_{\lambda} = \int_{\Omega_{\lambda}} h \, dx \]

and

\[L_i = \max_{\Omega_i} u_i \quad i = 0, 1, \quad L_{\lambda} = \max_{\Omega_{\lambda}} h \]

Consider the distribution functions

\[\mu_i(s) = |\{ u_i \geq s \}| \quad i = 0, 1, \quad \mu_{\lambda}(s) = |\{ u_{p,\lambda} \geq s \}| \]

Then

\[I_i = \int_0^{L_i} \mu_i(s) \, ds \quad i = 0, 1, \lambda. \]
Sketch of the proof

Notice that the assumption of BBL is equivalent to

\[\{ h \geq \mathcal{M}_p(s_0, s_1; \lambda) \} \supseteq (1 - \lambda) \{ u_0 \geq s_0 \} + \lambda \{ u_1 \geq s_1 \} \]

(0.8)

for \(s_0 \in [0, L_0], \; s_1 \in [0, L_1] \).
Notice that the assumption of BBL is equivalent to

\[\{ h \geq \mathcal{M}_p(s_0, s_1; \lambda) \} \supseteq (1 - \lambda)\{ u_0 \geq s_0 \} + \lambda\{ u_1 \geq s_1 \} \quad (0.8) \]

for \(s_0 \in [0, L_0], \ s_1 \in [0, L_1] \). Then, using the Brunn-Minkowski inequality, we get

\[\mu_\lambda(\mathcal{M}_p(s_0, s_1; \lambda)) \geq \mathcal{M}_{\frac{1}{\lambda}}(\mu_0(s_0), \mu_1(s_1), \lambda). \quad (0.9) \]

Now define the functions \(s_i : [0, 1] \rightarrow [0, L_i] \) for \(i = 0, 1 \) such that

\[s_i(t) : \frac{1}{l_i} \int_0^{s_i(t)} \mu_i(s) \, ds = t \quad \text{for } t \in [0, 1], \quad (0.10) \]
Notice that the assumption of BBL is equivalent to

$$\{ h \geq M_p(s_0, s_1; \lambda) \} \supseteq (1 - \lambda)\{ u_0 \geq s_0 \} + \lambda\{ u_1 \geq s_1 \}$$

(0.8)

for $s_0 \in [0, L_0]$, $s_1 \in [0, L_1]$. Then, using the Brunn-Minkowski inequality, we get

$$\mu_\lambda(M_p(s_0, s_1; \lambda)) \geq M_{\frac{1}{n}}(\mu_0(s_0), \mu_1(s_1), \lambda).$$

(0.9)

Now define the functions $s_i : [0, 1] \to [0, L_i]$ for $i = 0, 1$ such that

$$s_i(t) : \frac{1}{l_i} \int_0^{s_i(t)} \mu_i(s) \, ds = t \quad \text{for } t \in [0, 1],$$

(0.10)

and set

$$s_\lambda(t) = M_p(s_0(t), s_1(t), \lambda) \quad t \in [0, 1].$$
Sketch of the proof

Thanks to (0.9), we get

\[\mu_\lambda(s_\lambda(t)) \geq M_{1/n}(\mu_0(s_0(t)), \mu_1(s_1(t)), \lambda) \quad t \in [0, 1] \]

(0.11)
Thanks to (0.9), we get
\[\mu_\lambda (s_\lambda(t)) \geq \mathcal{M}_{\frac{1}{n}}(\mu_0(s_0(t)), \mu_1(s_1(t)), \lambda) \quad t \in [0, 1] \] (0.11)

Now, given any \(\alpha \in (0, 1) \), set
\[F_{\epsilon} = \{ t \in [0, 1] : \mu_\lambda(s_\lambda(t)) > \mathcal{M}_{\frac{1}{n}}(\mu_0(s_0(t)), \mu_1(s_1(t)), \lambda) + \epsilon^{1-\alpha} \} \] (0.12)

and
\[\Gamma_{\epsilon} = \{ s_\lambda(t) : t \in F_{\epsilon} \} . \] (0.13)

We want to find a bound of \(|\Gamma_{\epsilon}| \) in terms of \(\epsilon \) and, playing with the integrals and using the assumption, it is actually possible and we find
\[|\Gamma_{\epsilon}| \leq \epsilon^\alpha . \] (0.14)
Sketch of the proof

Thanks to (0.9), we get

$$\mu_\lambda(s_\lambda(t)) \geq M_1 \left(\mu_0(s_0(t)), \mu_1(s_1(t)), \lambda \right), \quad t \in [0, 1]$$ \hspace{1cm} (0.11)

Now, given any $\alpha \in (0, 1)$, set

$$F_\epsilon = \{ t \in [0, 1] : \mu_\lambda(s_\lambda(t)) > M_1 \left(\mu_0(s_0(t)), \mu_1(s_1(t)), \lambda \right) + \epsilon^{1-\alpha} \}$$ \hspace{1cm} (0.12)

and

$$\Gamma_\epsilon = \{ s_\lambda(t) : t \in F_\epsilon \}.$$ \hspace{1cm} (0.13)

We want to find a bound of $|\Gamma_\epsilon|$ in terms of ϵ and, playing with the integrals and using the assumption, it is actually possible and we find

$$|\Gamma_\epsilon| \leq \epsilon^\alpha.$$ \hspace{1cm} (0.14)

Now choosing the right power $\alpha = \frac{p}{p+1}$ and using the p-concavity of h and the Brunn-Minkowski inequality we get the conclusion.
Examples of applications

2. Quantitative Urysohn’s inequaities for the same functionals.

I will show in some detail the case of torsional rigidity.
The leading idea is to find a way to compare solutions of different equations in different domains, I mean.... whiteboard —>
The leading idea is to find a way to compare solutions of different equations in different domains, I mean.... whiteboard —

More explicitly, consider two sets Ω_0 and Ω_1 and a real number $\mu \in (0, 1)$, and denote by Ω_μ the \textit{Minkowski convex combination} (with coefficient μ) of Ω_0 and Ω_1, that is

$$\Omega_\mu = (1 - \mu)\Omega_0 + \mu \Omega_1 = \{(1 - \mu)x_0 + \mu x_1 : x_0 \in \Omega_0, x_1 \in \Omega_1 \}.$$
The leading idea is to find a way to compare solutions of different equations in different domains, I mean.... whiteboard —>

More explicitly, consider two sets \(\Omega_0 \) and \(\Omega_1 \) and a real number \(\mu \in (0, 1) \), and denote by \(\Omega_\mu \) the \textit{Minkowski convex combination} (with coefficient \(\mu \)) of \(\Omega_0 \) and \(\Omega_1 \), that is

\[
\Omega_\mu = (1 - \mu)\Omega_0 + \mu \Omega_1 = \{(1 - \mu)x_0 + \mu x_1 : x_0 \in \Omega_0, x_1 \in \Omega_1\}.
\]

Correspondingly, let \(u_0 \), \(u_1 \) and \(u_\mu \) be the solutions of

\[
(P_i) \quad \begin{cases}
F_i(x, u_i, Du_i, D^2 u_i) = 0 & \text{in } \Omega_i, \\
u_i = 0 & \text{on } \partial \Omega_i, \\
u_i > 0 & \text{in } \Omega_i,
\end{cases}
\]

where \(F_i : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \times S_n \rightarrow \mathbb{R} \) is a continuous (proper) degenerate elliptic operator, i.e. decreasing with respect to \(u \) and increasing w.r.t. to the (Hessian) matrix variable \(A \).
Combinations of solutions in different sets

\[u_0 \text{ sol. of } (P_0) \text{ in } \Omega_0 \quad u_1 \text{ sol. of } (P_1) \text{ in } \Omega_1 \]
Combinations of solutions in different sets

\[u_0 \text{ sol. of } (P_0) \text{ in } \Omega_0 \quad u_1 \text{ sol. of } (P_1) \text{ in } \Omega_1 \]

\[x_0 \in \Omega_0 \quad \rightarrow \quad u_0(x_0) \quad \quad x_1 \in \Omega_1 \quad \rightarrow \quad u_1(x_1) \]
Combinations of solutions in different sets

\[u_0 \text{ sol. of } (P_0) \text{ in } \Omega_0 \quad u_1 \text{ sol. of } (P_1) \text{ in } \Omega_1 \]
\[x_0 \in \Omega_0 \quad \longrightarrow \quad u_0(x_0) \quad x_1 \in \Omega_1 \quad \longrightarrow \quad u_1(x_1) \]
\[u_\mu \text{ sol. of } (P_\mu) \text{ in } \Omega_\mu \]
Combinations of solutions in different sets

\[u_0 \ \text{sol. of} \ (P_0) \ \text{in} \ \Omega_0 \quad u_1 \ \text{sol. of} \ (P_1) \ \text{in} \ \Omega_1 \]
\[x_0 \in \Omega_0 \longrightarrow u_0(x_0) \quad x_1 \in \Omega_1 \longrightarrow u_1(x_1) \]

\[u_\mu \ \text{sol. of} \ (P_\mu) \ \text{in} \ \Omega_\mu \]
\[x = (1 - \mu)x_0 + \mu x_1 \in \Omega_\mu \longrightarrow u_\mu(x) \]
Combinations of solutions in different sets

\[u_0 \text{ sol. of } (P_0) \text{ in } \Omega_0 \quad u_1 \text{ sol. of } (P_1) \text{ in } \Omega_1 \]

\[x_0 \in \Omega_0 \rightarrow u_0(x_0) \quad x_1 \in \Omega_1 \rightarrow u_1(x_1) \]

\[u_\mu \text{ sol. of } (P_\mu) \text{ in } \Omega_\mu \]

\[x = (1 - \mu)x_0 + \mu x_1 \in \Omega_\mu \rightarrow u_\mu(x) \]

Question: are there suitable assumptions on the operators \(F_0, F_1 \) and \(F_\mu \) which permit to compare \(u_\mu \) with (a suitable convolution of) \(u_0 \) and \(u_1 \) ?
Combinations of solutions in different sets

\[u_0 \text{ sol. of } (P_0) \text{ in } \Omega_0 \quad u_1 \text{ sol. of } (P_1) \text{ in } \Omega_1 \n\]
\[x_0 \in \Omega_0 \longrightarrow u_0(x_0) \quad x_1 \in \Omega_1 \longrightarrow u_1(x_1) \n\]

\[u_\mu \text{ sol. of } (P_\mu) \text{ in } \Omega_\mu \n\]
\[x = (1 - \mu)x_0 + \mu x_1 \in \Omega_\mu \longrightarrow u_\mu(x) \n\]

Question: are there suitable assumptions on the operators \(F_0, F_1 \) and \(F_\mu \) which permit to compare \(u_\mu \) with (a suitable convolution of) \(u_0 \) and \(u_1 \)? Precisely, we want to find suitable conditions on the operators \(F_0, F_1, F_\mu \) which guarantee

\[u_\mu((1 - \mu)x_0 + \mu x_1) \geq M_p(u_0(x_0), u_1(x_1); \mu) \]

for every \(x_0 \in \Omega_0, x_1 \in \Omega_1, \) for some \(p \in \mathbb{R} \).
Combinations of solutions in different sets

\[u_0 \text{ sol. of } (P_0) \text{ in } \Omega_0 \quad u_1 \text{ sol. of } (P_1) \text{ in } \Omega_1 \]
\[x_0 \in \Omega_0 \longrightarrow u_0(x_0) \quad x_1 \in \Omega_1 \longrightarrow u_1(x_1) \]

\[u_\mu \text{ sol. of } (P_\mu) \text{ in } \Omega_\mu \]
\[x = (1 - \mu)x_0 + \mu x_1 \in \Omega_\mu \longrightarrow u_\mu(x) \]

Question: are there suitable assumptions on the operators \(F_0, F_1 \) and \(F_\mu \) which permit to compare \(u_\mu \) with (a suitable convolution of) \(u_0 \) and \(u_1 \)?

Precisely, we want to find suitable conditions on the operators \(F_0, F_1, F_\mu \) which guarantee

\[u_\mu((1 - \mu)x_0 + \mu x_1) \geq M_p(u_0(x_0), u_1(x_1); \mu) \]

for every \(x_0 \in \Omega_0, x_1 \in \Omega_1 \), for some \(p \in \mathbb{R} \).

Equivalently

\[u_\mu(x) \geq \sup\{M_p(u_0(x_0), u_1(x_1); \mu) : x_0 \in \Omega_0, x_1 \in \Omega_1, x = (1 - \mu)x_0 + \mu x_1\} \]

for every \(x \in \Omega_\mu = (1 - \mu)\Omega_0 + \mu \Omega_1 \).
The p-concave convolution

Let us define the function $u_{p,\mu}^* : \Omega_\mu \rightarrow [0, +\infty)$ as follows:

$$u_{p,\mu}^*(x) = \sup\{M_p(u_0(x_0), u_1(x_1); \mu) : x_0 \in \Omega_0, x_1 \in \Omega_1, x = (1 - \mu)x_0 + \mu x_1\}$$

and call it p-concave convolution of u_0 and u_1 (with weight μ).
Let us define the function \(u_{p,\mu}^*: \Omega_\mu \to [0, +\infty) \) as follows:

\[
 u_{p,\mu}^*(x) = \sup\{ M_p(u_0(x_0), u_1(x_1); \mu) : x_0 \in \Omega_0, x_1 \in \Omega_1, x = (1 - \mu)x_0 + \mu x_1 \}
\]

and call it \(p\)-concave convolution of \(u_0 \) and \(u_1 \) (with weight \(\mu \)).

When \(p = 1 \) it is the usual supremal convolution (from convex analysis) and, geometrically, it simply corresponds to the function whose graph is the Minkowski linear combination (in \(\mathbb{R}^{n+1} \)) of the graphs of \(u_0 \) and \(u_1 \).
The p-concave convolution

Let us define the function $u_{p, \mu}^* : \Omega_\mu \rightarrow [0, +\infty)$ as follows:

$$u_{p, \mu}^*(x) = \sup\{ M_p(u_0(x_0), u_1(x_1); \mu) : x_0 \in \Omega_0, x_1 \in \Omega_1, x = (1 - \mu)x_0 + \mu x_1 \}$$

and call it p-concave convolution of u_0 and u_1 (with weight μ).

When $p = 1$ it is the usual supremal convolution (from convex analysis) and, geometrically, it simply corresponds to the function whose graph is the Minkowski linear combination (in \mathbb{R}^{n+1}) of the graphs of u_0 and u_1.

For $p > 0$ it corresponds to make the sup-conv (that is the Minkowski combination of the graphs) of u_0^p and u_1^p and then to raise to power $1/p$.
Let us define the function \(u_{p,\mu}^* : \Omega_\mu \rightarrow [0, +\infty) \) as follows:

\[
u_{p,\mu}^*(x) = \sup\{ M_p(u_0(x_0), u_1(x_1); \mu) : x_0 \in \Omega_0, x_1 \in \Omega_1, x = (1 - \mu)x_0 + \mu x_1 \}
\]

and call it \(p \)-concave convolution of \(u_0 \) and \(u_1 \) (with weight \(\mu \)).

When \(p = 1 \) it is the usual \textit{supremal convolution} (from convex analysis) and, geometrically, it simply corresponds to the function whose graph is the \textit{Minkowski linear combination} (in \(\mathbb{R}^{n+1} \)) of the graphs of \(u_0 \) and \(u_1 \).

For \(p > 0 \) it corresponds to make the sup-conv (that is the Minkowski combination of the graphs) of \(u_0^p \) and \(u_1^p \) and then to raise to power \(1/p \).

For \(p = 0 \) it corresponds to \(\exp(\text{sup-conv of } \log u_0 \text{ and } \log u_1) \).
Let us define the function \(u^*_p,\mu : \Omega_\mu \to [0, +\infty) \) as follows:

\[
 u^*_p,\mu(x) = \sup\{ M_p(u_0(x_0), u_1(x_1); \mu) : x_0 \in \Omega_0, x_1 \in \Omega_1, x = (1 - \mu)x_0 + \mu x_1 \}
\]

and call it \(p\)-concave convolution of \(u_0 \) and \(u_1 \) (with weight \(\mu \)).

When \(p = 1 \) it is the usual \textit{supremal convolution} (from convex analysis) and, geometrically, it simply corresponds to the function whose graph is the \textit{Minkowski linear combination (in} \(\mathbb{R}^{n+1} \) \textit{) of the graphs of} \(u_0 \) and \(u_1 \).

For \(p > 0 \) it corresponds to make the sup-conv (that is the Minkowski combination of the graphs) of \(u^p_0 \) and \(u^p_1 \) and then to raise to power \(1/p \).

For \(p = 0 \) it corresponds to \(\exp(\sup\text{-conv of } \log u_0 \text{ and } \log u_1) \).

\textbf{STRATEGY:} if \(F_\mu \) satisfies the \textit{comparison principle}, to get the goal we have just to prove that \(u^*_p,\mu \) is a \textit{viscosity subsolution} of \((P_\mu) \).
For $i = 0, 1, \mu$ and for a given $p \geq 0$, for every fixed $\theta \in \mathbb{R}^n$ we define $G^{(\theta)}_{i,p} : \Omega_i \times (0, +\infty) \times S_n \to \mathbb{R}$ as follows:

\[
G^{(\theta)}_{i,p}(x, t, A) = F_i(x, t^{\frac{1}{p}} - 1 \theta, t^{\frac{1}{p} - 3} A) \quad \text{for } p > 0, \tag{0.15}
\]

\[
G^{(\theta)}_{i,0}(x, t, A) = F_i(x, e^t, e^t \theta, e^t A). \tag{0.16}
\]

Assumption $(A_{\mu, p})$. Let $\mu \in (0, 1)$ and $p \geq 0$. We say that F_0, F_1, F_μ satisfy the assumption $(A_{\mu, p})$ if, for every fixed $\theta \in \mathbb{R}^n$, the following holds:

\[
G^{(\theta)}_{\mu,p}((1 - \mu)x_0 + \mu x_1, (1 - \mu)t_0 + \mu t_1, (1 - \mu)A_0 + \mu A_1) \geq \min\{G^{(\theta)}_{0,p}(x_0, t_0, A_0); \ G^{(\theta)}_{1,p}(x_1, t_1, A_1)\}
\]

for every $x_0 \in \Omega_0$, $x_1 \in \Omega_1$, $t_0, t_1 > 0$ and $A_0, A_1 \in S_n$.
Assumptions on the operators

For $i = 0, 1, \mu$ and for a given $p \geq 0$, for every fixed $\theta \in \mathbb{R}^n$ we define $G_{i,p}^{(\theta)} : \Omega_i \times (0, +\infty) \times S_n \to \mathbb{R}$ as follows:

$G_{i,p}^{(\theta)}(x, t, A) = F_i(x, t^{1/p}, t^{1/p-1}\theta, t^{1/p-3}A)$ for $p > 0$, \hspace{1cm} (0.15)

$G_{i,0}^{(\theta)}(x, t, A) = F_i(x, e^t, e^t\theta, e^tA)$. \hspace{1cm} (0.16)

Assumption $(A_{\mu,p})$. Let $\mu \in (0, 1)$ and $p \geq 0$. We say that F_0, F_1, F_μ satisfy the assumption $(A_{\mu,p})$ if, for every fixed $\theta \in \mathbb{R}^n$, the following holds:

$G_{\mu,p}^{(\theta)}((1 - \mu)x_0 + \mu x_1, (1 - \mu)t_0 + \mu t_1, (1 - \mu)A_0 + \mu A_1) \geq \min\{ G_{0,p}^{(\theta)}(x_0, t_0, A_0); G_{1,p}^{(\theta)}(x_1, t_1, A_1)\}$

for every $x_0 \in \Omega_0, x_1 \in \Omega_1, t_0, t_1 > 0$ and $A_0, A_1 \in S_n$.

If $F_0 = F_1 = F_\mu$, we are simply requiring the operator G_p^{θ} to be quasi-concave, i.e. with convex superlevel sets.

Let $\mu \in (0, 1)$, Ω_i an open bounded convex set and u_i a classical solution of (P_i) for $i = 0, 1$. Assume that F_0, F_1, F_μ satisfy the assumption $(A_{\mu,p})$ for some $p \in [0, 1)$. If $p > 0$, assume furthermore that for $i = 0, 1$ it holds

$$\liminf_{y \to x} \frac{\partial u_i(y)}{\partial \nu} > 0$$

(0.17)

for every $x \in \partial \Omega_i$, where ν is any inward direction of Ω_i at x. Then $u_{p,\mu}^*$ is a viscosity subsolution of (P_μ).
Let $\mu \in (0, 1)$, Ω_i an open bounded convex set and u_i a classical solution of (P_i) for $i = 0, 1$. Assume that F_0, F_1, F_{μ} satisfy the assumption $(A_{\mu,p})$ for some $p \in [0, 1)$. If $p > 0$, assume furthermore that for $i = 0, 1$ it holds

$$\liminf_{y \to x} \frac{\partial u_i(y)}{\partial \nu} > 0$$

(0.17)

for every $x \in \partial \Omega_i$, where ν is any inward direction of Ω_i at x. Then u^*_p,μ is a viscosity subsolution of (P_{μ}).

Corollary (1)

In the same assumption of the previous theorem, if F_{μ} satisfies a Comparison Principle and u_μ is a viscosity solution of (P_{μ}), then

$$u_\mu((1 - \mu) x_0 + \mu x_1) \geq M_p(u_0(x_0), u_1(x_1); \mu)$$

(0.18)

*for every $x_0 \in \Omega_0$, $x_1 \in \Omega_1$.***
Comparison

By a combination of the previous result with the BBL inequality, we can compare the L^r norms of the involved functions:

Corollary (2)

With the same assumptions and notation of the previous corollary, for every $r \in (0, +\infty]$ we have

\[
\| u_\mu \|_{L^r(\Omega_\mu)} \geq M_q(\| u_0 \|_{L^r(\Omega_0)}, \| u_1 \|_{L^r(\Omega_1)}; \mu),
\]

where

\[
q = \begin{cases}
\frac{pr}{np+r} & \text{for } r \in (0, +\infty) \\
p & \text{for } r = +\infty.
\end{cases}
\]
A simple Example

For instance, let u_0 and u_1 be the solutions of the following problems

\[
\begin{cases}
\Delta u_0 + f_0(x) = 0 & \text{in } \Omega_0 \\
u_0 = 0 & \text{on } \partial \Omega_0
\end{cases}
\]

and

\[
\begin{cases}
\Delta u_1 + f_1(x) = 0 & \text{in } \Omega_1 \\
u_1 = 0 & \text{on } \partial \Omega_1.
\end{cases}
\]

Then take $\mu \in (0, 1)$ and set

$$
\Omega = (1 - \mu)\Omega_0 + \mu \Omega_1.
$$

Now let u_μ be the solution of

\[
\begin{cases}
\Delta u_\mu + f_\mu(x) = 0 & \text{in } \Omega \\
u_\mu = 0 & \text{on } \partial \Omega.
\end{cases}
\]
A simple example

Then assumption \((A_{\mu,p})\) for \(p=1/3\) reads

\[
f_{\mu}\left((1-\mu)x_0 + \mu x_1\right) \geq (1-\mu)f_0(x_0) + \mu f_1(x_1)
\]

(0.20)

The main theorem tells that we can estimate \(u_{\mu}\) in terms of \(u_0\) and \(u_1\); precisely it holds

\[
u_{\mu}\left((1-\mu)x_0 + \mu x_1\right) \geq \left[(1-\mu)^{3/2}u_0(x_0) + \mu^{3/2}u_1(x_1)\right]^{3}
\]

for every \(x_0 \in \Omega_0, x_1 \in \Omega_1\). Moreover, by using the Borell-Brascamp-Lieb inequality we get

\[
\|u_{\mu}\|_{L^r(\Omega_{\mu})} \geq M_q(\|u_0\|_{L^r(Q)}, \|u_1\|_{L^r(B(0,1))}; \mu)
\]

for every \(r \in (0, +\infty]\), where

\[
q = \begin{cases}
\frac{r}{n+3r}, & r \in (0, +\infty) \\
1/3, & r = +\infty
\end{cases}
\]
Examples

Notice in particular that, if \(f_0 = f_1 = f_\mu = f : \mathbb{R}^n \to [0, +\infty) \), condition (0.20) simply means \(f \) is concave. In this particular case, we can write the following result.

Corollary

Let \(f \) be a smooth nonnegative function defined in \(\mathbb{R}^n \). Let \(\mu \in (0, 1) \) and \(\Omega_0 \) and \(\Omega_1 \) be convex subsets of \(\mathbb{R}^n \) and denote by \(u_0 \), \(u_1 \) and \(u_\mu \) the solutions of

\[
\begin{cases}
\Delta u_i + f(x) = 0 & \text{in } \Omega_i \\
u_i = 0 & \text{on } \partial \Omega_i
\end{cases}
\]

for \(i = 0, 1, \mu \) respectively, where \(\Omega_\mu = (1 - \mu)\Omega_0 + \mu\Omega_1 \), as usual. Assume \(f \) is \(\beta \)-concave for some \(\beta \geq 1 \), that is \(f^\beta \) is concave. Then (0.18) holds with

\[
p = \frac{\beta}{1 + 2\beta}.
\]

In case \(f \) is a positive constant (\(\beta = +\infty \)), the same conclusions follow with \(p = 1/2 \).
This technique has several applications:
Consequences

This technique has several applications:

1. it can be used to prove concavity properties of solutions to elliptic and parabolic problems in convex domains;
Consequences

This technique has several applications:

1. it can be used to prove concavity properties of solutions to elliptic and parabolic problems in convex domains;

2. it is possible to define a new kind of rearrangement (the mean-width rearrangements) which apply to operators not in divergence form and permits to obtain Talenti-like results for the associated equations;
Consequences

This technique has several applications:

1. it can be used to prove concavity properties of solutions to elliptic and parabolic problems in convex domains;

2. it is possible to define a new kind of rearrangement (the mean-width rearrangements) which apply to operators not in divergence form and permits to obtain Talenti-like results for the associated equations;

3. it permits to prove Brunn-Minkowski type (and also Urysohn’s type) inequalities for many variational functionals.
When the involved equation is the Euler equation of some variational functional, we can obtain a BM inequality for such a functional.
When the involved equation is the Euler equation of some variational functional, we can obtain a BM inequality for such a functional. Probably the simplest case is that one of *Torsional rigidity*:

\[
\frac{1}{\tau(\Omega)} = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\left(\int_{\Omega} |u| \right)^2} : u \in W^{1,2}_0(\Omega), \int_{\Omega} |u| \, dx > 0 \right\}
\]
When the involved equation is the Euler equation of some variational functional, we can obtain a BM inequality for such a functional. Probably the simplest case is that one of *Torsional rigidity*:

\[
\frac{1}{\tau(\Omega)} = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\left(\int_{\Omega} |u| \right)^2} : u \in W_0^{1,2}(\Omega), \int_{\Omega} |u| \, dx > 0 \right\}
\]

BM inequality for \(\tau \) [Borell, 1985]

\[
\tau(\Omega_\mu) \geq M_{1/(n+2)}(\tau(\Omega_0), \tau(\Omega_1); \mu) = \left[(1 - \mu) \tau(\Omega_0)^{1/(n+2)} + \mu \tau(\Omega_1)^{1/(n+2)} \right]^{n+2}
\]
When the involved equation is the Euler equation of some variational functional, we can obtain a BM inequality for such a functional. Probably the simplest case is that one of Torsional rigidity:

$$\frac{1}{\tau(\Omega)} = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^2 dx}{\left(\int_{\Omega} |u| \right)^2} : u \in W^{1,2}_0(\Omega), \int_{\Omega} |u| dx > 0 \right\}$$

BM inequality for τ [Borell, 1985]

$$\tau(\Omega^\mu) \geq M_{1/(n+2)}(\tau(\Omega_0), \tau(\Omega_1); \mu) = \left[(1 - \mu)\tau(\Omega_0)^{1/(n+2)} + \mu \tau(\Omega_1)^{1/(n+2)} \right]^{n+2}$$

Equality holds if and only if Ω_0 and Ω_1 are homothetic [Colesanti 2005].
A proof of BM for τ with the above technique is quite simple.
A proof of BM for \(\tau \) with the above technique is quite simple. Notice that

\[
\tau(\Omega_i) = \int_{\Omega_i} u_i \, dx \quad i = 0, 1, \mu
\]

where \(u_i \) is the solution of the torsion problem

\[
(P_{\mu}) \begin{cases}
\Delta u_i + 1 = 0 & \text{in } \Omega_i, \\
u_i = 0 & \text{on } \partial\Omega_i.
\end{cases} \quad i = 0, 1, \mu
\]
A proof of BM for τ with the above technique is quite simple. Notice that

$$\tau(\Omega_i) = \int_{\Omega_i} u_i \, dx \quad i = 0, 1, \mu$$

where u_i is the solution of the torsion problem

$$\begin{cases}
\Delta u_i + 1 = 0 & \text{in } \Omega_i, \\
u_i = 0 & \text{on } \partial\Omega_i.
\end{cases}$$

Set

$$u^*_1(\mu)(x) = \sup\{(1 - \mu)\sqrt{u_0(x_0)} + \mu\sqrt{u_1(x_1)} : (1 - \mu)x_0 + \mu x_1 = x\}$$

By Theorem 3, $u^*_1(\mu)$ is a subsolution to the torsion problem in Ω_μ.
A proof of BM for τ with the above technique is quite simple. Notice that

$$\tau(\Omega_i) = \int_{\Omega_i} u_i \, dx \quad i = 0, 1, \mu$$

where u_i is the solution of the torsion problem

$$\begin{cases}
\Delta u_i + 1 = 0 & \text{in } \Omega_i, \\
 u_i = 0 & \text{on } \partial\Omega_i.
\end{cases} \quad (P_\mu)$$

Set

$$u^{*}_{1/2, \mu}(x) = \sup\{(1 - \mu)\sqrt{u_0(x_0)} + \mu\sqrt{u_1(x_1)} : (1 - \mu)x_0 + \mu x_1 = x\}$$

By Theorem 3, $u^{*}_{1/2, \mu}$ is a subsolution to the torsion problem in Ω_μ. Then

$$u_\mu \geq u^{*}_{1/2, \mu}$$

and we can use the BBL inequality to get the desired result, see Corollary 2.
Quantitative BM inequalities for τ

Now it's easy to understand that it is possible to use the quantitative versions of BBI to get corresponding quantitative versions of the BM inequality for τ.

Let Ω_0 and Ω_1 be convex bodies in \mathbb{R}^n, then the following hold:

$$\tau(\Omega_\lambda) \geq M_1 n + 2 \left(\tau(\Omega_0), \tau(\Omega_1), \lambda \right) + \beta H_0(\Omega_0, \Omega_1)$$

$$\tau(\Omega_\lambda) \geq M_1 n + 2 \left(\tau(\Omega_0), \tau(\Omega_1), \lambda \right) + \delta A(\Omega_0, \Omega_1)$$

where β and δ are constants depending on n, λ, M_p, $n p + 1$, $\tau(\Omega_0, \tau(\Omega_1))$, and the diameters and the measures of Ω_0 and Ω_1.

Paolo Salani (DiMaI - Università di Firenze)
Quantitative BM inequalities for τ

Now it’s easy to understand that it is possible to use the quantitative versions of BBl to get corresponding quantitative versions of the BM inequality for τ.

Quantitative BM for τ [Ghilli-S. (2014)]

Let Ω_0 and Ω_1 be convex bodies in \mathbb{R}^n, then the following hold:

$$\tau(\Omega_\lambda) \geq M \frac{1}{n+2} (\tau(\Omega_0), \tau(\Omega_1), \lambda) + \beta H_0(\Omega_0, \Omega_1)^{3(n+1)},$$ \hfill (0.21)

$$\tau(\Omega_\lambda) \geq M \frac{1}{n+2} (\tau(\Omega_0), \tau(\Omega_1), \lambda) + \delta A(\Omega_0, \Omega_1)^6,$$ \hfill (0.22)

where β and δ are constants depending on n, λ, M, $\frac{\rho}{np+1}$, $(\tau(\Omega_0), \tau(\Omega_1), \lambda)$ and the diameters and the measures of Ω_0 and Ω_1.

Paolo Salani (DiMaI - Università di Firenze)
Quantitative BM inequalities for τ

Now it's easy to understand that it is possible to use the quantitative versions of BBl to get corresponding quantitative versions of the BM inequality for τ.

Quantitative BM for τ [Ghilli-S. (2014)]

Let Ω_0 and Ω_1 be convex bodies in \mathbb{R}^n, then the following hold:

\[\tau(\Omega_\lambda) \geq M \frac{1}{n+2} (\tau(\Omega_0), \tau(\Omega_1), \lambda) + \beta H_0(\Omega_0, \Omega_1)^{3(n+1)}, \quad (0.21)\]

\[\tau(\Omega_\lambda) \geq M \frac{1}{n+2} (\tau(\Omega_0), \tau(\Omega_1), \lambda) + \delta A(\Omega_0, \Omega_1)^6, \quad (0.22)\]

where β and δ are constants depending on n, λ, $M \frac{p}{np+1} (\tau(\Omega_0, \tau(\Omega_1), \lambda)$ and the diameters and the measures of Ω_0 and Ω_1.
Given a convex set Ω, we say that Ω^\sharp_m is a rotation mean of Ω if there exist a number $m \in \mathbb{N}$ and $\rho_1, \ldots, \rho_m \in SO(n)$ such that

$$
\Omega^\sharp_m = \frac{1}{m} \left(\rho_1 \Omega + \cdots + \rho_m \Omega \right).
$$

The following theorem is due to Hadwiger.

Theorem (Hadwiger)

Given an open bounded convex set Ω, there exists a sequence of rotation means of Ω converging in Hausdorff metric to a ball Ω^\sharp with diameter equal to the mean width $w(\Omega)$ of Ω.

Notice that in the plane the mean width of a convex set coincides essentially with its perimeter. Precisely:

$$
w(\Omega) = \frac{|\partial \Omega|}{\pi}.
$$

Then Ω^\sharp is a circle with the same perimeter as Ω.
Given a convex set Ω, we say that $\Omega_m^\#$ is a rotation mean of Ω if there exist a number $m \in \mathbb{N}$ and $\rho_1, \ldots, \rho_m \in SO(n)$ such that

$$\Omega_m^\# = \frac{1}{m} (\rho_1\Omega + \cdots + \rho_m\Omega).$$

The following theorem is due to Hadwiger.

Theorem (Hadwiger)

*Given an open bounded convex set Ω, there exists a sequence of rotation means of Ω converging in Hausdorff metric to a ball $\Omega^\#$ with diameter equal to the mean width $w(\Omega)$ of Ω.***
Urysohn’s inequality for τ

Given a convex set Ω, we say that $\Omega^\#_m$ is a \textit{rotation mean} of Ω if there exist a number $m \in \mathbb{N}$ and $\rho_1, \ldots, \rho_m \in SO(n)$ such that

$$
\Omega^\#_m = \frac{1}{m} (\rho_1 \Omega + \cdots + \rho_m \Omega).
$$

The following theorem is due to Hadwiger.

Theorem (Hadwiger)

\textit{Given an open bounded convex set Ω, there exists a sequence of rotation means of Ω converging in Hausdorff metric to a ball $\Omega^\#$ with diameter equal to the mean width $w(\Omega)$ of Ω.}

Notice that in the plane the mean width of a convex set coincides essentially with its perimeter. Precisely: $w(\Omega) = |\partial \Omega|/\pi$. Then $\Omega^\#$ is a circle with the same perimeter as Ω.

Paolo Salani (DiMaI - Università di Firenze)
By the BM inequality for torsional rigidity, we get

\[\tau(\Omega^\#_m) \geq \tau(\Omega) \quad \text{for every } m, \]

then, passing to the limit, we obtain the following:
By the BM inequality for torsional rigidity, we get

$$\tau(\Omega^m) \geq \tau(\Omega) \quad \text{for every } m,$$

then, passing to the limit, we obtain the following:

Urysohn’s ineq. for τ

$$\tau(\Omega) \leq \tau(\Omega^\#)$$

and $=\$ holds if and only if $\Omega = \Omega^\#$.

In other words: among sets with given mean width, the torsional rigidity is maximized by balls.
Urysohn’s inequality for τ

By the BM inequality for torsional rigidity, we get

$$\tau(\Omega^\#_m) \geq \tau(\Omega) \quad \text{for every } m,$$

then, passing to the limit, we obtain the following:

Urysohn’s ineq. for τ

$$\tau(\Omega) \leq \tau(\Omega^\#)$$

and $=\,$ holds if and only if $\Omega = \Omega^\#$.

In other words: among sets with given mean width, the torsional rigidity is maximized by balls.
Let Ω be an open bounded convex set of \mathbb{R}^n, $n \geq 2$ with centroid in the origin. Let $\Omega^\#$ be the ball with the same mean-width of Ω with center in the origin. Then the following hold

$$\tau(\Omega^\#) \geq \tau(\Omega) \left(1 + \mu H^{3(n+1)}\right),$$

(0.23)

$$\tau(\Omega^\#) \geq \tau(\Omega) \left(1 + \nu A^6\right),$$

(0.24)

where $H = H(\Omega, \Omega^\#)$ and $A = \max\{A(\Omega, \Omega_\rho) : \rho \text{ rotation in } \mathbb{R}^n\}$ are small enough, μ and ν are constants, the former depending on n, $\tau(\Omega)$ and the diameter of Ω, the latter depending only on n and $\tau(\Omega)$.
Brunn-Minkowski type inequalities have been proved for several variational functionals:

Then most of the above arguments, showed for the case of torsional rigidity, can be repeated for many other functionals.

Then most of the above arguments, showed for the case of torsional rigidity, can be repeated for many other functionals.
THANKS!