An F_5 Algorithm for Modules over Path Algebra Quotients and the Computation of Loewy Layers

Simon King [DFG project KI 861/2–1]
June 02, 2015
My motivation for studying path algebras

Group cohomology package for Sage (K, D. Green), #18514 for upgrade

http://sage.math.washington.edu/home/SimonKing/Cohomology

- Modular cohomology rings for groups of order 128, HS, McL, C_{03}, Janko groups (not J_4), Mathieu groups (not M_{24}), ...
- It starts with computing minimal projective resolutions for $\mathbb{F}_p G$ ($|G| = p^n$), which can be a bottle neck \rightsquigarrow improve it!
- Extend scope: Resolutions for basic algebras \rightsquigarrow Ext algebras.

Computing minimal generating sets for kernels of module homomorphisms

- E. Green, Solberg, Zacharia [2001]: Use non-commutative Gröbner bases to compute kernels, and then minimise the generating set.
Basic algebras? Loewy layers?

Path algebra for quiver Q over field K

- \mathcal{P} is a graded associative algebra, usually with zero divisors.
- We study path algebra quotients $\psi: \mathcal{P} \rightarrow \mathcal{A}$, with a focus on basic algebras: \mathcal{A} finite dimensional, $\ker(\psi) \subseteq \mathcal{P}^2$

Loewy layers of submodule $M \leq \mathcal{A}^r$, \mathcal{A} basic algebra

- $\text{Rad}(\mathcal{A}) = \mathcal{A}^+ = \langle m \in \mathcal{A} | m \text{ arrow} \rangle$ (quadratic relations!)
- $\text{Rad}^0(M) = M$ and $\text{Rad}^d(M) = \text{Rad}^{d-1}(M) \cdot \text{Rad}(\mathcal{A})$
- The d-th Loewy layer $\mathcal{L}^d(M)$ is $\text{Rad}^{d-1}(M) / \text{Rad}^d(M)$

Motivation for studying Loewy layers of modules over basic algebras

- Each K–basis of $\mathcal{L}^1(M)$ is a minimal generating set for M
 \rightsquigarrow replace heady algorithm in the spkg.
1 Computational setup
 - Path algebra quotients
 - Right modules
 - Non-commutative F_5??

2 The F_5 signature
 - Signed elements
 - Signed reduction

3 Signed standard bases
 - Critical pairs and S-polynomials
 - The revised F_5 criterion

4 Reading off Loewy layers via signed standard bases
 - Comparison and questions

5 Status of Implementation in SageMath
\(\mathcal{P} \) path algebra of a finite quiver \(Q \) over a field \(K \)

- Monomials \(\text{Mon}(\mathcal{P}) \leftrightarrow \) oriented paths in \(Q \)
- Degree of monomial \(\leftrightarrow \) path length
- Choose a \textit{monomial ordering} \(> \) on \(\text{Mon}(\mathcal{P}) \).
 For \(p \in \mathcal{P} \): \(\text{Lm}(p), \text{Lc}(p), \text{Lt}(p) = \text{Lc}(p) \cdot \text{Lm}(p) \).

\[\psi : \mathcal{P} \rightarrow \mathcal{A} \] path algebra quotient

- \(\text{stdMon}_\mathcal{A}(\mathcal{P}) = \{ m \in \text{Mon}(\mathcal{P}) | \not\exists p \in \ker(\psi) : \text{Lm}(p) = m \} \)
- \(\text{Mon}(\mathcal{A}) = \psi(\text{stdMon}_\mathcal{A}(\mathcal{P})) \) is a \(K \)-basis of \(\mathcal{A} \).
- Lift \(\lambda : \text{Mon}(\mathcal{A}) \rightarrow \text{stdMon}_\mathcal{A}(\mathcal{P}) \) with \(\psi(\lambda(m)) = m \).
- \(\mathcal{A} \) inherits grading and monomial ordering from \(\mathcal{P} \) via \(\lambda \).
- For \(a, b, c \in \text{Mon}(\mathcal{A}) \): \(a \mid_c b \) (\(a \) divides \(b \) with \textit{small cofactor} \(c \))
 \[\iff \lambda(a) \cdot \lambda(c) = \lambda(b) \]. \textit{Easy to verify!}
Free modules over path algebra quotients

- \(F = \bigoplus_{i=1}^r v_i A \) free right \(A \)-module, and a right \(\mathcal{P} \)-module via \(\psi \).
- \(\text{Mon}(F) = \{ v_i \cdot a \mid i = 1, \ldots, r; a \in \text{Mon}(A) \} \).
- For \(m = v_i \cdot a, n = v_j \cdot b \in \text{Mon}(F) \): \(m|_c n \iff i = j \) and \(a|_c b \)

Standard (Gröbner) bases of \(M = \langle \hat{g}_1, \ldots, \hat{g}_m \rangle \leq F \)

- Fix compatible monomial orderings on \(\mathcal{P}, A, F \). Choices!
- \(G \subset M \leq F \) is standard basis of \(M \): leading monomials of \(M \) are divisible by leading monomials of \(G \).
- If it terminates: Reduction of \(x \in F \) by a standard basis is zero \(\iff x \in M \).

Finite standard bases do not always exist.
Buchberger vs. F_5 algorithm

Buchberger algorithm computes standard bases

Increments a generating set by “S-polynomials” of “critical pairs”. Zero reductions of S-polynomials are a waste of time.

Faugère’s F_5 for polynomial rings beats Buchberger’s algorithm!

Signature keeps track how elements of G were computed.

“Trivial syzygies” $f \cdot g = g \cdot f$ detect many redundant critical pairs.

There is no non-commutative F_5! Useless in fin. dim. algebras!

Yes, there is, and it *is* useful!

- In a *quotient* $\psi: \mathcal{P} \to A$, $\ker(\psi)$ provides us with trivial syzygies.
- Zero reductions provide *nontrivial* syzygies [Arri–Perry].
- Encode a huge vector space basis by a much smaller standard basis.
- Standard bases are not more than (useful) by-products of F_5—the *signatures* provide essential information.
The F_5 signature

Let $S = \bigoplus_{i=1}^{m} e_i \mathcal{P}$, with some compatible monomial ordering.

Epimorphism $ev: S \rightarrow M$ of right \mathcal{P}-modules with $ev(e_i) = \hat{g}_i \ \forall i$.

$f \in S$ describes $ev(f) \in M$ as an A–linear combination of the \hat{g}_i.

Def:

A signed element $p \in_s U \subset M$ is a pair $p = (u, \eta)$ with $u \in U$ and $\eta \in \text{Mon}(S)$, such that $\exists f \in S: ev(f) = u$ and $\text{Lm}(f) = \eta$.

Its unsigned element is $u(p) := u$ and its signature $\sigma(p) := \eta$.

We only allow operations that keep track of signatures

For $p \in_s M$ and $\tau \in \text{Mon}(\mathcal{P})$: $(u(p) \cdot \psi(\tau), \ \sigma(p) \cdot \tau) \in_s M$.

If $p_1, p_2 \in_s M$, $\sigma(p_1) > \sigma(p_2)$: $(u(p_1) + u(p_2), \ \sigma(p_1)) \in_s M$.

Otherwise, the addition won’t be performed in the F_5 algorithm.
Signed reduction

η-reduction modulo G of $p \in F$, for $\eta \in \text{Mon}(S)$, $G \subset_s M \setminus \{0\}$

- p is η-reducible modulo $G \iff p \neq 0$, and
 1. $\exists g \in G : \text{Lm}(u(g))|_c \text{Lm}(p)$
 2. $\sigma(g) \cdot \lambda(c) < \eta$

- Otherwise, p is η-irreducible modulo G.

- Replace p by $p - \frac{\text{Lc}(p)}{\text{Lc}(u(g))}g \cdot c$ and iterate
 $\leadsto \text{NF}_\eta(p; G)$, which is η-irreducible modulo G. Termination?

- p is weakly η-reducible modulo $G \iff \ldots \sigma(g) \cdot \lambda(c) \leq \eta$.

For $p \in_s M$, implicitly choose $\eta = \sigma(p)$

- p is irreducible iff $u(p)$ is $\sigma(p)$-irreducible modulo any signed $G \subset_s M$.
 I.e., $\sigma(p)$ is optimal, there is no cheaper computation of $u(p)$.

- $\text{NF}(p; G) := (\text{NF}_{\sigma(p)}(u(p); G), \sigma(p)) \in_s M$. Signature is preserved!
Signed standard bases

Def: \(G \subset_{s} M \setminus \{0\} \) is a signed standard basis of \(M \)
\[\iff \text{Every irreducible } p \in_{s} M \setminus \{0\} \text{ is weakly } \sigma(p)-\text{reducible modulo } G. \]

Lemma
Let \(G \) be a signed standard basis of \(M \).
- \(p \in_{s} M \setminus \{0\} \) not irreducible \(\implies \) \(\text{NF}(p; G) = (0, \sigma(p)). \)

 Proof idea: \(p \) has irreducible reductor \(\in_{s} M \).
- \(u(G) = \{ u(g) \mid g \in G \} \) is a standard basis of \(M \).

Def: \(G \subset_{s} M \setminus \{0\} \) is interreduced
\[\iff \text{Every } g \in G \text{ is not weakly } \sigma(g)-\text{reducible modulo } G \setminus \{g\}. \]
Signed standard bases

Critical pairs and S-polynomials

\[(g, c) \text{ critical pair of type } T \text{ of } G\]

\[g \in G \text{ with } \text{Lm}(u(g)) = v_i \cdot a, \ c \in \text{Mon}(\mathcal{A}) \text{ such that } c \text{ is not a small cofactor of } a, \text{ and if } c'|c \text{ with } \deg(c') < \deg(c) \text{ then } c' \text{ is a small cofactor of } a. \text{ Chain criterion!} \]

\[S(g, c) := (u(g) \cdot c, \ \sigma(g) \cdot \lambda(c)) \in_s M\]

\[(g, g') \text{ critical pair of type } R \text{ of } G\]

\[g \neq g' \in G \text{ with } \text{Lm}(u(g))|_c \text{Lm}(u(g')), \text{ but } \sigma(g) \cdot \lambda(c) > \sigma(g'). \]

\[S(g, g') := \left(u(g') - \frac{\text{Lc}(g')}{\text{Lc}(g)} u(g) \cdot c, \ \sigma(g) \cdot \lambda(c) \right) \in_s M\]

Buchberger style computation of signed standard bases

- Start with \(G = \{(\hat{g}_1, \epsilon_1), \ldots, (\hat{g}_m, \epsilon_m)\} \).
- Repeatedly add S-polynomials of critical pairs and interreduce.
- Be upset if a zero reduction occurs.
The revised F_5 criterion (A. Arri and J. Perry)

Let $L \subset \text{Lm}(\text{ker}(ev))$.

Def: A critical pair (g, c) resp. (g, g') is *normal* wrt. L if

$$g \text{ (and } g') \text{ is irreducible modulo } G, \text{ and } \sigma(g) \cdot \lambda(c) \not\in L.$$

Def: G has the F_5 property relative to L if

$$\text{For all normal critical pairs } p = (g, c) \text{ resp. } p = (g, g') \text{ rel. } L, \text{ there exist } h \in G \text{ and a small cofactor } d \text{ of } \text{Lm}(u(h)) \text{ s.t.}$$

1. $\sigma(S(p)) = \sigma(g) \cdot \lambda(c) = \sigma(h) \cdot \lambda(d)$
2. $u(h) \cdot d$ is $\sigma(g) \cdot \lambda(c)$-irreducible modulo G.

Learning from zero-reductions

If $u(\text{NF}(p; G)) = 0$ then $\sigma(p) \in \text{Lm}(\text{ker}(ev))$. Add its two-sided multiples to $L \rightsquigarrow \text{weaken the } F_5 \text{ property.}$
Theorem: \([F_5 \text{ and rewritten criterion in Faugère’s terminology}]\)

Let \(G \subset_s M \setminus \{0\} \) be finite interreduced, and for all \(i = 1, \ldots, m \), either \(e_i \in \text{Lm}(\ker(ev)) \) (\(\hat{g}_i \) is redundant generator), or \(\exists g \in G \) with \(\sigma(g) = e_i \).

\(G \) signed standard basis of \(M \) \(\iff \) it has the \(F_5 \) property.

\(F_5 \) algorithm

- Start with \(G = \{ (\hat{g}_1, e_1), \ldots, (\hat{g}_m, e_m) \} \subset_s M \), and
 \(L = \bigcup_{i=1}^m e_i \cdot \text{Lm}(\ker(\psi)) \subset \text{Lm}(\ker(ev)) \).
 These are the trivial syzygies.

- For normal critical pairs rel. \(L \) violating \(F_5 \) (sorted):
 Compute the normal form of the S-polynomial
 - If non-zero: Add it to \(G \), and interreduce \(G \).
 - If zero: Add its signature to \(L \).

Return \(G \): It is an interreduced signed standard basis of \(M \).

Rem: Each signature \(\eta \) of S-polynomials occurs at most once

Further crit. pairs for \(\eta \) will not be normal or will not violate \(F_5 \)!
Signed standard bases and Loewy layers

Let \mathcal{A} be a basic algebra and \succ negative degree ordering on $\mathcal{P}, \mathcal{A}, F, S$

- \mathcal{A} finite-dimensional $\Rightarrow F_5$ algorithm terminates, for all \succ, since only finitely many signatures are not in L.

- Let $\tau_d \in \text{Mon}(S)$ maximal with $\deg(\tau) = d \in \mathbb{N}$.
 \[
 \text{Rad}^d(M) = \{ f \in M : \exists \tilde{f} \in S : Lm(\tilde{f}) \leq \tau_d \text{ and } ev(\tilde{f}) = f \}
 \]
 Uses that \mathcal{A} is a basic algebra!

- Let G be an interreduced signed standard basis of M
 The elements $u(g) \cdot c$ with
 1. $g \in G$, c small cofactor of $Lm(u(g))$
 2. $\sigma(g) \cdot \lambda(c) \leq \tau_d$
 3. $u(g) \cdot c$ is $\sigma(g) \cdot \lambda(c)$-irreducible modulo G
 form a K-vector space basis $B_{\tau_d}(M, G)$ of $\text{Rad}^d(M)$.
 Uses that \mathcal{P} is a path algebra!

- $B_{\tau_d-1}(M, G) \setminus B_{\tau_d}(M, G)$ yields a basis of $\mathcal{L}^d(M)$.
Comparison with David Green’s “heady standard bases”

- “Heady” only keeps track whether $\deg(\sigma(p)) > 0$.
- “Heady” only computes $L^1(M)$ (the “head” of M) and is state of the art for computing minimal generating sets.
- Critical pairs of type T are enough for the heady algorithm.

But: Many zero reductions occur! $\sim \sim F_5$ should be better.

Questions

- Termination for noetherian algebras of infinite dimension? (open)
- Negative degree orderings in infinite dimension? (weak NF)
- When does F_5 run without any zero reduction? (open)
- Other problems whose solution can be encoded in the signature, for suitable monomial ordering?

COMPETITIVE IMPLEMENTATION?
Quiver paths: #16453, merged last week → sage.quivers.paths

- Implement the semigroup formed by the paths of a quiver, in Cython
- Encode a path as a long integer
- Concatenation etc. based on fast shift operations in GMP/mpir.

Path algebras: #17435, needs review

- Path algebra elements as pointed lists; four term orderings available
- Uses copy-by-identity for monomials and a kill list for terms
- Basic arithmetic faster than with Letterplace.

F_5 implementation, only on my laptop yet

- Uses geobucket data structure for the general case...
- ... and matrices as an alternative in the finite dimensional case.
- Faster than heady algo in examples, but needs debugging.